
DERI Galway
University Road
Galway, Ireland

www.deri.ie

DERI Innsbruck
Technikerstrasse 21a

Innsbruck, Austria
www.deri.at

DERI Korea
Yeonggun-Dong, Chongno-Gu

Seoul, Korea
korea.deri.org

DERI Stanford
Serra Mall

Stanford, USA
www.deri.us

DERI – DIGITAL ENTERPRISE RESEARCH INSTITUTE

SEMANTIC DISCOVERY CACHING:
PROTOTYPE& U SE CASE

EVALUATION

Michael Stollberg and Martin Hepp

DERI TECHNICAL REPORT2007-04-07

APRIL 2007

DERI – DIGITAL ENTERPRISE RESEARCH INSTITUTE

DERI TECHNICAL REPORT

DERI TECHNICAL REPORT2007-04-07, APRIL 2007

SEMANTIC DISCOVERY CACHING (SDC):
PROTOTYPE& U SE CASE EVALUATION

Michael Stollberg and Martin Hepp1

Abstract. This technical report presents the prototype implementation ofSemantic Discovery
Caching(short: SDC), a technique for efficient and scalable discovery for Semantic Web services.
It captures the results of design time discovery (usability of Web services for generic goal descrip-
tions), and utilizes this knowledge for efficient runtime discovery (find a usable Web service for
a concrete client request) by pre-filtering and minimizing the number of matchmaking operations.
The SDC technique is a realization of the Web Service discovery framework envisioned for the Web
Service Modelling Ontology WSMO. It is based on a profound, formalized specification of its ele-
ments and operations in first-order logic (FOL). While the theoretical and formal foundations have
been presented in other works, this document presents the prototype implementation and an evalua-
tion with respect to the achievable increase in efficiency and scalability within the shipment scenario
defined in the SWS Challenge.

Keywords: Semantic Web Services, Goals, Discovery, Efficiency, Scalability

1Digital Enterprise Research Institute (DERI) Innsbruck, University of Innsbruck, Technikerstraße 21a, A-6020
Innsbruck, Austria. eMail:{michael.stollberg,martin.hepp }@deri.org.

Acknowledgements: This material is based upon works supported by the EU commission and by the
Austrian government.

The authors dedicate special thanks to Holger Lausen, Mick Kerrigan, Thomas Haselwanter, and Ad-
ina Sirbu for help during the implementation.

Copyright c© 2007 by the authors

DERI TR 2007-04-07 I

Contents

1 Introduction 1

2 Prototype 3
2.1 Availability . 3
2.2 Architecture and Design. 3

2.2.1 Design Considerations. 3
2.2.2 Architecture of the SDC Prototype. 5
2.2.3 SDC Graph Ontology. 6

2.3 Main Algorithms . 8
2.3.1 SDC Graph Creator. 8
2.3.2 SDC Graph Evolution Manager. 9
2.3.3 SDC Runtime Discoverer. 10

2.4 Implementation Specification. 11

3 Use Case and Evaluation 14
3.1 Use Case . 14

3.1.1 SWS Challenge Shipment Scenario. 14
3.1.2 Mapping to SDC. 14

3.2 Evaluation. 19
3.2.1 Methodology. 19
3.2.2 Results . 20
3.2.3 Discussion of Impact. 22

4 Conclusions and Future Work 24

REFERENCES 25

APPENDIX 26

A VampireInvoker Web Service – WSDL 26

B Domain Ontologies for SWSC Shipment Scenario (WSML) 28

C Evaluation Data 32

II DERI TR 2007-04-07

List of Figures

1 Overview of the SDC-Enabled Web Service Discovery. 1
2 Architecture of SDC Prototype. 5
3 Overview of SDC Graph Creation Algorithm. 8
4 Overview of SDC Graph Evolution Management Algorithm. 9
5 Overview of SDC Runtime Discovery Algorithm. 10
6 UML Class Diagram of SDC Prototype. 12
7 UML Class Diagram of Matchmaker used in SDC Prototype. 13
8 Overview of the Goal Graph for the SWSC Shipment Scenario. 17
9 Performance Comparison Charts. 21
10 Performance Comparison Charts. 22

List of Tables

1 Overview of Web Services used in Demonstration. 15
2 Overview of Usability Degrees of Web Services in SWSC Shipment Scenario. 18
3 Overview of the 10 Goal Instances used in Performance Comparison Test. 19
4 Overview of Used Statistical Notions. 32

DERI TR 2007-04-07 1

1 Introduction

This report provides a documentation of the prototype of Semantic Discovery Caching (short: SDC), an
efficient and scalable Web service discovery engine, along with an evaluation in a real world scenario.

SDC is an optimization technique for the Web service discovery process that addresses the challenge
of efficiency(the required time for finding a usable Web service) andscalability (the ability to deal with
large numbers of available Web services). These are critical success factors for the adaptation of Semantic
Web service technologies in real world scenarios. The SDC technique is a novel approach that adopts the
concept of caching to the context of Web service discovery. It provides one possible realization of the
discovery framework envisioned within the Web Service Modeling Ontology WSMO [3] (see homepage:
www.wsmo.org), with a primary focus on functional aspects.

Figure1 gives an overview of the approach as a data flow diagram. At design time, Web services for
goal templatesare discovered by matchmaking of their formal functional descriptions. A goal template
is a generic client objective description; the usability of each Web service for a goal template is expressed
in terms of matching degrees (exact, plugin, subsume, intersect, disjoint). The result is cached in the so-
calledSDC-Graph that organizes goal templates with respect to their semantic similarity, and captures the
minimal knowledge of usable Web services. At runtime, a concrete client request is formulated in terms
of a goal instancethat instantiates a goal template with concrete inputs; this is referred to as thegoal
formulationprocess. The runtime discovery finds one usable Web service. This is optimized by using the
knowledge kept in the SDC Graph, in particular: (1) only those Web service usable for the corresponding
goal template are potential candidates for the goal instance (pre-filtering), (2) for Web services that are
usable for a goal template under the degrees exact or plugin no matchmaking is necessary for discovery at
runtime (minimizing the number of necessary matchmaking operations).

The SDC technique is based on a profound formalization. While this document focusses on the proto-
type implementation and the evaluation in a use case scenario, we refer to the following documents for the
theoretical and formal foundations: [8] presents the formal foundations for the two-phase Web service dis-
covery, including the differentiation of goal templates and goal instances, the definition and formal seman-
tics of functional descriptions for Web services and goals, and the formal definition of the design time and
runtime Web service discovery operations; [7] provides the theoretical foundations of the SDC technology,
including the definition of the SDC Graph, and the specification of all operations required for SDC-enabled
Web service discovery as illustrated in Figure1.

Figure 1:Overview of the SDC-Enabled Web Service Discovery

www.wsmo.org�

2 DERI TR 2007-04-07

This document is organized as follows. Section2 provides a documentation of the SDC prototype. This
is realized as a component of the Web Service Execution Environment WSMX (seewww.wsmx.org), the
reference implementation of WSMO. The prototype is open source software, available for download from
the SDC homepage athttp://members.deri.at/ ∼michaels/software/sdc/ .

The main result of this work is the achieved increase in efficiency and scalability of the discovery pro-
cess. For demonstration, we have compared the SDC runtime discovery with an engine that applies the
same matchmaking techniques but does not make use of the cached design time discovery results. For
this, we have run several comparison tests with the shipment scenario defined in the SWS Challenge,
a widely recognized use case for demonstration and comparison of Web service discovery techniques
(www.sws-challenge.org/). Section3 presents this evaluation in detail. Finally, Section4 concludes
the document.

www.wsmx.org�
http://members.deri.at/~michaels/software/sdc/�
www.sws-challenge.org/�

DERI TR 2007-04-07 3

2 Prototype

This section presents the prototype of the SDC technique. We here focus on the architecture and the central
functionalities, referring to the SDC homepage for further technical details. The following first provides
information on the availability of the prototype, then explains the architecture and design as well as the
central algorithms of the SDC technique, and finally explains the technical realization of the prototype.

2.1 Availability

SDC Homepage:http://members.deri.at/ ∼michaels/software/sdc/

Contact: Michael Stollberg,http://members.deri.at/ ∼michaels/

Nature: Java application

Platform JDK 1.5.

Licensing LGPL (open source), copyright by DERI

Version 1.0, date: 26 March 2007.

Download http://members.deri.at/ ∼michaels/software/sdc/SDCstandalone.zip

Source Control: CVS of the WSMX SourceForge project, web interface at
http://wsmx.cvs.sourceforge.net/wsmx/components/discovery/src/main/org/
deri/wsmx/discovery/caching/

JavaDoc: http://members.deri.at/ ∼michaels/software/sdc/20070327/javadoc/

Required Libraries: all included in the ”SDCstandalone.zip”archive

• WSMO4J – the WSMO API for Java

• Apache AXIS 2 – an open source engine for Web services

• Apache Log4J – an open source API for inserting logging statements into Java code.

2.2 Architecture and Design

The SDC technique is formally specified in a first-order logic setting [7] that – by purpose – is defined rel-
atively independent of specific frameworks for Semantic Web services (e.g. OWL-S or WSMO). However,
the discovery techniques are based on specific, sufficiently rich functional descriptions whose precise formal
semantics allow to properly define the necessary matchmaking techniques. The following first explains the
design considerations for the SDC prototype, and then presents the resulting technical architecture.

2.2.1 Design Considerations

Although the SDC technique is specified independent of a particular framework for Semantic Web services,
it appears to be reasonable to adopt it to such a framework for realizing the prototype – in order to avoid the
need of building the necessary infrastructure from scratch. The most appropriate choice for this is WSMO,
as it complies with several design principles: in contrast to all other frameworks, WSMO defines goals

http://members.deri.at/~michaels/software/sdc/�
http://members.deri.at/~michaels/�
http://members.deri.at/~michaels/software/sdc/SDCstandalone.zip�
http://wsmx.cvs.sourceforge.net/wsmx/components/discovery/src/main/org/deri/wsmx/discovery/caching/�
http://wsmx.cvs.sourceforge.net/wsmx/components/discovery/src/main/org/deri/wsmx/discovery/caching/�
http://members.deri.at/~michaels/software/sdc/20070327/javadoc/�

4 DERI TR 2007-04-07

as a top level notion and therewith promotes the ontological differentiation of the requester and provider
perspective [3]. Moreover, the exhaustive tooling infrastructure provided for WSMO can be used for the
SDC prototype. In particular, the WSMO4J Java API for programmatically handling WSMO elements (see
wsmo4j.sourceforge.net/) as well some of the base components of WSMX occur to be usable.

However, there are some differences between the WSMO specification and the one of SDC. At first,
WSMO does not distinguish between goal templates and goal instances. Although this conception is im-
plicitly made in several WSMO-based solutions and has been proposed as an extension [9], the distinction is
not defined in WSMO and thus not supported in its tooling support. Secondly, the semantics of capabilities
in WSMO is not precisely defined. However, this is a fundamental requirement for correctly defining formal
matchmaking techniques for discovery. Thus, the SDC technique uses functional descriptions following the
Abstract State Space model [4], a language independent model of Web services and the world they act in
with precise formal semantics. As specified in [8] in detail, the functional descriptions for both goals and
Web services used in SDC consist of:

(i) input variablesIF that denote all required inputs
(ii) a preconditionφpre that defines conditions on the start-state whereinIF occur as free variables
(iii) an effectφeff that defines conditions on the end-state whereinIF occur as free variables

and the predicateout denotes the outputs.

The formal meaning is defined as so-calledimplication semantics: if, for a particular input binding
in a specific start-state,φpre is satisfiable, then alsoφeff must be satisfiable in the end-state. In SDC,
classical first-order logic [6] is used as the specification language for functional descriptions. This has been
chosen because of its high expressiveness, and because it does not imply any constraints on the modeling of
functional descriptions. However, this raises the third difference between WSMO and the SDC specification.

The WSMO framework comes along with an own specification language, the Web Service Modeling
Language WSML [1]. This consists of of a conceptual part that allows to define WSMO elements (on-
tologies, goals, Web services, and mediators), and provides 5 variants of formal ontology specification
languages.1 Although not defined as an explicit variant, WSML FOL provides a first-order syntax with
classical model-theoretic semantics.2 This can be used as the specification language for the SDC prototype.
However, it is not possible to use any other WSML variant because of the following reasons:

• WSML Coredoes not provide variables (needed for specifying functional descriptions)

• WSML DLis not expressive enough, as it does not support nominals (needed for defining input bind-
ings for SDC functional descriptions)

• WSML Flightas well asWSML Rulehave different formal semantics (minimal model semantics), and
the respective reasoners do not provide the required subsumption reasoning.

1WSML variants (see specification [1]) :

1. WSML Corethat relates to Description Logic Programs, the maximal intersection of Description Logics (DL) and Logic
Programming (LP)

2. WSML DLas a Description Logic that is compatible with OWL-DL

3. WSML Flightas a restricted LP language

4. WSML Ruleas fully qualified rule language

5. WSML Fullthat provides an umbrella of all variants as a first-order framework with auto-epistemic extensions.

2 WSML FOL is defined as WSML Full without usage of the following symbols: ”naf”, ”!-”, ”ofType”, and without cardinality
constraints [2].

wsmo4j.sourceforge.net/�

DERI TR 2007-04-07 5

Figure 2:Architecture of SDC Prototype

2.2.2 Architecture of the SDC Prototype

The architecture for the SDC prototype results from the design considerations discussed above. It is im-
plemented as a discovery component of the Web Service Execution Environment WSMX (see homepage:
www.wsmx.org), the WSMO reference implementation. It uses WSML FOL as the specification lan-
guage3, and the following open source technologies: (1) the WSMO4J API for Java 5.0, (2)VAMPIRE 8.0,
a first-order logic automated theorem prover for matchmaking [5], and (3) Apache AXIS 2 for invoking
VAMPIRE via a Web Service (seehttp://ws.apache.org/axis2/).

Figure2 provides an overview of the SDC prototype architecture. The overall SDC component consists
of 3 main components: (1) theSDC Graph Creatorperforms the design time discovery and stores the result
in the SDC Graph, the specific knowledge structure used by the SDC technique (see below in Section2.2.3) .
This is used by (2) theSDC Runtime Discovererthat performs the runtime Web service discovery, including
the required functionalities for the goal formulation process; (3) theEvolution Managermaintains the SDC
Graph in its changing environment, i.e. when a goal template or a Web service is added, removed, or
modified. We shall explain and algorithms of these components below in Section2.3.

3* The ontology, goal, and Web service descriptions for SDC are specified in WSML FOL, see footnote2. The WSMO
capability descriptions are translated to TPTP [10], a first-order logic syntax commonly used for automated theorem proving. The
current translation is manual; an automation is under construction at the time of writing.

www.wsmx.org�
http://ws.apache.org/axis2/�

6 DERI TR 2007-04-07

The necessary matchmaking techniques for the 3 main components are provided by theMatchmaker.
This loads the relevant ontologies, goal, and Web service descriptions, associates these with respective TPTP
representation, and dynamically adds the proof obligation for requested matchmaking. This proof obligation
is checked withVAMPIRE; if it is provable, then the requested match is given.VAMPIRE is only available
for Linux. In order to maintain the platform independence of the SDC prototype, it is invoked on a remote
server via a Web service. We explain this in more detail below in section2.4.

The other components used by the SDC prototype areWSMO4J, the Java API for WSMO (see above),
and theWSMX Resource Managerthat handles the storage and retrieval of WSMO elements in a repository
(i.e. ontologies, goals, Web services, and mediators described in WSML).

2.2.3 SDC Graph Ontology

The heart of the SDC technique is the SDC Graph. This is the knowledge structure for caching design
time discovery results that is used by all operations in the SDC technique: (1) as a search graph for finding
the most appropriate goal template during the goal formulation process, (2) for optimization of the design
time discovery, and – most importantly – (3) as the knowledge structure for enabling efficient runtime Web
service discovery. The SDC graph is defined such that it provides the most appropriate knowledge structure
for supporting all three usages. We briefly recall the definition, referring to [7] for the detailed formal
specification and discussion.

The SDC graph consists of agoal graphthat organizes goal templates in a subsumption hierarchy with
respect to their semantic similarity, and adiscovery cachethat keeps minimal knowledge about the usability
of the available Web services for each goal template. Two goal templatesG1,G2 are considered to besimilar
if they have at least one common solution. This is expressed in terms of matching degrees between their
formal functional descriptions (exact, plugin, subsume, intersect, disjoint); the same degrees are used to
denote the functional usability of a Web serviceW for a goal templateG. Arcs in the SDC graph are directed
connections of the formd(source, target): the source is always a goal template; arcs with a goal template as
the target constitute the goal graph, and those with a Web service as the target define the discovery cache;d
describes the matching degree between the source and the target. Formally, the SDC graph is set ofdirected
acyclic graphs(DAG). In each connected sub-graph, the inner nodes are similar goal templates and the leaf
nodes are the usable Web services.

In the SDC prototype, the SDC Graph is defined as an ontology. The conceptual model is represented
in the ontology schema, and an SDC graph for a specific application is handled as a knowledge base (i.e.
and ontology instance store). This representation has been chosen in order to allow (1) re-use within other
systems: the SDC Graph knowledge base can be used for interchanging knowledge about Web service
discovery results, and (2) the integration with other Web service discovery techniques: e.g. ranking and
quality-of-service discovery techniques can be performed on the basis of the SDC graph.

Listing 1 below shows the ontology schema of the SDC Graph in WSML, which is used with the SDC
prototype. It is specified inWSML Rule, the most expressive WSML variant for which reasoning support
exists at the time of writing. The conceptgoal templaterefers to the WSML goal description, and carries
information of thepositionof a goal template in the SDC graph. The position can beroot, i.e. the goal
template that does not have any parents in the SDC graph,child when it has a parent, orintersectionGT
that denotes the result of resolving an intersection similarity degree between two goal templates (see below,
Section2.3). The position attribute helps to deal with an SDC graph knowledge base in the algorithms.
Following the definition from [8], the conceptgoal instancedefines the corresponding goal template and the
input bindingβ, which is represented as a WSML datatype with possibly multiple values. The matchmaking

DERI TR 2007-04-07 7

degrees – used to denote the similarity of goal templates as well as the usability of a Web service for a goal
template – are pre-defined as instances of the conceptmatchingDegree. The arcs in an SCD Graph are
represented by the conceptsgoalGraphArc anddiscoveryCacheArc. Instances of the former constitute the
goal graph, instances of the letter the discovery cache in a SDC Graph knowledge base.

Form the perspective of conceptual modelling, it would be more appropriate to model the SDC Graph
arcs as tenary relations of the formarc(source, target, degree). However, such constructs can not be
represented in OWL. Thus, with respect to reusability, we decided to model them in terms of concepts
and instances. This can be expressed in any ontology language (even RDF, when omitting the cardinality
constraints). Besides, the arcs in the SDC graph are conceptually very close related to WSMO mediators,
especially to GG Mediators (for the goal graph arcs) and WG Mediators (for the discovery cache arcs).
The current WSMO mediator specification does not allow to state the matching degree – which is the most
relevant information within the SDC graph. With respect to this, we decided to model SDC graph arcs as
concepts with instances in order to not conflict with other usages of WSMO mediators. However, it is easy
to generate GG and WGM mediators out of SDC graph instances.

wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−rule”

namespace
{ ”http :// members.deri.at/˜michaels/ontologies/SDContology.wsml#”,

wsml ”http :// www.wsmo.org/wsml/wsml−syntax#”
}

ontology
”http :// members.deri.at/˜michaels/ontologies/SDContology.wsml”

concept goalTemplate
description impliesType wsml#goal
position impliesType goalGraphPosition

concept goalGraphPosition

instance root memberOf goalGraphPosition
instance child memberOf goalGraphPosition
instance intersectionGT memberOf goalGraphPosition

concept goalInstance
correspondingGoalTemplate impliesType goalTemplate
inputs impliesType (0 n) wsml#datatype

concept matchingDegree
instance exact memberOf matchingDegree
instance plugin memberOf matchingDegree
instance subsume memberOf matchingDegree
instance intersect memberOf matchingDegree
instance disjoint memberOf matchingDegree

concept goalGraphArc
sourceGT impliesType (1 1) goalTemplate
targetGT impliesType (1 1) goalTemplate
similarity impliesType (1 1) matchingDegree

concept discoveryCacheArc
sourceGT impliesType (1 1) goalTemplate
targetWS impliesType (1 1) wsml#webService
usability impliesType (1 1) matchingDegree

Listing 1: WSML Ontology Schema for the SDC Graph

8 DERI TR 2007-04-07

2.3 Main Algorithms

In order to provide a basic understanding of the SDC technique, the following briefly outlines the central
algorithms. As shown in Figure2, the central functionalities are the creation of the SDC graph (in theSDC
Graph Creator), the maintenance of the SDC graph in an dynamically changing environment (in theEvolu-
tion Manager), and the runtime Web service discovery for goal instances (in theSDC Runtime Discoverer).
The detailed specification of the algorithms is provided in [7].

2.3.1 SDC Graph Creator

This component creates the SDC Graph for some given goal templates and Web services. To ensure that the
SDC graph exposes the desired formal properties, this is realized in an incremental manner. Essentially, the
creation commences with one goal template and then subsequently adds the other ones. Figure3 provides
an overview of the algorithm as a flow chart.

Figure 3:Overview of SDC Graph Creation Algorithm

The insertion of a new goal template into the SDC Graph commences with the creation of the goal graph.
This means that the new goal template is inserted at the most appropriate position in the existing goal graph.

DERI TR 2007-04-07 9

For this, at first the similarity degree between the new goal template and an existing root node is determined.
If it is exact, then the new goal template is not added as an identical one exists already. If the degreeplugin,
then the new goal template is added as a new root node. If it issubsume, then the new goal template is
inserted as a new child among the existing children of the inspected root goal template. For the case of an
intersectdegree, the so-called ”i-arc resolution”algorithm is invoked; we refer to [7] for the details of the
insertion algorithms that are used under theplugin, subsume, andintersectsimilarity degrees. If none of the
above cases is given, then the similarity degree check is repeated for the next root node. If no further root
node exists, then the new goal template is inserted as a new, disconnected root node.

In the second step, the discovery cache is created – i.e. the relevant arcs between the newly inserted goal
template and the existing Web services. Essentially, this performs the design time Web service discovery,
i.e. the matchmaking of goal templates and Web services. This distinguishes two algorithms: if the position
of the new goal template ischild, then only those Web services that are usable for each of its parents can
potentially be usable. We thus do not need to consider all available Web services, which enhances the
efficiency of the discovery cache creation. If the position isroot, we analogously can infer the usability
degree for those Web services that are usable for each child node. However, also the other Web services
need to be taken into account.

2.3.2 SDC Graph Evolution Manager

The purpose of the Evolution Manager is to maintain the formal properties of an existing SDC graph in the
case that goal templates or Web services are added, removed, or modified. Figure4 provides an overview
of the algorithm as a flow chart; we refer to [7] for the detailed specification of the sub-procedures. While
the changes on available Web services are invoked automatically via a notification mechanism by the Web
service repository, changes on goal templates occur as manually performed maintenance operations (e.g.
when outdated or false defined goal templates are removed by an administrator).

Figure 4:Overview of SDC Graph Evolution Management Algorithm

10 DERI TR 2007-04-07

2.3.3 SDC Runtime Discoverer

The third central algorithm is the runtime Web service discovery. Its purpose is to find one usable Web ser-
vice for a goal instance that has been created by a client. Although there might be several Web services that
are usable under functional aspects, we only need to find and then invoke one for solving the goal instance.
In order to minimize the computational costs, the SDC-enabled runtime discoverer makes extensive usage
of the knowledge kept in the SDC graph.

Figure5 provides an overview of the complete algorithm as a flow chart. At first, we must check whether
the provided goal instance properly instantiates the specified corresponding goal template (conceptually, this
belong to the goal formulation process). Then, we can try to find a usable Web service bylookup: if there
is a Web service that is usable for the corresponding goal template under theexactor plugin degree, then it
is also usable for the goal instance. Thus, we do not need to invoke the matchmaker, but instead answer the
discovery task out of the SDC graph. If this is not successful, we then refine the goal instance by replacing
the corresponding goal template with the most appropriate one. Then, we again can try to find a usable Web
service via lookup (the probability for success is now higher). As the last option, those Web services are
checked that are usable for the (refined) corresponding goal template under thesubsumeor intersectdegree
(the usability determination for the goal instance under these degrees requires matchmaking at runtime).

Figure 5:Overview of SDC Runtime Discovery Algorithm

DERI TR 2007-04-07 11

2.4 Implementation Specification

We complete the presentation of the SDC prototype with the implementation specification. The following
provides an overview of the technical realization. For further details, we refer to the source code available
from the SDC homepage and the JavaDoc documentation (for links see Section2.1).

As outlined above, the SDC prototype is implemented as a discovery component for WSMX. It uses
the WSMO4J API for handling WSMO objects (goal and Web service descriptions, and in particular the
SDC Graph as a WSML ontology knowledge base), and the FOL automated theorem proverVAMPIRE for
matchmaking that is invoked via a Web service. The source classes are organized in two Java packages. The
following explains their content, and Figures6 and7 show their structure as UML class diagrams.

Package:org.deri.wsmx.discovery.caching
This provides the main classes of the SDC Prototype, in particular the implementations of the three main
algorithms outlined above. Its consists of the following classes (see Figure6):

SDCResourceManagerloads & stores WSML files on local machine

SDCGraphManager basic SDC Graph management as a WSML Rule Ontology, incl. the creation of Goal
Templates and SDC Graph Arcs cache), and routines for handling the SDC Graph knowledge base

SDCGraphCreator implements the SDC Graph creation algorithm (see2.3.1)

SDCGraphCreatorHelper provides helper methods for the SDCGraphCreator

SDCGraphEvolutionManager implements the SDC Graph evolution management algorithm (see2.3.2)

GoalInstanceManager creation, management, and validation of goal instances

GoalInstanceSDCDiscovererimplements the SDC-enabled runtime Web service discovery (see2.3.3)

Package:org.deri.wsmx.discovery.caching.matchmaking
This provides all facilities related to the necessary within the SDC technique, in particular the Web service
for invoking VAMPIRE. Its consists of the following classes (see Figure7):

Matchmaker defines all types of matchmaking requests needed for the SDC technique

• uses the Web serviceVampireInvokerto perform the matchmaking (see below)

• uses thePOGeneratorfor generating the proof obligations (see below)

• the interfaceMatchmakerdefines the method skeletons for all matchmaking requests needed for
the SDC technique; other implementations of this interface may use different matchmakers

POGenerator generates the TPTP proof obligations on the client side

• a proof obligation is a logical statement [10] that represents a particular matchmaking request;
this is to be proved byVAMPIRE

• the interfacePOGeneratordefines the method skeletons for all types of proof obligations needed
for the SDC technique

12 DERI TR 2007-04-07

VampireInvoker Web service implementation class for invokingVAMPIRE on a remote server

• intermediately stores the TPTP proof obligation, invokesVAMPIRE for proving it, and returns
the result (as a boolean)

• the Web service is publicly available athttp://138.232.65.138:8080/axis2/services/
VampireInvoker?wsdl ; AppendixA provides the WSDL description

VampireInvokerStub client stub for the Web serviceVampireInvokergenerated by AXIS 2

Figure 6:UML Class Diagram of SDC Prototype

http://138.232.65.138:8080/axis2/services/VampireInvoker?wsdl�
http://138.232.65.138:8080/axis2/services/VampireInvoker?wsdl�

DERI TR 2007-04-07 13

Figure 7:UML Class Diagram of Matchmaker used in SDC Prototype

14 DERI TR 2007-04-07

3 Use Case and Evaluation

The main aim of the SDC technique is to enable efficient, scalable, and stable Web service discovery, there-
with providing a sophisticated component for one of the central reasoning tasks for Semantic Web services.
To evaluate the achievable efficiency increase, we perform and examine a comparison between the SDC-
enabled runtime Web service discovery and a runtime discovery engine that applies the same matchmaking
techniques but does not make use of the knowledge kept in the SDC Graph. For this comparison, we use
the shipment scenario that has been defined in the Semantic Web Services Challenge – a widely accepted
initiative for demonstration and comparison of semantically enabled discovery techniques.

This section explains the evaluation setting, the methodology, and discuss the results. We first explain
the use case setting, and how this is mapped to the conceptual discovery framework of SDC. Then, we
explain the evaluation methodology, present the results of the comparison test along with adequate statistical
techniques, and finally discuss these with respect to the relevance and scientific contributions of this research.

3.1 Use Case

For demonstration and evaluation we apply the shipment scenario that is defined within the Semantic Web
Services Challenge (short: SWSC), (www.sws-challenge.org/). This challenge provides different
scenario settings that are designed to present and compare different SWS technologies, among them dis-
covery, composition, and mediation. Each scenario describes a problem setting on the basis of real-world
settings (e.g. really existing (Web) services, and). The challenge is to properly map the scenario description
to the conceptual framework that underlies a specific technical solution, and then to demonstrate how the
developed techniques handle the problem.

3.1.1 SWS Challenge Shipment Scenario

The SWSC shipment scenario is the one that is particularly dedicated to Web service discovery, with a
primary focus on functional aspects. Thus, it is the most appropriate SWSC use case scenario. Besides
using a widely accepted use case for demonstration and evaluation, this choice also allows to compare the
SDC technique and its underlying conceptual framework with other solutions that have been presented for
this scenario (seehttp://sws-challenge.org/wiki/index.php/Scenarios).

The SWSC shipment scenario is concerned with shipping packages from a Sender to a Receiver. There
are five Web services defined (with WSDL descriptions); each of these offer the shipment of packages from
the USA to a specific list of countries in the world. Moreover, each Web service has specific conditions
regarding the price of the shipment service (not the usage of a Web service, but the price for using the real-
world service that is accessible via a Web service) and further conditions (e.g. maximum weight, delivery
time, etc.). Then, several potential client requests along with the expected discovery result are defined.
These requests are grouped with respect to different aspects that should be taken into consideration for Web
service discovery, e.g.: (A) destination only, (B) destination and weight, (C) destination, weight and price.
A discoverer is expected to provide a technical solution that complies with the expected discovery results.

3.1.2 Mapping to SDC

The first step for demonstrating and evaluating the SDC technique within the SWSC shipment example is to
map the scenario description to the conceptual framework that underlies the SDC approach. This means to
model the goals and Web services, and the necessary domain ontologies. The following explains this. Due to

www.sws-challenge.org/�
http://sws-challenge.org/wiki/index.php/Scenarios�

DERI TR 2007-04-07 15

space limitations, we restrict this explanation to the central conceptual aspects. The complete descriptions
of all relevant resources are available in the archiveresourcesSWSC.zip, available for download from the
SDC homepage (seehttp://members.deri.at/ ∼michaels/software/sdc/).

Scope and Elements
The purpose of this use case demonstration is to examine the increase in the computational efficiency of the
Web service discovery process that is achievable with the SDC technique. For this, the behavior of different
discovery engines for large numbers of Web services appears to be more relevant than the complexity of
the formally described requested and provided functionalities. Nevertheless, we of course need to have
functional descriptions of goals and Web services that properly reflect the SWSC shipment scenario.

With respect to this, we define the scope of functional descriptions for goals and Web services for
the demonstration to contain three aspects: the location of the sender, the location of the receiver, and
the weight of the package that is to be shipped. This covers requests of the types (A) and (B) as defined
in the SWSC shipment scenario (see above). We do not consider the shipping price, because this would
significantly increase the reasoning complexity (especially considering the fact that TPTP does not support
numeric arithmetics). Moreover, in this scenario the shipping price occurs to be an aspect for selection or
ranking mechanisms (e.g. for finding the cheapest shipment service for a particular request). The functional
descriptions for the chosen scope have a relatively low logical complexity, which results in relatively fast
processing times for individual matchmaking operations.

Table1 shows the 5 Web services of the SWSC challenge with their provided functionality under the
chosen scope. For example,Muller ships packages of a maximal weight of 50 lbs from the USA to countries
located in Africa, Europe, North America, and Asia. The package weight is modeled in terms of weight
classes that range from ”light“ to ”heavy“ in gaits of 10 lbs. There is another Web service that – by purpose
– is not usable for solving any request from the scenario. In the SDC conceptual model, a goal template
describes a request for shipping a package on a generic level, e.g. from a country to another country. A goal
instance then specifies the concrete sender and receiver address; we explain this below in more detail.

Table 1:Overview of Web Services used in Demonstration

Domain Ontologies
The basis for semantic descriptions of goals and Web services are domain ontologies that formally define
the terminology and background knowledge. For this demonstration, we define two ontologies; the com-
plete specifications in WSML are provided in AppendixB. We remark that these ontologies are defined for
academic demonstration purpose of the SDC technique.

1. Location Ontology: defines continents, countries, and cities with respect to their geographic locality

2. Shipment Ontology: defines the relevant background knowledge for shipment; central concepts:
shipment order, sender, receiver, package, price, weight classes

http://members.deri.at/~michaels/software/sdc/�

16 DERI TR 2007-04-07

Goal and Web Service Descriptions
The functionalities requested by goals and provided by Web services are formally described; these serve
as the basis for matchmaking. As outlined above, the SDC technology uses WSML as the specification
language with a translation to TPTP, the FOL input syntax supported byVAMPIRE [10]. At the time of
writing, the translation is performed manually; an automation of this is under construction.

The following illustrates this for the description of the Web ServiceMuller mentioned above. Listing2
shows the functional description as a WSML capability. The specified WSML variant is WSML Full; how-
ever, it actually is WSML FOL (see footnote2). Essentially, this description states that if a shipment request
is provided with a sender address in the USA and a receiver address in a country that is located in one of the
supported continents (this is theprecondition), then an order for the shipment of a package with the provided
information will be obtained (postcondition).

wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−full”
webService ”http ://.../ swsc−shipment/webservices/wsMuller.wsml”
importsOntology {

”http ://.../ swsc−shipment/ontologies/shipment.wsml#”,
”http ://.../ swsc−shipment/ontologies/location.wsml#”}

capability wsMullerCapability
sharedVariables {?SendLoc,?RecLoc,?Package,?Weight,?O}
precondition definedBy

forAll (?Sender,?Receiver).
?Sender[address hasValue ?SendLoc] memberOf sho#Sender and

?SendLoc[locatedIn hasValue loc#US] memberOf loc#Location and
?Receiver[address hasValue ?RecLoc] memberOf sho#Receiver and

(?RecLoc[locatedIn hasValue loc#Africa] memberOf loc#Location or
?RecLoc[locatedIn hasValue loc#Europe] memberOf loc#Location or
?RecLoc[locatedIn hasValue loc#NorthAmerica] memberOf loc#Location or
?RecLoc[locatedIn hasValue loc#Asia] memberOf loc#Location) and

?Package[weight hasValue ?Weight] memberOf sho#Package and
?Weight[includedIn hasValue sho#w50lq].

postcondition definedBy
?O[

from hasValue ?SendLoc,
to hasValue ?RecLoc,
item hasValue ?Package ,
price hasValue thePrice] memberOf sho#shipmentOrder.

Listing 2: Functional Description of Web service Muller in WSML FOL

Listing 3 below shows the corresponding functional description in TPTP. It specifies the same condi-
tions, and, in addition, follows the structure of functional description as defined in [8]; here, we use the
conjunctive semantics. The 4 input variables as well as the output variable ”O“ are universally quantified;
the predicatews(...) allows to access the description within a proof obligation. Although there is no
formally defined semantics for WSML capabilities, the WSML representation can be used with the same
formal meaning. For this, the WSML elements need to be translated into the TPTP structure: the shared
variables become the input variables, and the relationship between the precondition and postcondition needs
to be explicated. This is considered to be future work for the implementation of the SDC matchmaker.

input formula(wsMuller,axiom,(
! [SendLoc,RecLoc,Package,Weight,O] : (
ws(SendLoc,RecLoc,Package,Weight,O) <=> (
% PRECONDITION

(
locatedIn(SendLoc, usa) &
(

DERI TR 2007-04-07 17

locatedIn(RecLoc, africa) |
locatedIn(RecLoc, europe) |
locatedIn(RecLoc, northAmerica) |
locatedIn(RecLoc, asia)

)
& package(Package) & weight(Package,Weight)
& includedIn(Weight,w50lq)

)
&

% EFFECT
(

shipmentOrder(O) &
from(SendLoc) &
to(RecLoc) &
item(O,Package) &
price(O,price)

)
))

)) .

Listing 3: Functional Description of Web service Muller in TPTP

Goal Templates and SDC Graph
The final aspect for mapping the SWSC shipment scenario to the SDC conceptual model is the SDC graph,
i.e. the goal templates and the usability of the available Web services for these.

Figure8 shows the goal graph for the SWSC shipment scenario, respectively the snapshot thereof that is
actually used for the demonstration. The goal templategtRootdescribes the objective of shipping a package
of any weight from anywhere in the world to anywhere in the world; this is most general goal template, and
hence is allocated as the root node of the SDC graph. The subsequent levels are constituted by the following
structure: the level below the root restrict the sender and receiver locations to continents, the next level
restricts these to countries, and the lowest level distinguishes the weight classes.

Figure 8:Overview of the Goal Graph for the SWSC Shipment Scenario

18 DERI TR 2007-04-07

The goal graph shown above has only subsume arcs, and each child has exactly one parent. The SDC
graph that will be dynamically created during the life time of the SWSC application will emerge towards this
structure; in intermediate states also intersection goal templates can exist. Regarding the creation of goal
templates: these can either be created manually, or they can be learned from concrete requests. Imagine a
client specifies a goal instance for shipping a package of 1.5 lbs from San Francisco to Berlin. The formal
description can be lifted to a more general level, e.g. to ”from USA to Germany with weight class light“.
Subsequently, we can construct the root goal template by upwardly inspecting of the taxonomy of the used
domain ontologies. We refer to [7] for a more detailed discussion on these issues.

The second part of the SDC graph is concerned with the usability of the Web services. Table2 provides
an overview of the usability degrees of the Web services for each of the goal templates defined above in
Figure 8. This information is explicated in terms of discovery cache arcs in the SDC graph knowledge
base. We observe that for the goal templates located at the upper levels of the goal graph, the most common
usability degree issubsume. For those ones at the middle level we find all possible usability degrees, and
for those at the lowest level the most common usability degree isplugin. It is to remark that the discovery
cache arc between ”gtUS2EUlight”and ”wsRunner”is omitted in the SDC graph. The reason is that because
wsRunner is usable under the plugin degree for a parent node in the goal graph (namely: ”gtUS2EU”), we
can infer that its usability degree for ”gtUS2EUlight”is plugin. We do not store such redundant information
in the SDC graph in order to keep it minimal. Besides, the ”wsOther”is not usable for any goal template;
this Web service is used within the comparison test (see below).

Table 2:Overview of Usability Degrees of Web Services in SWSC Shipment Scenario

DERI TR 2007-04-07 19

3.2 Evaluation

After explaining the SWSC shipment scenario and its mapping into the SDC model, we now turn towards the
evaluation of the SDC technique. The main aspect of interest is the runtime discovery, i.e. to find a usable
Web service for a concrete client request that is formulated in terms of a goal instance. A good discovery
engine should perform this operationefficiently (within a minimal time), and it should bescalable(stay
operational for large numbers of available Web services). This is what is relevant in real-world scenarios.

In order to evaluate the improvements achievable with SDC in this respect, we define 10 goal instances
for the SWSC scenario and compare the time for successful runtime discovery between the SDC-enabled
runtime Web service discovery and a runtime discovery engine that applies the same matchmaking tech-
niques but does not make use of the knowledge kept in the SDC Graph. The following explains the method-
ology for evaluating this by the means of a performance comparison, presents the results, and upon these
discusses the relevance and contributions of this research.

3.2.1 Methodology

Table 3 provides an overview of the 10 goal instances that are used for the comparison. Following the
structure of the client requests defined in the SWSC scenario description, these are defined such that different

Table 3:Overview of the 10 Goal Instances used in Performance Comparison Test

20 DERI TR 2007-04-07

parts of the SDC runtime discoverer need to be applied, e.g. the refinement of the corresponding goal
template (no. 2,6,7), discovery by lookup (no. 2,6,7,8,9,10), as well as additional matchmaking (1,3,5).

As the comparison discovery engine, we implemented a second runtime discoverer that uses the same
matchmaking facilities as the SDC-enabled runtime discovery but does not make use of the knowledge kept
in the SDC graph. This engine performs two operations in order to find a usable Web service for a given goal
instance: (1) the refinement of the corresponding goal template, and (2) checking the basic goal instance
level matching requirement as defined in [8]. The former operation is needed in order to ensure that the
client objective is properly described: if the a priori specified corresponding goal template is not the most
appropriate one, then it must be refined (namely for goal instances 2, 6, and 7). For the second operation, the
goal instance level matching is defined to be given if the formulaΩA∪{[φDG]β, [φDW]β}must be satisfiable.
In plain words: a match is given if the functional descriptions of both the corresponding goal template and
Web service are satisfiable under the input binding defined in the goal instance, with respect to the domain
ontology. We shall refer to this runtime discovery engine as thenon-SDC discovererin the following.

The comparison consists of tests runs between the SDC-discoverer and the non-SDC discoverer for all
10 goal templates, each for the following number of available Web services: 10, 20, 50, 100, 200, 500,
1000, 1500 and 2000. These numbers have been chosen with respect to the expectable size of real-world
SOA applications. Although there might be more than 2000 available Web services, we shall see that this
is sufficient to obtain valuable comparison data. In order to ensure the statistical significance of the data,
we repeat each test 50 times. The set of available Web services always contains the 5 Web services from
the SWSC scenario, so that both discoverers always will terminate with a positive discovery result. The
non-SDC discoverer subsequently checks the available Web services in a randomized order; it stops as soon
as one usable Web service has been found. It therewith provides a runtime discovery engine that does not
use any performance optimization, which simulates most of the existing engines for semantically enabled
Web service discovery.4

3.2.2 Results

The following presents the results of the comparison test as described above. We here present the overall
comparison results and discuss their meaning. A more detailed overview of the test data is provided in
AppendixC.

In order to properly evaluate and discuss the obtained comparison data, we apply standard statistical
notions (in particular: the median and the standard deviation; see AppendixC for the definitions). The most
important result is the performance of the SDC and the non-SDC runtime discoverer, i.e. the time that is
needed to find a usable Web service for a given goal instance. Figure9 shows the performance comparison
charts, presenting the average of all test runs for all 10 goal instances. From this, we can observe the fol-
lowing qualities:

1. computational efficiency: The SDC discoverer is, in average, faster than the non-SDC discoverer.
The reason is that in certain cases the SDC discoverer can find a usable Web service without needed of a
matchmaker. In the SWSC scenario, this is given for the goal instances 4, 8, 9, and 10. When examining the
comparison results, we observe that only for one goal instance (no. 7) the non-SDC discoverer is faster for
the test cases of 10 and 20 available Web services.

4The Java resources for the comparison test are included in the download version of the SDC prototype (see details in Sec-
tion 2.1): the classSWSCComparisonprovides the implementation of the non-SDC discoverer and an invocation method for the
SDC discoverer that measures the time, and the JUnit testSWCComparisonTesterprovides a skeleton for automated test runs that
writes the test data into CSV files along with a log.

DERI TR 2007-04-07 21

Figure 9:Performance Comparison Charts

2. scalability: For an increasing number of Web services, the time required by the SDC discovery stays
the same while for the non-SDC discoverer it grows proportionally.
The reason is the pre-filtering of the SDC discovery: only those Web services that are usable for the corre-
sponding goal template need to be considered at runtime. Moreover, we see that the average time required
by the SDC discoverer is constantly under 1 second, independent of the number of available Web services.
In contrast, the non SDC discovery requires, in average for the SWSC use case, more than 1 minute for 2000
available Web services; this occurs to be a not acceptable performance in real world scenarios.

22 DERI TR 2007-04-07

Apart from the increases in computational efficiency and scalability, the evaluation data expose another
quality that occurs to be important for reliable Web service discovery engines:stability . This is concerned
with behavior of the Web service discovery engine under several calls, which becomes important when the
discoverer is used as a component within more complex Web service execution environments. Figure10
shows the variance of the 50 individual test runs for goal instance 1 for 10 available Web services. We
observe that the SDC discoverer varies between 93 and 188 milliseconds, while the non-SDC discoverer
ranges from 78 to 797 milliseconds. This difference gets bigger with an increasing number of available Web
services (e.g. for 2000 Web services, the non-SDC discoverer varies between 1.4 and 175.5 seconds). The
smaller the variation, the better the behavior of a discovery component can be estimated within an overall
SWS architecture.

Figure 10:Performance Comparison Charts

3.2.3 Discussion of Impact

We complete the evaluation with an outline on the relevance and expectable impact for the SDC technique.
We depict three aspects here that will be further elaborated in the future.

1. The need for efficient, scalable, and stable Web Service discovery engines
Already existing SOA systems contain thousands of Web services – e.g. the one fromVERIZON has nearly
4000. It is commonly expected that the number of Web services in real world applications will become
significantly higher. The basic requirement for a automated discoverer component is that it finds the right
Web services (correctness of the discovery result), and that it is capable of dealing with the number of
available Web services (i.e. scalability). One may argue that there is an improvement if a discovery engine
does this – even if it can take 5 minutes.

However, in accordance to the common vision among the SWS research community, we understand the
aim of SWS technologies to automate or at least mechanize the Web service usage process to a high extent.
Discovery is one of the central reasoning tasks for overall SWS system. It is not only for detecting directly

DERI TR 2007-04-07 23

usable Web services, but provides a basic component for more complex technologies like Web service
composition (for finding composition candidates out of the available Web services), or for dynamic business
process management systems that need to discover and combine several hundreds of Web services. In such
systems, the Web service discoverer becomes one component among others (although it will be a central
one). In order to allow the proper usage of a Web service discovery engine as a software component, its
properties on efficiency, scalability, and stability become essential quality criteria. In the evaluation we have
shown that the SDC technique exposes these qualities in a significantly better manner than the non-SDC
discoverer that simulates existing Web service discovery engines.

2. Integration of other Web Service discovery techniques
Within this research, we have only considered functional aspects of Web services for determining their
usability for solving a goal. However, there are of course other relevant aspects for discovery, in particular
selection (that is to filter the list of functionally usable Web services) and ranking techniques (to determine
a priority list for discovered Web services).

Naturally, the SDC-enabled discovery can be integrated with such techniques. We thereby keep the
primary focus on functional aspects: if a Web service does not provide the functionality that is capable
of solving a request, then it does not matter whether it is better then some other Web service. However,
the interesting aspect is the behavior of a discovery engine that, apart from the functional aspects, allow to
perform selection and ranking.

Before a selection or a ranking technique can be applied, the functionally usable Web services out of the
available ones must be determined. If we want to do this for a concrete client request (i.e. a goal instance),
then the functional discovery needs to return all usable Web services – not just one as we have done in the
comparison. For this, an SDC-enabled functional discoverer only needs to check those Web services that are
usable for the corresponding goal template, and it may can do this by lookup (i.e. without matchmaking).
The non-SDC discoverer would necessarily have to inspectall available Web services – to ensure that the
complete set of usable ones will be found. Thus, the number of matchmaking operations will be the same as
the number of available Web services. Taking the computational costs for matchmaking from the evaluation
in the SWSC scenario above, this would be about 115 ms * 2000 = 230 seconds for 2000 Web services. In
consequence, it can be expected that the differences between the SDC-enabled Web service discovery and
the comparison engine becomes even more significant.

3. Adaptability of the SDC technique
The SDC technique is specified independently of particular frameworks for Semantic Web Services. Thus,
it can in general be adopted to any SOA system – with a few modifications on the concepts and definitions.

One may consider the usage of FOL as the specification language as a weakness, in particular with
respect to the problem of unsatisfiability. This choice has been made because it allows to exactly model and
handle functional descriptions of goals and Web services as they are specified in the underlying conceptual
model – which, to our understanding, most adequately represents the real world and formalizes the intuitive
understanding of the relevant concepts (goals, Web services, instantiations, the meaning of a match, and the
matchmaking degrees).

The adoption of this model to decidable subsets of FOL (and, in consequence, to existing ontology
languages) is not possible without the loss of precision. Nevertheless, a partial mapping of the SDC model
to DL- or LP-based specification languages is of course possible, and therewith some of the benefits of the
SDC technique can become applicable. Moreover, one can imagine that the concept of caching Web service
usages for client requests can also be applied in SOA systems that do not (yet) use any semantic techniques.

24 DERI TR 2007-04-07

4 Conclusions and Future Work

The SDC technique presents a novel approach for increasing the efficiency and scalability of Web service
discovery by adopting the concept of caching – a well established means for performance engineering. Its
theoretic foundations define the knowledge structure and algorithms for caching of Web service discov-
ery. Although specified in a first-order logic setting and the prototype is implemented within the WSMO
framework, the principle can be adopted to any framework for semantically describing Web services. The
evaluation shows that a significant increase in the efficiency and scalability of Web service discovery can be
achieved. Therewith, the SDC technique provides a contribution to the realization of semantically enabled
SOA technology with respect to the requirements arising in real world scenarios.

The current SDC prototype is operational. The future developments will be concerned with its integra-
tion into semantically enabled SOA systems, in particular the WSMX reference implementation. For this,
the following extensions are planned:

• visualization and goal instance creation support in WSMT, the graphical user interface for WSMX

• automation of the translation from WSML to TPTP

• adaptation of the SDC technique to other WSML variants, in particular the DL and LP branches

• integration into the WSMX executions semantics, incl.

– distinction of goal templates and goal instances

– design time and runtime discovery

– integration of other discovery aspects (e.g. non-functional and quality-of-service aspects)

DERI TR 2007-04-07 25

References

[1] J. de Bruijn, H. Lausen, R. Krummenacher, A. Polleres, L. Predoiu, M. Kifer, and D. Fensel. The Web
Service Modeling Language WSML. Deliverable D16.1 final draft 05 Oct 2005, WSML Working
Group, 2005. Available at: http://www.wsmo.org/TR/d16/d16.1/v0.2/.

[2] J. de Bruijn and S. Heymans. WSML Ontology Semantics. WSML Deliverable D28.3 Final Draft,
2006. available at: http://www.wsmo.org/TR/d28/d28.3/.

[3] D. Fensel, H. Lausen, A. Polleres, J. de Bruijn, M. Stollberg, D. Roman, and J. Domigue.Enabling
Semantic Web Services. The Web Service Modeling Ontology. Springer, 2006.

[4] U. Keller, H. Lausen, and M. Stollberg. On the Semantics of Funtional Descriptions of Web Services.
In Proceedings of the 3rd European Semantic Web Conference (ESWC 2006), Montenegro, 2006.

[5] A. Riazanov and A. Voronkov. The Design and Implementation of VAMPIRE.AI Communications,
15(2):91–110, 2002. Special Issue on CASC.

[6] R. M. Smullyan.First Order Logic. Springer, 1968.

[7] M. Stollberg. Semantic Discovery Caching: Specification. Technical Report DERI-2007-02-03, DERI,
2007.

[8] M. Stollberg, U. Keller, H. Lausen, and S. Heymans. Two-phase Web Service Discovery based on
Rich Functional Descriptions. InProc. 4th European Semantic Web Conference (ESWC 2007), 2007.

[9] M. Stollberg and B. Norton. A Refined Goal Model for Semantic Web Services. InProc. of the
2nd International Conference on Internet and Web Applications and Services (ICIW 2007), Mauritius,
2007.

[10] G. Sutcliffe and C.B. Suttner. The TPTP Problem Library: CNF Release v1.2.1.Journal of Automated
Reasoning, 21(2):177–203, 1998.

[11] W. Voss.Taschenbuch der Statistik. Hanser Fachbuchverlag, 2. edition, 2003.

26 DERI TR 2007-04-07

APPENDIX

A VampireInvoker Web Service – WSDL

<wsdl:definitions xmlns:axis2=”http: // matchmaking.caching.discovery.wsmx.deri.org”
xmlns:mime=”http://schemas.xmlsoap.org/wsdl/mime/”
xmlns:http=”http: // schemas.xmlsoap.org/wsdl/http/”
xmlns:ns0=”http://matchmaking.caching.discovery.wsmx.deri.org/xsd”
xmlns:soap12=”http://schemas.xmlsoap.org/wsdl/soap12/”
xmlns:ns1=”http://org.apache.axis2/xsd”
xmlns:xs=”http: // www.w3.org/2001/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:wsdl=”http: // schemas.xmlsoap.org/wsdl/”
targetNamespace=”http://matchmaking.caching.discovery.wsmx.deri.org”>

<wsdl:documentation>
runs a proof obligation that is provided as input
</wsdl:documentation>
<wsdl:types>
<xs:schema xmlns:ns=”http://matchmaking.caching.discovery.wsmx.deri.org/xsd”

attributeFormDefault=”qualified ” elementFormDefault=”qualified”
targetNamespace=”http://matchmaking.caching.discovery.wsmx.deri.org/xsd”>

<xs:element name=”check”> <xs:complexType> <xs:sequence>
<xs:element name=”poContent” nillable=”true” type=”xs:string”/>
</xs:sequence> </xs:complexType> </xs:element>

<xs:element name=”checkResponse”> <xs:complexType> <xs:sequence>
<xs:element name=”return” nillable=”true” type=”xs:boolean”/>
</xs:sequence> </xs:complexType> </xs:element>

</xs:schema>
</wsdl:types>
<wsdl:message name=”checkMessage”>
<wsdl:part name=”part1” element=”ns0:check”/></wsdl:message>
<wsdl:message name=”checkResponse”>
<wsdl:part name=”part1” element=”ns0:checkResponse”/></wsdl:message>

<wsdl:portType name=”VampireInvokerPortType”>
<wsdl:operation name=”check”>

<wsdl:input xmlns:wsaw=”http://www.w3.org/2006/05/addressing/wsdl”
message=”axis2:checkMessage” wsaw:Action=”urn:check”/>

<wsdl:output message=”axis2:checkResponse”/>
</wsdl:operation>

</wsdl:portType>
<wsdl:binding name=”VampireInvokerSOAP11Binding”

type=”axis2:VampireInvokerPortType”>
<soap:binding transport=”http: //schemas.xmlsoap.org/soap/http” style=”document”/>
<wsdl:operation name=”check”>

<soap:operation soapAction=”urn:check” style=”document”/>
<wsdl:input><soap:body use=”literal”/></wsdl:input>
<wsdl:output><soap:body use=”literal”/></wsdl:output>

</wsdl:operation>
</wsdl:binding>
<wsdl:binding

name=”VampireInvokerSOAP12Binding”
type=”axis2:VampireInvokerPortType”>

<soap12:binding transport=”http://schemas.xmlsoap.org/soap/http”
style=”document”/>

<wsdl:operation name=”check”>
<soap12:operation soapAction=”urn:check” style=”document”/>
<wsdl:input> <soap12:body use=”literal”/> </wsdl:input>
<wsdl:output> <soap12:body use=”literal”/> </wsdl:output>

</wsdl:operation>
</wsdl:binding>
<wsdl:binding

DERI TR 2007-04-07 27

name=”VampireInvokerHttpBinding”
type=”axis2:VampireInvokerPortType”>

<http:binding verb=”POST”/>
<wsdl:operation name=”check”>

<http:operation location=”check”/>
<wsdl:input><mime:content type=”text/xml”/> </wsdl:input>
<wsdl:output><mime:content type=”text/xml”/> </wsdl:output>

</wsdl:operation>
</wsdl:binding>
<wsdl:service name=”VampireInvoker”>
<wsdl:port name=”VampireInvokerSOAP11port http”

binding=”axis2:VampireInvokerSOAP11Binding”>
<soap:address location=”http://138.232.65.138:8080/axis2/services/VampireInvoker”/>

</wsdl:port>
<wsdl:port name=”VampireInvokerSOAP12port http”

binding=”axis2:VampireInvokerSOAP12Binding”>
<soap12:address location=”http://138.232.65.138:8080/axis2/services/VampireInvoker”/>

</wsdl:port>
<wsdl:port name=”VampireInvokerHttpport1”
binding=”axis2:VampireInvokerHttpBinding”>

<http:address location=”http://138.232.65.138:8080/axis2/rest/VampireInvoker”/>
</wsdl:port>

</wsdl:service>
</wsdl:definitions>

Listing 4: WSDL for VampireInvoker Web Service

28 DERI TR 2007-04-07

B Domain Ontologies for SWSC Shipment Scenario (WSML)

wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−full”
namespace {
”http :// members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/location.wsml#”,
dc ”http :// purl .org/dc/elements/1.1#”,
loc ”http :// cvs.deri .org/cgi−bin/viewcvs.cgi/∗checkout∗/wsmo/papers/swsc/Location.wsml#”,
wsml ”http :// www.wsmo.org/wsml/wsml−syntax#” }

ontology
”http :// members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/location.wsml”

nonFunctionalProperties
dc#title hasValue ”Location Ontology”
dc#language hasValue ”en−US”
dc#contributor hasValue {”Holger Lausen”, ”Adina Sirbu”,”Michael Stollberg”}
dc#format hasValue ”text/plain”
dc#date hasValue date(2007,03,08)
wsml#version hasValue ”V ersion”

endNonFunctionalProperties

/∗
∗ concepts
∗/

concept Location
nfp

dc#description hasValue ”A Location is a place defined by a longitude, latitude ,
and an altitude . If the altitude is missing, then we assume that it is ground level. ”

endnfp
locatedIn ofType GeographicArea

concept GeographicArea subConceptOf Location
nfp

dc#description hasValue ”A GeographicArea is a larger area such as a state or country.”
endnfp
name ofType string
containsLocation ofType Location

concept Continent subConceptOf GeographicArea

concept Region subConceptOf GeographicArea

concept Country subConceptOf GeographicArea

concept State subConceptOf GeographicArea

concept WaterArea subConceptOf GeographicArea

concept City subConceptOf GeographicArea

/∗
∗ axioms
∗/

axiom transitivityLocatedIn
nfp

dc#description hasValue ”defines the transitivity of the locatedIn attribute ”
endnfp
definedBy

forAll (?L1,?L2,?L2). ?L1 memberOf Location and ?L2 memberOf Location and ?L3 memberOf Location
and ?L1[locatedIn hasValue ?L2] and ?L2[locatedIn hasValue ?L3] implies
?L1[locatedIn hasValue ?L3].

DERI TR 2007-04-07 29

axiom locationsInContinentsAreDistinct
nfp

dc#description hasValue ”Locations in different continents are disjoint ”
endnfp
definedBy
forAll (?C1,?C2,?L). ?C1 memberOf continent and ?C2 memberOf continent and

?L[locatedIn hasValue ?C1] implies neg ?L[locatedIn hasValue ?C2].

axiom locationsInCountriesAreDistinct
nfp

dc#description hasValue ”Locations in different continents are disjoint ”
endnfp
definedBy
forAll (?C1,?C2,?L). ?C1 memberOf country and ?C2 memberOf country and

?L[locatedIn hasValue ?C1] implies neg ?L[locatedIn hasValue ?C2].

/∗
∗ continents and regions
∗/

instance World memberOf Location

instance Africa memberOf Continent
name hasValue ”Africa”
locatedIn hasValue World

instance Antarctica memberOf Continent
name hasValue ”Antarctica”
locatedIn hasValue World

instance Asia memberOf Continent
name hasValue ”Asia”
locatedIn hasValue World

instance Australia memberOf Continent
name hasValue ”Australia”
locatedIn hasValue World

instance Europe memberOf Continent
name hasValue ”Europe”
locatedIn hasValue World

instance NorthAmerica memberOf Continent
name hasValue ”North America”
locatedIn hasValue World

instance SouthAmerica memberOf Continent
name hasValue ”South America”
locatedIn hasValue World

instance Oceania memberOf Region
name hasValue ”Oceania”
locatedIn hasValue World
containsLocation hasValue Australia

/∗
∗ countries
∗/

instance AF memberOf Country
name hasValue ”Afghanistan”
locatedIn hasValue Asia

30 DERI TR 2007-04-07

instance AS memberOf Country
name hasValue ”American Samoa”
locatedIn hasValue Oceania

// we omit the listing of all countries with respect to space

/∗
∗ cities
∗/

instance Bristol memberOf City
name hasValue ”Bristol”
locatedIn hasValue GB

instance NewYork memberOf City
name hasValue ”New York”
locatedIn hasValue US

instance Tunis memberOf City
name hasValue ”Tunis”
locatedIn hasValue TN

instance Luxembourg memberOf City
name hasValue ”Luxembourg”
locatedIn hasValue LU

Listing 5: Location Ontology

wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−full”
namespace {
”http :// members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/shipment.wsml#”,
dc ”http :// purl .org/dc/elements/1.1#”,
loc ”http :// cvs.deri .org/cgi−bin/viewcvs.cgi/∗checkout∗/wsmo/papers/swsc/Location.wsml#”,
wsml ”http :// www.wsmo.org/wsml/wsml−syntax#” }

ontology
”http :// members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/shipment.wsml”

importsOntology
{ ”http :// members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/location.wsml”}

nonFunctionalProperties
dc#title hasValue ”Shipment Ontology”
dc#language hasValue ”en−US”
dc#contributor hasValue {”Michael Stollberg”}
dc#format hasValue ”text/plain”
dc#date hasValue date(2007,03,08)
wsml#version hasValue ”V ersion”

endNonFunctionalProperties

/∗
∗ concepts
∗/

concept shipmentOrder
from impliesType Sender
to impliesType Receiver
item impliesType Package
price impliesType Price

concept Sender
address impliesType loc#Location

DERI TR 2007-04-07 31

concept Receiver
address impliesType loc#Location

concept Price
amount impliesType wsml#float
currency impliesType Currency

concept Currency
name impliesType wsml#string
symbol impliesType wsml#string

concept Package
weight impliesType WeightClass
size impliesType Size

concept WeightClass
nfp

dc#description hasValue ”weights are distinguished n 10 lbs classes.
This is a sufficient abstraction for the intended usage.”

endnfp
includedIn impliesType WeightClass

axiom transitiveWeightClassInclusion
nfp

dc#description hasValue ”defines the relationship of weight classes”
endnfp
definedBy

forAll (?W1,?W2,?W3). ?W1 memberOf WeightClass and ?W2 memberOf WeightClass
and ?W3 memberOf WeightClass
and ?W1[includedIn hasValue ?W2] and ?W2[includedIn hasValue ?W3]
implies ?W1[includedIn hasValue ?W3].

/∗
∗ instances
∗/

instance USD memberOf Currency
name hasValue ”US Dollar”
symbol hasValue ”USD”

instance heavy memberOf WeightClass
includedIn hasValue heavy

instance w70lq memberOf WeightClass
includedIn hasValue heavy

instance w60lq memberOf WeightClass
includedIn hasValue w70lq

instance w50lq memberOf WeightClass
includedIn hasValue w60lq

instance w40lq memberOf WeightClass
includedIn hasValue w50lq

instance w30lq memberOf WeightClass
includedIn hasValue w40lq

instance w20lq memberOf WeightClass
includedIn hasValue w30lq

instance light memberOf WeightClass
includedIn hasValue w20lq
includedIn hasValue light

Listing 6: Shipment Ontology

32 DERI TR 2007-04-07

C Evaluation Data

This appendix provides the statistical prepared data of the the SDC evaluation results presented in Sec-
tion 3.2.2. The original data along with logs of the comparison test run are available for download on the
SDC homepage (seehttp://members.deri.at/ ∼michaels/software/sdc/).

For a proper evaluation and discussion, we apply statistical standard notions to the comparison data.
Table4 provides an overview of the used notions (in accordance to [11]).

Table 4:Overview of Used Statistical Notions
Notion Description Formula*

arithmetic meanµ denotes the middle value of a data set µ = 1
n ×

n∑

i=1

xi

medianx̄

denotes the middle valuevm of a data
set such that 50 % of the values are
smaller and 50 % are bigger thanvm;
in contrast toµ, herevm is not deter-
mined by extreme values

if n is even:
x̄ = xi−1+xi

2

with i = n
2 + 1

quartile

divides a data set into 3 parts:
(1) x̄.25: 25% are smaller and 75% are
bigger than this value, (2)̄x.5 = x̄ , and
(3) x̄.75: 75% are smaller and 25% are
bigger than this value

x̄.25 = xi with
i =↓ 0.25× n+1

2
x̄.75 = xi with

i =↓ 0.75× n+1
2

varianceσ2 a measurement of the statistical disper-
sion of a data set

σ2 =
1
n ×

n∑

i=1

(xi − µ)2

standard deviation
a measure of the spread of the values in
a data set, defined as the square root of
the variance

σ =

√√√√ 1
n ×

n∑

i=1

(xi − µ)2

coefficient of variation

the relation between the standard devi-
ation σ and the arithmetic meanµ, a
measurement for the value dispersion
that allows to compare data sets with
very different value ranges

σ
µ

symbols:xi = value of a data item at position i;n = number of data items (here: entire population)

In the SWSC shipment scenario – with the resource modelling described in Section3.1.2) – a single
matchmaking operation takes in average 115 milliseconds (max. 15 ms for the Java part, ca. 20 ms for the
Web service invocation, and the rest for the matchmaking via proof; the latter aspect strongly depends on
the complexity of the functional descriptions which, in this comparison, is relatively low).

http://members.deri.at/~michaels/software/sdc/�

statistical preparation of comparison for all 10 goal instances
data = arithmetic mean of the data for the individual goal instances (see following worksheets)

SDC Discovery

no. WS arith. mean
(in sec)

median
(in sec)

min
(in sec)

max
(in sec)

variance
(in msec2)

stand. deviation
(in sec)

coefficient of
variation

10 0.28116543 0.2734 0.2559 0.4563 1562.564515 0.032997502 11.74%
20 0.29307 0.27885 0.2574 0.9346 48644.8878 0.097271044 33.19%
50 0.284648 0.27885 0.2575 0.4595 1568.8552 0.033559762 11.79%
100 0.287544 0.28125 0.2651 0.4533 1489.18936 0.03314478 11.53%
200 0.290118 0.2815 0.2636 0.4359 1759.13332 0.033389555 11.51%
500 0.29223 0.2859 0.2652 0.4922 2384.44284 0.039230557 13.42%
1000 0.296686 0.2875 0.2651 0.539 2795.6794 0.043867008 14.79%
1500 0.301862 0.2906 0.2717 0.594 4701.46044 0.052346692 17.34%
2000 0.306008 0.2938 0.2731 0.5954 4376.71728 0.055161952 18.03%

Non-SDC Discovery

no. WS arith. mean
(in sec)

median
(in sec)

min
(in sec)

max
(in sec)

variance
(in msec2)

stand.deviation
(in sec)

coefficient of
variation

10 0.413052 0.3922 0.1544 0.9438 49210.50728 0.213581785 51.71%
20 0.815156 0.733 0.159 2.3708 292723.8776 0.517229873 63.45%
50 2.000464 1.79795 0.1888 5.054 1759016.815 1.292189794 64.59%
100 3.962612 3.67855 0.253 10.4883 7027879.395 2.554986046 64.48%
200 7.60848 6.6697 0.3484 19.5459 26774771.26 5.047951866 66.35%
500 18.334298 15.6115 0.7014 51.321 186903202.9 13.26301462 72.34%
1000 37.696672 33.2215 2.1126 103.743 725864586 26.27576623 69.70%
1500 53.90973 45.1997 1.4599 148.776 1632655033 39.26855982 72.84%
2000 72.963554 65.5562 2.3656 192.97 2899274797 52.13448486 71.45%

Coefficient of Variation Comparison

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0 500 1000 1500 2000 2500

No. of Web Services

co
ef

fic
ie

nt
 v

al
ue

SDC Discovery non SDC Discovery

SDC Evaluation Comparison Test SWSC shipment scenario Michael Stollberg

18.04.2007 Page 1 of 22

Performance Comparison for all 10 Goal Instances (Median)

0

10

20

30

40

50

60

70

0 500 1000 1500 2000 2500

No. of Web Services

Ti
m

e
(in

 s
ec

.)
SDC Discovery non SDC Discovery

Performance Comparison for all 10 Goal Instances (Median)

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100 120

No. of Web Services

Ti
m

e
(in

 s
ec

.)

SDC Discovery non SDC Discovery

SDC Evaluation Comparison Test SWSC shipment scenario Michael Stollberg

18.04.2007 Page 2 of 22

statistical preparation of comparison for: goal instance 1

SDC Discovery

no. WS arith. mean
(in sec)

median
(in sec)

min
(in sec)

max
(in sec)

variance
(in msec2)

stand. deviation
(in sec)

coefficient of
variation

10 0.11285714 0.109 0.093 0.188 314.6122449 0.017737312 15.72%
20 0.1115 0.109 0.093 0.203 323.13 0.017975817 16.12%
50 0.11246 0.109 0.093 0.203 234.2084 0.015303869 13.61%
100 0.11616 0.11 0.109 0.156 118.5744 0.010889187 9.37%
200 0.125 0.11 0.109 0.219 803.72 0.028349956 22.68%
500 0.12626 0.125 0.109 0.219 478.1124 0.021865781 17.32%
1000 0.12966 0.125 0.109 0.234 274.8644 0.016579035 12.79%
1500 0.14556 0.14 0.125 0.297 935.6464 0.030588338 21.01%
2000 0.15252 0.141 0.125 0.453 3213.8096 0.056690472 37.17%

Non-SDC Discovery

no. WS arith. mean
(in sec)

median
(in sec)

min
(in sec)

max
(in sec)

variance
(in msec2)

stand.deviation
(in sec)

coefficient of
variation

10 0.29976 0.25 0.078 0.797 35511.9024 0.18844602 62.87%
20 0.6147 0.508 0.078 1.938 208179.49 0.456266907 74.23%
50 1.77864 1.7105 0.093 4.031 1384656.55 1.176714303 66.16%
100 3.0873 2.391 0.094 8.593 5279921.09 2.297807888 74.43%
200 5.64736 3.0545 0.078 19.608 27426398.71 5.237021931 92.73%
500 17.12608 15.0305 0.094 46.044 146719239.3 12.11277174 70.73%
1000 31.25436 30.1855 0.344 92.165 566908810.1 23.80984691 76.18%
1500 45.28732 30.7865 0.828 147.067 1445426988 38.01877153 83.95%
2000 56.24786 39.583 1.422 175.487 2542395428 50.42217199 89.64%

Variance Comparison Goal Instance 1
(for 10 available WS)

0

100

200

300

400

500

600

700

800

900

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

test runs

tim
e

(in
 m

se
c)

SDC Discovery non SDC Discovery

SDC Evaluation Comparison Test SWSC shipment scenario Michael Stollberg

18.04.2007 Page 3 of 22

Performance Comparison Goal Instance 1 (Median)

0

5

10

15

20

25

30

35

40

45

0 500 1000 1500 2000 2500

No. of Web Services

Ti
m

e
(in

 s
ec

.)

SDC Discovery non SDC Discovery

Performance Comparison Goal Instance 1 (Median)

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100 120

No. of Web Services

Ti
m

e
(in

 s
ec

.)

SDC Discovery non SDC Discovery

SDC Evaluation Comparison Test SWSC shipment scenario Michael Stollberg

18.04.2007 Page 4 of 22

statistical preparation of comparison for: goal instance 2

SDC Discovery

no. WS arith. mean
(in sec)

median
(in sec)

min
(in sec)

max
(in sec)

variance
(in msec2)

stand. deviation
(in sec)

coefficient of
variation

10 0.67094 0.656 0.625 0.781 1046.844648 0.032354979 4.82%
20 0.68506 0.672 0.625 1.047 4271.8564 0.06535944 9.54%
50 0.67156 0.656 0.625 0.797 1659.7264 0.04073974 6.07%

100 0.67366 0.6565 0.64 0.797 1177.7044 0.034317698 5.09%
200 0.68524 0.672 0.64 0.828 1599.3024 0.039991279 5.84%
500 0.67462 0.672 0.64 0.766 816.8756 0.028581036 4.24%
1000 0.6834 0.672 0.624 0.844 1852.08 0.043035799 6.30%
1500 0.70454 0.672 0.641 1.407 14129.2884 0.118866683 16.87%
2000 0.68118 0.672 0.64 0.797 1156.9076 0.034013344 4.99%

Non-SDC Discovery

no. WS arith. mean
(in sec)

median
(in sec)

min
(in sec)

max
(in sec)

variance
(in msec2)

stand.deviation
(in sec)

coefficient of
variation

10 0.88336 0.8515 0.703 1.39 28242.5504 0.1680552 19.02%
20 1.18666 1.1165 0.718 2.266 136750.5044 0.369797924 31.16%
50 1.76084 1.485 0.734 3.937 732013.8144 0.855578059 48.59%

100 3.38882 3.242 0.75 8.156 3757901.788 1.938530832 57.20%
200 5.02378 4.703 0.766 12.717 10643375.65 3.262418681 64.94%
500 10.48922 7.734 0.75 33.014 69717564.21 8.349704439 79.60%
1000 28.59172 22.0375 0.828 106.57 659784393.8 25.68626858 89.84%
1500 33.92656 23.023 2.052 107.751 781996608.8 27.96420227 82.43%
2000 51.03844 33.076 2.031 162.254 1768918426 42.05851193 82.41%

Variance Comparison Goal Instance 2
(for 10 available WS)

0

200

400

600

800

1000

1200

1400

1600

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

test runs

tim
e

(in
 m

se
c)

SDC Discovery non SDC Discovery

SDC Evaluation Comparison Test SWSC shipment scenario Michael Stollberg

18.04.2007 Page 5 of 22

Performance Comparison Goal Instance 2 (Median)

0

5

10

15

20

25

30

35

0 500 1000 1500 2000 2500

No. of Web Services

Ti
m

e
(in

 s
ec

.)

SDC Discovery non SDC Discovery

Performance Comparison Goal Instance 2 (Median)

0

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100 120

No. of Web Services

Ti
m

e
(in

 s
ec

.)

SDC Discovery non SDC Discovery

SDC Evaluation Comparison Test SWSC shipment scenario Michael Stollberg

18.04.2007 Page 6 of 22

statistical preparation of comparison for: goal instance 3

SDC Discovery

no. WS arith. mean
(in sec)

median
(in sec)

min
(in sec)

max
(in sec)

variance
(in msec2)

stand. deviation
(in sec)

coefficient of
variation

10 0.32526531 0.313 0.297 0.469 1378.399 0.037126796 11.41%
20 0.31928 0.313 0.297 0.422 478.9616 0.021885191 6.85%
50 0.33648 0.313 0.297 0.688 3580.8096 0.059839866 17.78%
100 0.32798 0.328 0.312 0.422 462.0196 0.021494641 6.55%
200 0.33442 0.328 0.312 0.438 980.2436 0.031308842 9.36%
500 0.3472 0.328 0.312 0.812 4866.6 0.069761021 20.09%
1000 0.34028 0.329 0.312 0.437 410.9616 0.020272188 5.96%
1500 0.35066 0.344 0.328 0.532 1559.2644 0.039487522 11.26%
2000 0.36634 0.344 0.328 0.704 3561.5044 0.059678341 16.29%

Non-SDC Discovery

no. WS arith. mean
(in sec)

median
(in sec)

min
(in sec)

max
(in sec)

variance
(in msec2)

stand.deviation
(in sec)

coefficient of
variation

10 0.55926 0.5395 0.094 1.157 98894.4724 0.314474915 56.23%
20 1.27992 1.3845 0.109 2.408 448213.9536 0.669487829 52.31%
50 2.72448 2.6195 0.109 5.912 2945607.13 1.716277113 62.99%
100 6.74048 6.799 0.703 12.363 12168460.69 3.488332078 51.75%
200 13.18636 12.649 1.391 26.533 50271689.63 7.090253143 53.77%
500 27.5141 22.812 0.937 75.655 357211973.1 18.9000522 68.69%
1000 71.98234 74.3735 7.203 121.857 1009630366 31.7746812 44.14%
1500 93.33886 80.9435 2.078 181.808 2691333380 51.87806261 55.58%
2000 117.40564 110.901 0.391 244.951 5246537195 72.43298416 61.69%

Variance Comparison Goal Instance 3
(for 10 available WS)

0

200

400

600

800

1000

1200

1400

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

test runs

tim
e

(in
 m

se
c)

SDC Discovery non SDC Discovery

SDC Evaluation Comparison Test SWSC shipment scenario Michael Stollberg

18.04.2007 Page 7 of 22

Performance Comparison Goal Instance 3 (Median)

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500

No. of Web Services

Ti
m

e
(in

 s
ec

.)

SDC Discovery non SDC Discovery

Performance Comparison Goal Instance 3 (Median)

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120

No. of Web Services

Ti
m

e
(in

 s
ec

.)

SDC Discovery non SDC Discovery

SDC Evaluation Comparison Test SWSC shipment scenario Michael Stollberg

18.04.2007 Page 8 of 22

statistical preparation of comparison for: goal instance 4

SDC Discovery

no. WS arith. mean
(in sec)

median
(in sec)

min
(in sec)

max
(in sec)

variance
(in msec2)

stand. deviation
(in sec)

coefficient of
variation

10 0.01559184 0.015 0 0.125 309.2619742 0.017585846 112.79%
20 0.0162 0.016 0 0.125 273.16 0.016527553 102.02%
50 0.01658 0.016 0 0.125 461.7236 0.021487755 129.60%

100 0.01746 0.016 0 0.125 270.4484 0.016445315 94.19%
200 0.01654 0.016 0 0.047 33.4084 0.00578 34.95%
500 0.01816 0.016 0 0.141 591.1744 0.024314078 133.89%
1000 0.01746 0.0155 0 0.125 514.4084 0.022680573 129.90%
1500 0.01904 0.016 0 0.141 665.5184 0.025797643 135.49%
2000 0.02312 0.016 0 0.328 2362.7456 0.048608082 210.24%

Non-SDC Discovery

no. WS arith. mean
(in sec)

median
(in sec)

min
(in sec)

max
(in sec)

variance
(in msec2)

stand.deviation
(in sec)

coefficient of
variation

10 0.3892 0.352 0.093 0.969 61639.32 0.248272673 63.79%
20 0.74056 0.711 0.093 1.954 262068.3664 0.511926134 69.13%
50 2.5007 2.4695 0.234 5.689 2555616.17 1.598629466 63.93%

100 4.64586 3.947 0.109 13.333 9679545.68 3.111196824 66.97%
200 7.75394 6.08 0.234 20.49 33590662.5 5.795745206 74.75%
500 18.48602 14.121 0.609 57.283 223885820.5 14.96281459 80.94%
1000 44.49564 42.294 3.361 92.841 713497450.4 26.71137305 60.03%
1500 59.13076 46.3745 0.328 164.794 2319156593 48.15762237 81.44%
2000 77.48424 75.3945 9.187 224.395 2923191810 54.06654982 69.78%

Variance Comparison Goal Instance 4
(for 10 available WS)

0

200

400

600

800

1000

1200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

test runs

tim
e

(in
 m

se
c)

SDC Discovery non SDC Discovery

SDC Evaluation Comparison Test SWSC shipment scenario Michael Stollberg

18.04.2007 Page 9 of 22

Performance Comparison Goal Instance 4 (Median)

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500

No. of Web Services

Ti
m

e
(in

 s
ec

.)

SDC Discovery non SDC Discovery

Performance Comparison Goal Instance 4 (Median)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 20 40 60 80 100 120

No. of Web Services

Ti
m

e
(in

 s
ec

.)

SDC Discovery non SDC Discovery

SDC Evaluation Comparison Test SWSC shipment scenario Michael Stollberg

18.04.2007 Page 10 of 22

statistical preparation of comparison for: goal instance 5

SDC Discovery

no. WS arith. mean
(in sec)

median
(in sec)

min
(in sec)

max
(in sec)

variance
(in msec2)

stand. deviation
(in sec)

coefficient of
variation

10 0.22895918 0.219 0.203 0.563 2485.957518 0.049859377 21.78%
20 0.23834 0.234 0.218 0.641 3404.5844 0.058348817 24.48%
50 0.2428 0.234 0.218 0.594 3278.76 0.057260458 23.58%

100 0.24152 0.234 0.218 0.36 607.6896 0.024651361 10.21%
200 0.24244 0.235 0.218 0.281 169.0064 0.013000246 5.36%
500 0.25106 0.25 0.234 0.36 560.6564 0.023678184 9.43%
1000 0.25108 0.25 0.234 0.312 198.1936 0.014078125 5.61%
1500 0.25904 0.25 0.25 0.328 243.7184 0.015611483 6.03%
2000 0.26252 0.265 0.25 0.344 284.5296 0.016868005 6.43%

Non-SDC Discovery

no. WS arith. mean
(in sec)

median
(in sec)

min
(in sec)

max
(in sec)

variance
(in msec2)

stand.deviation
(in sec)

coefficient of
variation

10 0.23112 0.2105 0.093 0.703 25191.6256 0.1587187 68.67%
20 0.47244 0.3755 0.093 1.422 120317.8064 0.346868572 73.42%
50 1.49648 1.445 0.094 4.422 963954.8896 0.981812044 65.61%

100 1.91464 1.6165 0.093 7.468 2735509.83 1.653937674 86.38%
200 5.52624 4.726 0.094 21.139 20944864.22 4.576555935 82.82%
500 11.78104 10.6245 0.218 39.769 88498622.12 9.407370627 79.85%
1000 23.13188 18.397 1.688 73.95 300887400.4 17.3461062 74.99%
1500 40.1553 33.6255 0.453 144.159 1247036569 35.31340495 87.94%
2000 46.35394 42.0245 1.39 143.83 1493547346 38.64644027 83.37%

Variance Comparison Goal Instance 5
(for 10 available WS)

0
100
200
300
400
500
600
700
800

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

test runs

tim
e

(in
 m

se
c)

SDC Discovery non SDC Discovery

SDC Evaluation Comparison Test SWSC shipment scenario Michael Stollberg

18.04.2007 Page 11 of 22

Performance Comparison Goal Instance 5 (Median)

0

5

10

15

20

25

30

35

40

45

0 500 1000 1500 2000 2500

No. of Web Services

Ti
m

e
(in

 s
ec

.)

SDC Discovery non SDC Discovery

Performance Comparison Goal Instance 5 (Median)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 20 40 60 80 100 120

No. of Web Services

Ti
m

e
(in

 s
ec

.)

SDC Discovery non SDC Discovery

SDC Evaluation Comparison Test SWSC shipment scenario Michael Stollberg

18.04.2007 Page 12 of 22

statistical preparation of comparison for: goal instance 6

SDC Discovery

no. WS arith. mean
(in sec)

median
(in sec)

min
(in sec)

max
(in sec)

variance
(in msec2)

stand. deviation
(in sec)

coefficient of
variation

10 0.5404898 0.516 0.5 0.937 4610.290712 0.067899122 12.56%
20 0.53162 0.531 0.5 0.672 930.3556 0.030501731 5.74%
50 0.53156 0.531 0.5 0.656 677.4464 0.026027801 4.90%

100 0.53562 0.531 0.515 0.672 888.8356 0.029813346 5.57%
200 0.54974 0.532 0.515 0.89 3528.5524 0.05940162 10.81%
500 0.54064 0.531 0.515 0.656 612.9104 0.024757027 4.58%
1000 0.5522 0.5465 0.515 0.922 3210.8 0.056663922 10.26%
1500 0.58092 0.547 0.516 0.922 6373.1936 0.079832284 13.74%
2000 0.60094 0.563 0.531 0.953 10790.2164 0.103875966 17.29%

Non-SDC Discovery

no. WS arith. mean
(in sec)

median
(in sec)

min
(in sec)

max
(in sec)

variance
(in msec2)

stand.deviation
(in sec)

coefficient of
variation

10 0.5185 0.5705 0.094 1.094 80855.13 0.284350365 54.84%
20 1.1366 1.008 0.094 2.5 460362.4 0.678500111 59.70%
50 3.0282 2.867 0.219 5.844 2645127.48 1.626384788 53.71%

100 5.74968 5.7185 0.203 11.61 11150342.74 3.339212892 58.08%
200 12.9583 13.234 0.359 23.703 40064712.45 6.329669221 48.85%
500 31.36966 32.9465 2.922 60.095 292608442.9 17.10580144 54.53%
1000 56.52352 50.5715 3.563 163.44 1514250992 38.91337805 68.84%
1500 83.5551 77.142 5.875 182.612 2676860466 51.73838484 61.92%
2000 131.31316 150.894 3.719 248.975 5970983802 77.27214118 58.85%

Variance Comparison Goal Instance 6
(for 10 available WS)

0

200

400

600

800

1000

1200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

test runs

tim
e

(in
 m

se
c)

SDC Discovery non SDC Discovery

SDC Evaluation Comparison Test SWSC shipment scenario Michael Stollberg

18.04.2007 Page 13 of 22

Performance Comparison Goal Instance 6 (Median)

0

20

40

60

80

100

120

140

160

0 500 1000 1500 2000 2500

No. of Web Services

Ti
m

e
(in

 s
ec

.)

SDC Discovery non SDC Discovery

Performance Comparison Goal Instance 6 (Median)

0

1

2

3

4

5

6

7

0 20 40 60 80 100 120

No. of Web Services

Ti
m

e
(in

 s
ec

.)

SDC Discovery non SDC Discovery

SDC Evaluation Comparison Test SWSC shipment scenario Michael Stollberg

18.04.2007 Page 14 of 22

statistical preparation of comparison for: goal instance 7

SDC Discovery

no. WS arith. mean
(in sec)

median
(in sec)

min
(in sec)

max
(in sec)

variance
(in msec2)

stand. deviation
(in sec)

coefficient of
variation

10 0.84122449 0.828 0.796 1.25 4922.745523 0.07016228 8.34%
20 0.9419 0.828 0.796 5.735 474936.01 0.689156013 73.17%
50 0.85138 0.8365 0.797 1.265 4709.6756 0.068627076 8.06%

100 0.8665 0.844 0.812 1.25 6655.49 0.081581187 9.42%
200 0.86126 0.829 0.797 1.25 8959.1524 0.094652799 10.99%
500 0.8581 0.844 0.797 1.187 5358.37 0.073200888 8.53%
1000 0.8822 0.844 0.812 1.5 12153.68 0.11024373 12.50%
1500 0.86792 0.844 0.812 1.86 21356.3536 0.146138132 16.84%
2000 0.86184 0.844 0.812 1.172 3834.3344 0.061922003 7.18%

Non-SDC Discovery

no. WS arith. mean
(in sec)

median
(in sec)

min
(in sec)

max
(in sec)

variance
(in msec2)

stand.deviation
(in sec)

coefficient of
variation

10 0.29532 0.25 0.094 0.875 33619.3776 0.183355877 62.09%
20 0.72626 0.594 0.094 5.625 636375.8724 0.797731705 109.84%
50 1.67348 1.0465 0.094 5.297 2124020.09 1.457401828 87.09%

100 3.46646 3.125 0.14 12.172 7054502.088 2.656031266 76.62%
200 5.6289 4.555 0.109 19.454 19586851.53 4.425703507 78.62%
500 16.04202 11.5005 0.234 54.939 168858004.1 12.99453747 81.00%
1000 26.03778 18.8285 1.359 83.877 426512815.8 20.65218671 79.32%
1500 48.69554 45.392 1.172 133.191 1122212051 33.49943359 68.79%
2000 58.73366 43.642 3.281 188.926 2382483636 48.81069182 83.11%

Variance Comparison Goal Instance 7
(for 10 available WS)

0
200
400
600
800

1000
1200
1400

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

test runs

tim
e

(in
 m

se
c)

SDC Discovery non SDC Discovery

SDC Evaluation Comparison Test SWSC shipment scenario Michael Stollberg

18.04.2007 Page 15 of 22

Performance Comparison Goal Instance 7 (Median)

0

5

10

15

20

25

30

35

40

45

50

0 500 1000 1500 2000 2500

No. of Web Services

Ti
m

e
(in

 s
ec

.)

SDC Discovery non SDC Discovery

Performance Comparison Goal Instance 7 (Median)

0

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100 120

No. of Web Services

Ti
m

e
(in

 s
ec

.)

SDC Discovery non SDC Discovery

SDC Evaluation Comparison Test SWSC shipment scenario Michael Stollberg

18.04.2007 Page 16 of 22

statistical preparation of comparison for: goal instance 8

SDC Discovery

no. WS arith. mean
(in sec)

median
(in sec)

min
(in sec)

max
(in sec)

variance
(in msec2)

stand. deviation
(in sec)

coefficient of
variation

10 0.02587755 0.031 0.015 0.047 75.41357768 0.008684099 33.56%
20 0.0269 0.0235 0.015 0.172 518.25 0.022765105 84.63%
50 0.03184 0.031 0.015 0.188 971.4944 0.031168805 97.89%

100 0.03034 0.031 0.015 0.172 888.1844 0.029802423 98.23%
200 0.02744 0.031 0.015 0.187 580.0064 0.024083322 87.77%
500 0.02438 0.031 0.015 0.032 61.5556 0.007845738 32.18%
1000 0.04302 0.031 0.015 0.422 5552.0596 0.074512144 173.20%
1500 0.03002 0.031 0.015 0.188 576.2196 0.024004575 79.96%
2000 0.02784 0.031 0.015 0.062 69.7744 0.008353107 30.00%

Non-SDC Discovery

no. WS arith. mean
(in sec)

median
(in sec)

min
(in sec)

max
(in sec)

variance
(in msec2)

stand.deviation
(in sec)

coefficient of
variation

10 0.26652 0.2265 0.093 0.625 25349.0096 0.159213723 59.74%
20 0.63098 0.469 0.093 1.954 191615.2596 0.437738803 69.37%
50 1.59292 1.219 0.093 4.829 1377464.434 1.173654308 73.68%

100 3.20008 2.8755 0.109 10.485 4498163.754 2.120887492 66.28%
200 6.945 6.0625 0.25 16.001 19457440.68 4.411058907 63.51%
500 15.64352 12.071 0.125 50.892 166101445.2 12.88803496 82.39%
1000 35.34498 30.5165 1.578 107.69 664823392.7 25.78416942 72.95%
1500 40.12298 32.384 0.125 129.847 795477792.9 28.20421587 70.29%
2000 52.08724 39.298 0.485 187.817 2136735218 46.22483335 88.75%

Variance Comparison Goal Instance 8
(for 10 available WS)

0
100
200
300
400
500
600
700

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

test runs

tim
e

(in
 m

se
c)

SDC Discovery non SDC Discovery

SDC Evaluation Comparison Test SWSC shipment scenario Michael Stollberg

18.04.2007 Page 17 of 22

Performance Comparison Goal Instance 8 (Median)

0

5

10

15

20

25

30

35

40

45

0 500 1000 1500 2000 2500

No. of Web Services

Ti
m

e
(in

 s
ec

.)

SDC Discovery non SDC Discovery

Performance Comparison Goal Instance 8 (Median)

0

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100 120

No. of Web Services

Ti
m

e
(in

 s
ec

.)

SDC Discovery non SDC Discovery

SDC Evaluation Comparison Test SWSC shipment scenario Michael Stollberg

18.04.2007 Page 18 of 22

statistical preparation of comparison for: goal instance 9

SDC Discovery

no. WS arith. mean
(in sec)

median
(in sec)

min
(in sec)

max
(in sec)

variance
(in msec2)

stand. deviation
(in sec)

coefficient of
variation

10 0.02553061 0.031 0.015 0.047 67.14702207 0.008194329 32.10%
20 0.0321 0.031 0.015 0.172 914.69 0.030243842 94.22%
50 0.0275 0.031 0.015 0.047 54.65 0.007392564 26.88%

100 0.03152 0.031 0.015 0.157 711.3296 0.026670763 84.62%
200 0.02818 0.031 0.015 0.047 58.9876 0.007680339 27.25%
500 0.03058 0.031 0.015 0.14 299.8036 0.017314838 56.62%
1000 0.0385 0.031 0.015 0.406 3220.81 0.056752181 147.41%
1500 0.02872 0.031 0.015 0.062 110.3616 0.010505313 36.58%
2000 0.05164 0.031 0.015 0.954 17670.9104 0.132931977 257.42%

Non-SDC Discovery

no. WS arith. mean
(in sec)

median
(in sec)

min
(in sec)

max
(in sec)

variance
(in msec2)

stand.deviation
(in sec)

coefficient of
variation

10 0.47244 0.484 0.109 1.172 81797.7664 0.286003088 60.54%
20 0.95972 0.828 0.125 2.25 381264.5616 0.617466243 64.34%
50 2.19534 2.0315 0.109 6.047 2036616.264 1.42710065 65.01%

100 5.18928 4.938 0.235 12 11579663.4 3.402890448 65.58%
200 8.79054 7.7345 0.109 23.532 32325589.53 5.685559737 64.68%
500 21.79904 18.4925 0.625 58.861 259218407.9 16.10026111 73.86%
1000 35.66096 27.721 0.468 108.314 951496707.5 30.84634026 86.50%
1500 60.73036 50.386 0.594 168.088 2425576340 49.25014051 81.10%
2000 90.47256 82.2385 0.125 229.966 3473247853 58.93426722 65.14%

Variance Comparison Goal Instance 9
(for 10 available WS)

0

200

400

600

800

1000

1200

1400

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

test runs

tim
e

(in
 m

se
c)

SDC Discovery non SDC Discovery

SDC Evaluation Comparison Test SWSC shipment scenario Michael Stollberg

18.04.2007 Page 19 of 22

Performance Comparison Goal Instance 9 (Median)

0

10

20

30

40

50

60

70

80

90

0 500 1000 1500 2000 2500

No. of Web Services

Ti
m

e
(in

 s
ec

.)

SDC Discovery non SDC Discovery

Performance Comparison Goal Instance 9 (Median)

0

1

2

3

4

5

6

0 20 40 60 80 100 120

No. of Web Services

Ti
m

e
(in

 s
ec

.)

SDC Discovery non SDC Discovery

SDC Evaluation Comparison Test SWSC shipment scenario Michael Stollberg

18.04.2007 Page 20 of 22

statistical preparation of comparison for: goal instance 10

SDC Discovery

no. WS arith. mean
(in sec)

median
(in sec)

min
(in sec)

max
(in sec)

variance
(in msec2)

stand. deviation
(in sec)

coefficient of
variation

10 0.02491837 0.016 0.015 0.156 414.9729279 0.020370884 81.75%
20 0.0278 0.031 0.015 0.157 397.88 0.01994693 71.75%
50 0.02432 0.031 0.015 0.032 60.0576 0.007749684 31.87%

100 0.03468 0.031 0.015 0.422 3111.6176 0.055781875 160.85%
200 0.03092 0.031 0.015 0.172 878.9536 0.029647152 95.88%
500 0.0513 0.031 0.015 0.609 10198.37 0.100986979 196.86%
1000 0.02906 0.031 0.015 0.188 568.9364 0.023852388 82.08%
1500 0.0322 0.031 0.015 0.203 1065.04 0.032634951 101.35%
2000 0.03214 0.031 0.015 0.187 822.4404 0.028678222 89.23%

Non-SDC Discovery

no. WS arith. mean
(in sec)

median
(in sec)

min
(in sec)

max
(in sec)

variance
(in msec2)

stand.deviation
(in sec)

coefficient of
variation

10 0.21504 0.1875 0.093 0.656 21003.9184 0.144927287 67.40%
20 0.40372 0.3355 0.093 1.391 82090.5616 0.286514505 70.97%
50 1.25356 1.086 0.109 4.532 825091.3264 0.908345378 72.46%

100 2.24352 2.133 0.094 8.703 2374782.89 1.541033059 68.69%
200 4.62438 3.8985 0.094 12.282 13436127.68 3.665532386 79.27%
500 13.09228 10.782 0.5 36.658 96212509.92 9.808797578 74.92%
1000 23.94354 17.2895 0.734 86.723 450853532.6 21.23331186 88.68%
1500 34.15452 31.9395 1.094 128.445 821473537.8 28.66135966 83.92%
2000 48.4988 38.5105 1.625 123.101 1054707261 32.47625688 66.96%

Variance Comparison Goal Instance 10
(for 10 available WS)

0

100

200

300

400

500

600

700

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

test runs

tim
e

(in
 m

se
c)

SDC Discovery non SDC Discovery

SDC Evaluation Comparison Test SWSC shipment scenario Michael Stollberg

18.04.2007 Page 21 of 22

Performance Comparison Goal Instance 10 (Median)

0

5

10

15

20

25

30

35

40

45

0 500 1000 1500 2000 2500

No. of Web Services

Ti
m

e
(in

 s
ec

.)

SDC Discovery non SDC Discovery

Performance Comparison Goal Instance 10 (Median)

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120

No. of Web Services

Ti
m

e
(in

 s
ec

.)

SDC Discovery non SDC Discovery

SDC Evaluation Comparison Test SWSC shipment scenario Michael Stollberg

18.04.2007 Page 22 of 22

