In Proc.

of the 5th International Workshop on Engineering Service-Oriented Applications

- EXTENDEDTECHNICAL REPORT-

Service Customization by Variability Modeling

Michael Stollberg and Marcel Muth

SAP Research
CEC Dresden, Germany
{michael.stollberg},{marcel.muth}@sap.com

Abstract. The establishment of service orientation in industry deter-
mines the need for efficient engineering technologies that properly sup-
port the whole life cycle of service provision and consumption. One chal-
lenge is adequate support for service consumers for employing complex
services in their individual application context, which becomes particu-
larly important for large-scale enterprise technologies where generic ser-
vices are designed for reuse in several business scenarios. This paper
presents an approach for service customization by model-driven vari-
ability management. The variable aspects of the services are explicitly
described on the basis of a metamodel. Upon this, service consumers can
easily create personalized service variants that properly suit their specific
context while the consistency for service invocation is maintained.

1 Introduction

In the last years, service orientation has become the dominating design principle
for modern ICT technologies in industry as well as in the public sector. The
aim is to exploit the enormous potential of services for enhancing the interop-
erability among systems and the reuse of implementations. In consequence, a
steadily growing number of available services and service-based applications can
be observed. The design, development, usage, and management of such solutions
requires sophisticated engineering technologies that support the life cycles of ser-
vice provision and service consumption in an efficient and integrated manner.

This is subject to the emerging discipline of service engineering: Numerous
efforts in academia and industry have developed a wealth of techniques, method-
ologies, and tool support for this. However, existing solutions focus mainly on
support for service providers, i.e. for the design, development, publication, and
management of services. The consumption side — i.e. the support for service con-
sumers for finding suitable services and integrating them into the specific target
application — is often neglected. Existing technology support for this is mostly
limited to low-level technical details, leaving the major part of the analysis and
integration task for actually consuming services to manual inspection.

The limitations become obvious when considering the consumption of more
complex services that commonly occur in real-world business applications. For
example, consider the Enterprise Services that form the basis of SAP’s modern
service-based enterprise technology. These are designed in a generic manner and

(WESOA'09)

micsto
Text Box
In Proc. of the 5th International Workshop on Engineering Service-Oriented Applications (WESOA'09)
					- EXTENDED TECHNICAL REPORT -

micsto
Text Box
5th International Workshop on Engineering Service-Oriented Applications (WESOA'09)

cover several usage options, therewith becoming reusable in various business sce-
narios. On the other hand, their interfaces and usage conditions are considerably
complex. Typically, a customer merely requires a subset or a specific flavor of
the provided features. Hence, the Enterprise Services need to be configured and
integrated in order to properly fit the customer’s needs. This is a non-trivial
task that requires both technical knowledge and business expertise. Due to the
limited tool support, the customization requires massive human involvement and
thus becomes a highly cost-intensive and error-prone task.

To overcome this, we present an approach for service customization by the
creation of simplified variants that only expose those features of the service
that are relevant for the usage scenario of an individual consumer. These are
defined on the basis of variability specification models that explicitly describe
the usage conditions and constraints of the original service. To support model-
driven engineering, we define a metamodel for describing the variable aspects
of services, i.e. the mandatory and optional operations, properties of message
types as well as their dependencies. We define an engineering process for service
customization, provide tools that firstly support the creation of service variability
models, and secondly for service variant creation via intuitive user interfaces.
Finally, a technical interface is generated from the service variant model. This
usually is significantly less complex than the interface of the original service,
while the consistency for the correct invocation is maintained. Furthermore, the
simplified service description can serve as the basis for other service engineering
techniques, e.g. for mash-up techniques that are mostly limited to services of
limited complexity.

The paper is structured as follows. At first, Section [2] provides a concise
overview of the approach and defines the engineering process for service cus-
tomization. Section [3| specifies the metamodel for service variability modeling,
and Section [4] defines the tool-supported procedures for service customization.
Section [f] illustrates the techniques and tools for customizing an Enterprise Ser-
vice. Section [6] positions our approach within related work, and finally Section
concludes the paper and outlines future work.

2 Overview

The following provides an overview of the approach for service customization.
We define the central artifacts and roles involved in the process of providing and
consuming customized services, outline the technical solution that is presented
in detail in this paper, and motivate the need for such technologies.

Figure 1| provides a comprehensive overview, identifying the involved roles,
phases, and relevant artifacts for the engineering process of providing, prepar-
ing, and consuming customized services. We distinguish three roles: the Service
Provider develops and publishes services, the Domain FExpert prepares them
for customization by defining the variability specification model along with pre-
configurations for respective user groups, and the Service Consumer customizes
and personalizes the service in order to fit it into the specific application context.

5 @ =

w
@
&
Provider Domain Expert Consumer
w
& Variability Modelling & Customization
2 Pre-Configuration & Personalization
o
Service Metamodel
extends
according to ardii
2 Service Variability accoraing to
= Metamodel
@
©
< according fo accordingto

transtormed to_ AETET T ERTNT:Y

extends Variability Variability
T Specification Model Resolution Model Model

Service Model n

I

described by described by
Service . Variant of Service
consistent & valid subset
Interface Interface

Fig. 1. Service Customization — Roles, Phases, Artifacts

Note that these are abstractions from the several sub-roles that can be found in
real-world service engineering processes.

In the first phase, the Service Provider develops a service and publishes it
in a repository. In the context of model-driven engineering, the service interface
that defines the operations, messages, and endpoints is described by a Service
Model on the basis of a metamodel (e.g. a WSDL metamodel [6] or SoaML [7]).
In the second phase, the domain expert prepares the service for customization.
For this, he creates a Variability Specification Model that describes the variable
aspects of the service (i.e. the mandatory and optional operations, messages,
and message types as well as the dependencies). This is defined in accordance
with the Service Variability Metamodel that defines the necessary constructs for
modeling the variability of services. The Domain Expert might define multiple
variability specification models for a service where each one is pre-configured for a
particular application scenario (e.g. for specific industry sectors or geographical
usage contexts). In the third phase, the Service Consumer adapts the service
to the individual consumption context by defining a Service Resolution Model.
For this, the variable aspects defined in the Variability Specification Model are
resolved by selecting the desired features and defining concrete values for the
parameters that are not changed dynamically during the invocation. Finally,
a Service Interface for the variant of the Service Model is generated: this only
contains the selected features and represents a valid subset of the original service
interface, while the explicit variability modeling and the validation of the usage
conditions throughout the customization process ensure the correct invocation
of the service.

The technical solution for supporting service customization presented in this
paper encompasses the specification of the Service Variability Metamodel and
tools for supporting the creation of Variability Specification Models by Domain
Experts as well as for Variability Resolution by Service Consumers. The overall
idea for enabling service customization by variability modeling is adopted from
works on variability management in Software Product Line Engineering (SPLE,
e.g. [2015]), which however deal with different elements and thus employ dif-
ferent models and techniques (see Section |§| for a more detailed discussion). In
order to ensure the efficiency of the service engineering process, we consider a
model-driven approach where the service and variability models are defined on
the architecture level (i.e. on the PIM level in terms of MDA []]). Our proto-
type implementation works on SoaML [7] a metamodel for describing services;
however, our Service Variability Metamodel is defined orthogonally to the base
model, so that it can also be applied to other service metamodels.

Before presenting the technical solution in detail, let us discuss the moti-
vation and business relevance of such a service customization technology. As
outlined above, the need arises from the growing complexity of services, which
particularly arises in the context of business applications. For illustration, con-
sider a business service for creating and managing sales orders. A sales order
is a relatively complex data object (consider the standard definitions in Roset-
taNet or ebXML), and, furthermore, its detailed structure is defined differently
within the standards for different industries. In order to be reusable in various
applications within several industries, a general purpose business service needs
to support all options and specific features that are relevant for the targeted us-
age industries. In consequence, its interface becomes very complex regarding the
number operations, the size of input- and output objects, and the conditions and
constraints for proper and consistent consumption. A specific consumer typically
only requires a subset of the provided features for his individual sales order man-
agement. However, due to the complexity, the general purpose service is not easy
to understand, and its configuration for the individual needs of the consumer is
a time consuming task that usually requires external support.

Our approach enables a step-wise reduction of the complexity and improves
the technology support for customization. At first, a Domain Expert can define
variants that are pre-configured for specific user groups, e.g. one variant for the
automotive industry, one for steel production, and another one for the telecom-
munication sector. Furthermore, the detailed usage conditions for each variant
are described explicitly in terms of a variability specification model. On this ba-
sis, a consumer can then define a personalized variant by selecting the desired
features. The model-driven approach facilitates the abstraction from technical
details as well as the provision of intuitive graphical user interfaces for modeling
support, and the variability models ensure that the selections by the consumer
are compliant with the usage conditions of the service. The generated technical
interface for the consumer’s variant is naturally significantly less complex than
the one of the original sales-order service while it adheres to its usage conditions,
so that a correct and consistent invocation is ensured.

3 Service Variability Metamodel

This section presents the metamodel for describing the variability of services.
First, we introcuce the main elements and then the constructs for variability
modeling on different levels of service descriptions.

H Classifier 2]
(from soaml)
specifies T 11
H variableOperation

H variabilitySpecification o
H ServiceVariant variableOperations T "

1.1 T name : EString

resolves L3 T namespace : EString
= description : EString -
H variabilityResolution variableTypes ‘L 0.x
H variableType

Fig. 2. Service Variability Metamodel — Main Elements

Shown at Figure 2] a VariabilitySpecification and VariabilityResolution serve
as containers for the variability descriptions of the variable artefacts (operations
and datatypes) of a specific service (which here is described by a SoaML Clas-
sifier [7]). The VariabilitySpecification contains the definition of all the variable
aspects which are resolved by instances of a ResolutionElement. The variability
description of a service are modeled with the help of four mechanisms shown at

Figure 3}

E variableflement
[variableProperty T name ; Estring constraints \Ir 0.
= fixedValue : EString ~ = ;atlonal 8 R & Constraint
[=] . * .
= defaultvalue : EString - escr\pggléESTrlng L. = name ; EString
IEQRILECHIEL O CAT relatedVariableElements = description : EString
H GenericConstraint
resolves -
= rule : EString
[PropergyResolutionElement
= d.efault\.falue : Estr\ng E ResolutionElement H RequiresConstraint H ExcdudesConstraint
= fixedValue : EString —> = selected : EBoole.,

Fig. 3. Service Variability Metamodel — Variability Mechanisms

1. Declaration of mandatory and optional elements, modeled by the boolean
required property of VariableElement which serves as the the superclass
for variability modeling on different levels of service descriptions.

2. Definition of dependencies among elements, modelled by the Constraint class
with direct support for defining excluding and requiring constraints

3. Selection of desired features for a specific application context, modeled by
the boolean selected property of ResolutionElement, and

4. Definition of fixed values that are changed within the application scenario
or default values that are used for invocation when no concrete value is pro-
vided for, which is only applicable for VariableProperty and PropertyReso-
lutionElement.

3.1 Operation Level

We now turn towards the actual variability modeling for the various aspects of
services. The first level is concerned with operations that define how to consume
a service by the exchange of messages.

Figure [shows the metamodel elements for this. A VariableOperation inher-
its the mechanisms explained above for defining mandatory operations and their
dependencies as well as for selecting the desired ones. The operations defined
the base model (i.e. original service description) are bound to a SimpleVari-
ableOperation. In addition, ComplexVariableOperation enables the grouping of
related operations whith the boolean multiple property for modeling exclusive-
ness (true if only one of the related operations can be used).

H variableElement

5.+ |H VariableOperation H operation (2]
(from soaml)
variableSubOperations ? 1.1
| boundOperation

H complexvariableOperatior H simpleVariableOperatior
= multiple : EBoolean

Fig. 4. Service Variability Metamodel — Operation Level Elements

3.2 Data Level

The second level of variability modeling is concerned with the message types,
i.e. the data structures used within the messages. Figure [5[shows the metamodel
elements for this. A Variable Type is bound to a data type from the base model. In
order to enable precise and flexible modeling, the actual variability is defined on
the properties of the types by Variable Property, using the mechanisms introduced
above.

B Classifier (2] H variableElement
(from soaml)

0.1

boundType

H variableType
T name : EString

H variableProperty

variableProperties = fixedValue : EString
= defaultValue : EStri.. | boundProperty

L.l H Property (&
(fram soaml)

1.*

Fig. 5. Service Variability Metamodel — Data Level Elements

4 Service Customization Procedures and Tool Support

This section explains the techniques for service customization that work on the
metamodel presented above, refining the overall engineering process introduced
in Section [2| We here focus on the methodological aspects, while presenting the
tooling support in the context of the illustrative example below in Section

4.1 Service Variability Specification

As outlined above, the first step for enabling the customization of services is
the creation of a variability specification model. This is performed by a domain
expert in the second phase of the overall engineering process (cf. Figure above).
For this, the domain expert analyses the description of the base service, and
creates a variability specifcation along with pre-configurations for the foreseen
application context.

Figure [6] shows the procedure for this, which is supported by engineering
tools. In order to reduce the manual modeling effort, at first the Extractor cre-
ates a skeleton of the variability specification model by extracting the already

Service Variability
Metamodel

according to

adds implicit
vaniability information

=

adds explicit
w vanability information

Domain Expert :

extends

| f

¥
extracts implicit
Service Model vanability information

Fig. 6. Variability Specification Modeling

VELEL Y
Specification Model

Extractor

existing variability information from the original service description. This means
that the elements of the variability specification model for the operations and
message types are generated. Furthermore, the basic usage conditions can be
extracted; as a pre-requisite for this, sophisticated SOA governance process that
are commonly employed in industry ensure that information such as mandatory
operations and data fields is given in the service description [4]. Then, the domain
expert can refine the skeleton by adding further variability information, using
the mechanisms supported by our metamodel. Note that there can be several
variability specification models for a service, where each one is pre-configured
for a specific application scenario. The diverse variability specification models
may define different usage conditions and distinct pre-selected sets of mandatory
and optional fields, as e.g. one industry standard requires certain fields which
are irrelevant in another standard.

4.2 Service Variability Resolution

In the last phase, the consumer creates a service variant that suits the individual
application context. For this, he chooses a suitable variability specification model
of the service that has been previously prepared by a domain expert, resolve
this by selecting the desired features and setting predefined values. From this
the consumer generates a variant of the original service model which describes
the interface for invoking the service.

Figure[7]shows the detailed procedure for this, which is supported by a graph-
ical engineering tool that we shall present below. At first, the chosen variability
specification model along with the bound orginal service model is imported.
Then, the variability is resolved by selecting the desired features and defining
default and fixed values for type properties and message parameters that will
remain unchanged during the actual service invocation. The tool ensures that
the user inputs comply with the conditions defined in the variability specifica-
tion model. Finally, a variant of the original service model is generated from the

Service Variability
Metamodel

eccordr'rlrg fo
__ choose Variability fonds -3 .
é Specification Model exien | R el
. |
Consumer resolves

Generator

select elements Variability
& set values Resolution Model

generates

Variant of Service
Model

Fig. 7. Service Variability Resolution

resolution model. This is described in terms of a conventional service model, and
thus can be used invoking the service. The explicit variability modeling and the
validation of the usage conditions throughout the customization process ensure
that the generated service variant is valid for properly and correctly invoking
the original service.

5 Illustrative Example

The following illustrates the modeling techniques and procedures introduced
above within an example for customizing an existing service for managing goods
movement. We first explain the scenario setting, and then demonstrate the defi-
nition of a variability specification model as well as the creation of a service vari-
ant within our prototype which is implemented as a set of plugins based on the
Eclipse Modeling Framework (EMF, see www.eclipse.org/modeling/emf /).

5.1 Customizing the Goods Movement Enterprise Service

The example is based on the Enterprise Service “Goods Movement” that pro-
vides basic business facilities for managing the movement of goods and is publicly
available via the SAP Developer Network (www.sdn. sap. com). It offers four oper-
ations: two for creating goods movement objects (one with references to related
documents like purchase order, in- and outbound delivery, and one without),
and one operation each for reading and updating goods movement objects. The
message types are defined by business objects for goods movement along with
standard objects like item, tax, transportation, and material.

www.eclipse.org/modeling/emf/
www.sdn.sap.com

Original Service (SoaML) Service Variant (SoaML)

4 4 Service Interface ManageGoodsMavement 4 4 Semvice Interface ManageGoodsMovement
<Operation> creat dsh 1t [goodsh : GoodsM # <o creat dsM t In : Good|
@ <Operation> createGoodsh i e 4@ <Operation> read (id : String} : t
@ <Operation> up M) 1 Goods # 4 Message Type GoodsMovement
@ <Operation i t fid : String) dsM t & <Property> id : String

4 4 Message Type GoodsMovement & <Property> items : Item [0..%)
El <Property> postingDate : String 4 4 Message Type ltem

£l <Property> id: String
&1 <Property> items : Item [0..*]

4 4 Message Type GoodsMovementWithReference |:>

&l <Property> baseDocumentld : String

1]

<Property» goodsRecipientName : String
<Property> salesOrderld : String
<Property> salesOrderltemld : String
<Property> quantity : Integer

0o@

i <Property> baseDocumentTypeCode : Integer & <Property> material : Material [0..1]
4 4 Message Type Item & <Property> tax: Tax [0..1)

&l <Property> goodsRecipientName : String 4 4 Message Type Material
& <Property> salesOrderld : String &l <Property> serialNumber : Integer
=l <Property> salesOrderitemld : String 5 <Property> expirationDate : Integer
] <Property> quantity : Integer a 4 Message Type Tax
El <Property> transportation : Transportation [0..1] & <Property> buyerCountry : String
&l <Property> material : Material [0.1] & <Property> sellerCountry : String

<Property> tax : Tax [0..1]
tessage Type Transportation
<Property> transportationDocumentld : String
| <Property> transportModeCode : Integer
4 <4 Message Type Material
&l <Property> serialNumber : Integer
&l <Property> expirationDate : Integer
&l <Property> productionDate : Integer
4 < Message Type Tax
&l <Property> buyerCountry : String
=l <Property> sellerCountry : String

N
re
z [

Fig. 8. Goods Movement Service Scenario

In our example, we will create a variant of the service that only contains the
operations and necessary message types for the simple creation and reading of
goods movement objects. Figure | provides an overview with the original service
on the left and the service variant on the right hand side, which obviously is
simpler and thus easier to consume. Our prototype uses SoaML as a platform
independent modeling language for the basic service descriptions [7]. Sufficient
for demonstration purposes, we here work with already simplified data structures
for the message types; the actual business objects used within SAP applications
contain more than 100 nodes.

5.2 Variability Specification Modeling

As explained above, the first step in the service customization process is the
creation of the variability specification model. Figure [0] shows a screenshot of
our prototype tool for supporting domain experts in this task.

The tool provides an editing facility for variability specification modeling
with a tree-view representation and context-sensitive editing support for adding
dependent variability modeling elements, constraints, and bindings to the base
model; the extractor for creating skeletons of variability specifications (cf. Sec-
tion [4.1) is under development at the time of writing.

For our example, the domain expert defines the following explicit variability
information. At first, the two operations for creating goods movement objects
are grouped into a ComplexVariableOperation: conceptually, they present two
versions of the same operation which differ in the input- and output parameters;
however, they are non-exclusive, thus the multiple-property is set to false.

10

Secondly, the update-operation requires the read-operation, which is modeled
by a RequiresConstraint (c¢f. Figure . Thirdly, the mandatory elements and
their dependencies on the data level are defined. For instance, the usage of sale-
sOrderltem, which is an attribute of the top-level type item, requires the setting
of the salesOrderld. In addition, default values can be defined, e.g. setting coun-
try information to ’Germany’ in order to pre-configure the service variant for
German customers.

& gmvs.s E Properties
ff:, Resource Set Property Walue
PR 2 platform:/resource/ManageGoodsMovement/Variability/Specification 4 Binding
4 < Specification : {http://www.example.org/manageGoodshMovement . Bound Property salesOrderltemld :
+ 4 Complex Variable Operation : createGoodsMovement 4 MISE inti .
) } } escription
4 5 le Variable O t :updateGoodsM t
< Simple Variable Operation : updateGoodsMaovemen Name salesOrderttemId

<+ Requires Constraint requiresReadGoodsMaovement
< Simple Variable Operation : readGoodsMovement

Rational
4 Preconfiguration

-4 Variable Type : GoodsMovement Default Value
4 < Variable Type : Item Fixed Value
4 Variable Property : salesOrderld Required 1;fa|5e
g ¢. \-‘arlablel Property : salesQrderltel Load Basemodel...
- |X] platform:/resource/ManageGoodsMovemen New Child » |
L\\gew Sibling L4 *:‘3’ Variable Prope
asemodelbinding Y

Fig. 9. Variability Specification Tool (Screenshot)

5.3 Variability Resolution Tool

We now turn to the creation of the actual service variant. As explained above, for
this the consumer creates a resolution model by selecting the desired operations
and data elements as well as defining default or fixed values for static data
elements. From this a conventional service model is generated for the variant (cf.
Section . In order to support consumers in this task, we provide a tool for
selecting the desired features via a graphical user interface along with real-time
validation of the dependencies and usage conditions defined in the variability
specification model.

Figure [10| shows a screenshot of our prototype. It is organized by tabs that
support variability resolution on different levels where variability can occur. Cur-
rently, the tool contains the operation and data level as the basic functional
aspects covered by our metamodel; for the future, this can be extended with ad-
ditional levels such as non-functional aspects or quality-of-service information.

The tool supports the variability resolution by standard metaphors for graph-
ical user interface design [9]: checkboxes for selecting the desired elements, graph-
ical accentuation of required elements, and colored display of constraint viola-
tions. Detailed information, which provides useful guidance for correcting are
accessible via the context menu. The SoaML descriptions for the service variant

11

.'rb *GYmVT.Vr =] Properties

T4 ManageGoodsMovement Property Jalue
4 Binding
GoodsM t -
oods| .ovemen Bound Property < Property transportationDocumentld
id) 4 Misc
postingDate Description f

items Mame i

Rational

transportationDocumentld

- T

Item Required v true
V| goodsRecipientName (required) 4 Values
V] quantity (required) Default Value =
salesOrderld Fixed Walue =

V| salesOrderltemld
transportation
material
tax

Transportation
V| transportationDocumentld (required)

Operation Level Data Level

Fig. 10. Variability Resolution Tool (Screenshot)

is generated automatically, and stored in the respective folder of the EMF engi-
neering project. With this, we provide easy-to-use tooling support for creating
service variants that abstracts from technical details.

6 Related Work

This section positions our approach within related work. As analyzed in [3], a
central challenge for industrial scale engineering technologies is the handling of
services that deal with large and complex data structures of real-world business
objects. This emphasizes the need for sophisticated customization techniques,
whose efficient and scalable realization remains a grand challenge [14].

Most existing tool support for the configuration of services is limited to low-
level technical aspects, such as the deployment to an execution platform or the
configuration of technical parameters for invocation and runtime (e.g. [I]). Al-
though helpful for the service engineers and thus being an integral part of mod-
ern industrial service engineering environments, these techniques can only be
applied after the service has been adopted to the specific usage scenario, leaving
the major part of the customization task to manual inspection.

Only few works address service customization on higher levels of abstraction.
Most existing solutions merely provide methodological guidelines with limited
tooling support for users (e.g. [L6J5]). This appears to be inadequate for reducing
the effort and error-proneness resulting from manual customization. [I7] presents
an approach for user-driven service customization on the basis of usage policies;
however, this works with mostly informal policy descriptions that do not al-
low an automated validation of human customization decisions. More advanced
techniques achieve significant improvements by working on formal constraint and

12

user request descriptions (e.g. [12]); however, this requires significantly more ef-
fort for creating the additional resource descriptions than our approach.

Our approach adopts concepts of variability modeling developed in the field
of model-driven software product-line engineering (SPLE, [2]). We adopt the
overall approach of explicitly describing the variable aspects and resolving them
by selection and parameter instantiation for a specific usage scenario, as well
as the principle of orthogonal design by separating the variability specification
from the original service description [I5]. However, there are substantial differ-
ences: at first, SPLE is concerned with describing the variability of products,
while for services we need to consider other aspects like operations, messages,
and messages types as supported by our metamodel. Secondly, SPLE variability
management considers a closed world where all potential variations are known a
priori, and variants are defined by substitution mechanisms that insert the prede-
fined variations into the product description [I0]; this conflicts with the nature
of service-orientation where we need to consider an open world with unfore-
seen usage scenarios. A customization technique for complete SaaS applications
that employs variability modeling is presented in [I3]: the provider defines an
application template where the configurable aspects are described by variation
points; a consumer binds these to specific services or alternative processes in
order to obtain a customized solution. Although the overall approach is similar,
our metamodel is significantly more expressive for describing the variability of
single services. Thus, the works can be considered to be complementary: the
variability modeling and management techniques presented here can be used to
enhance customization techniques for service-based applications.

The customization technique supported by our approach is the simplification
of complex services. Another possibility is to define extensions to the original
service, e.g. by adding supplementing features as suggested in [II]. This appears
to be suitable for customizing services that do not encompass support for several
application scenarios but merely provide extensible core features; we plan to
extend our metamodel and tools to support this technique as well.

7 Conclusions and Future Work

This paper has presented an approach for service customization by the tool-
supported creation of personalized variants on the basis of variability models
that explicitly describe the variable aspects and usage conditions of services.
The need for such techniques arises from the growing number of complex
services that are designed for reuse in various application contexts and deal
with extensive data objects, which can be particularly found in service-oriented
business applications. These services become too complex to be understandable
by humans, and existing service engineering tools appear to not be suitable for
supporting their employment in concrete consumer contexts in an adequate and
cost-efficient manner. In order to overcome this, we propose a three-phased en-
gineering process: domain experts prepare the services that have been published
by a provider for specific usage contexts by defining variability specification mod-

13

els; they explicitly describe variable aspects, upon which consumers can easily
create personalized variants that adopt the services to the specific context of the
individual application scenarios.

In order to support model-driven development, we have defined a metamodel
for describing the variability modeling for services on the basis of four mech-
anisms: the declaration of mandatory and optional elements with their depen-
dencies, furthermore the selection of desired features as well as the definition of
default and fixed values for a particular application scenario. We have developed
tools for supporting domain experts in the specification of the service variabil-
ity as well as consumers in the creation of individualized variants, and we have
demonstrated them for customizing an Enterprise Service.

The presented technique enables the consumption of complex in individual
application scenarios, with the main benefits of minimal modeling effort that
abstracts from technical details, and of ensuring the correct service invocation by
the explicit variability modeling and thorough resolution validation. We, however
consider the presented technical solution as an initial prototype that shall be
extended in the future. In particular, we plan to incorporate additional aspects
and techniques for service variability (e.g. support for non-functional and quality-
of-service aspects, mechanisms for handling conditions on instance data level,
and support for service extensions mentioned above). In a longer perspective,
the aim is to develop customization techniques for combined service bundles and
applications, for which the variability modeling and management techniques for
single services presented here shall serve as a basis.

Acknowledgements. This paper is mainly based on works supported by EU fund-
ing under the SHAPE project (FP7 - 216408).

References

1. R. Anzbdck, S. Dustdar, and H. Gall. Software Configuration, Distribution, and
Deployment of Web Services. In Proc. of the 14th International Conference on Soft-
ware Engineering and Knowledge Engineering (SEKE 2002), Ischia, Italy, 2002.

2. J. Bayer, S. Gerard, @. Haugen, J. X. Mansell, B. Mgller-Pedersen, J. Oldevik,
P. Tessier, J.-P. Thibault, and T. Widen. Consolidated Product Line Variability
Modeling. In T. K#kold and J. C. Duenas, editors, Software Product Lines -
Research Issues in Engineering and Management, pages 195—-241. Springer, 2006.

3. J. Beaton, S. Y. Jeong, Y. Xie, J. Stylos, and B. A. Myers. Usability Challenges
for Enterprise Service-Oriented Architecture APIs. In Proc. of IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC’08), 2008.

4. W. A. Brown, R. G. Laird, C. Gee, and T. Mitra. SOA Governance — Achieving
and Sustaining Business and IT Agility. IBM Press, 2008.

5. J. Cao, Wang. J., K. H. Law, S.-S. Zhang, and M. Li. An Interactive Service
Customization Model. Information & Software Technology, 48(4):280-296, 2006.

6. V. de Castro, E. Marcos, and B. Vela. Representing WSDL with Extended UML.
Revista Comlombiana de Computacion, 5(1), 2004.

7. A. Berre (ed.). Service oriented architecture Modeling Language (SoaML) — Spec-
ification for the UML Profile and Metamodel for Services (UPMS). Revised sub-
mission, OMG, 2008. OMG document: ad/2008-11-01.

14

10.

11.

12.

13.

14.

15.

16.

17.

D. S. Frankel. Model Driven Architecture. Applying MDA to Enterprise Computing.
John Wiley & Sons, 2003.

W. O. Galitz. The Essential Guide to User Interface Design — An Introduction to
GUI Design Principles and Techniques. Wiley, 3. edition, 2007.

(). Haugen, B. Mgller-Pedersen, J. Oldevik, G. K. Olsen, and A. Svendsen. Adding
Standardized Variability to Domain Specific Languages. In Proc. of 12th Interna-
tional Conference on Software Product Lines (SPLC 2008), 2008.

H. Jegadeesan and S. Balasubramaniamm. A Method to Support Variability of
Enterprise Services on the Cloud. In Proc. of the 2nd International Conference on
Cloud Computing (CLOUD-II 2009), Beijing, China, 20009.

D. Mandell and S. Mcllraith. A Bottom-Up Approach to Automating Web Service
Discovery, Customization, and Semantic Translation. In Proc. of the 12th Inter-
national World Wide Web Conference, Workshop on E-Services and the Semantic
Web (ESSW’08), Budapest, 2003.

R. Mietzner, F. Leymann, and M. P. Papazoglou. Defining Composite Configurable
SaaS Application Packages Using SCA, Variability Descriptors and SaaS Multi-
Tenancy Patterns. In Proc. of 3rd Intl. Conf. on Internet and Web Applications
and Services (ICIW 2008), Athens, Greece, 2008.

L. Peters and H. Saidin. IT and the Mass Customization of Services: the Challenge
of Implementation. International Journal of Information Management, 20(2):103—
119, 2000.

K. Pohl and A. Metzger. Variabilititsmanagement in Software-Produktlinien.
In K. Herrmann and B. Briigge, editors, Tagungsband zur Software Engineering
(SE08), Miinchen, LNI. Gesellschaft fiir Informatik, 2008.

Y. Sam, O. Boucelma, and M.-S. Hacid. Web Services Customization — A
Composition-based Approach. In Proc. of the 6th International Conference on
Web Engineering (ICWE 2006), Palo Alto, CA, USA, pages 25-31, 2006.

K. Zhang, X Zhang, W. Sun, H. Liang, Y. Hung, L. Zeng, and X. Liu. A Policy-
Driven Approach for Software-as-Services Customization. In Proc. of the 9th IEEE
International Conference on E-Commerce Technology and the jth IEEE Interna-
tional Conference on Enterprise Computing, E-Commerce and E-Services (CEC-
EEE 2007), Tokyo, Japan, pages 123-130, 2007.

15

	Service Customization by Variability Modeling
	Michael Stollberg cl@@auth, Marcel Muth

