
Scalable Semantic Web Service Discovery for

Goal-driven Service-Oriented Architectures

Dissertation

by

Michael Stollberg

submitted to the Faculty of Mathematics, Computer
Science and Physics of the University of Innsbruck

in partial fulfillment of the requirements
for the degree of doctor of science

Advisor: Univ.-Prof. Dr. Dieter Fensel,
Semantic Technology Institute Innsbruck

Innsbruck, March 17, 2008

LEOPOLD-FRANZENS UNIVERSITÄT INNSBRUCK

Date: 17 March 2008

Author: Michael Stollberg

Title: Scalable Semantic Web Service Discovery for
Goal-driven Service-Oriented Architectures

Department: Semantic Technology Institute, Faculty of
Mathematics, Computer Science, and Physics

Degree: Dr. rer. nat.

Permission is herewith granted to Leopold-Franzens Universität Innsbruck
to circulate and to have copied for non-commercial purposes, at its discretion,
the above title upon the request of individuals or institutions.

Signature of Author

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND
NEITHER THE THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY
BE PRINTED OR OTHERWISE REPRODUCED WITHOUT THE AUTHOR’S
WRITTEN PERMISSION.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED
FOR THE USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS
THESIS (OTHER THAN BRIEF EXCERPTS REQUIRING ONLY PROPER
ACKNOWLEDGEMENT IN SCHOLARLY WRITING) AND THAT ALL SUCH USE
IS CLEARLY ACKNOWLEDGED.

c© Copyright by Michael Stollberg, 2008

ii

Contents

1 Introduction 1

1.1 Motivation and Objectives . 1
1.2 Methodology . 4
1.3 Outline . 6

2 Web Services, SOA, and Semantics 8

2.1 Research Context . 8
2.1.1 Web Services . 9
2.1.2 Service-Oriented Architectures . 12
2.1.3 Semantic Web Services . 14

2.2 Problem Identification and Approach . 25
2.2.1 Motivation for Goal-based SOA Technologies 27
2.2.2 Requirements for Automated Web Service Discovery 29
2.2.3 Overview of Approach . 33

2.3 Summary and Outlook . 35

3 A Goal Model for Semantic Web Services 37

3.1 Aim and Requirements Analysis . 38
3.1.1 Goals – Origin and Purpose . 38
3.1.2 Requirements on a Goal Model for SWS 40

3.2 Conceptual Model and Specification . 42
3.2.1 Goal Templates and Goal Instances 43
3.2.2 Automated Web Service Usage . 46
3.2.3 Extensibility . 51

3.3 Discussion and Related Work . 54
3.3.1 Summary and Applicability . 54
3.3.2 Relation to Automated Problem Solving in AI 56

iii

4 Two-Phase Web Service Discovery 58

4.1 Foundations . 60
4.1.1 Understanding of Web Services and Goals 62
4.1.2 The Meaning of a Match . 65

4.2 Functional Descriptions . 67
4.2.1 Requirements and State of the Art 67
4.2.2 Definition and Semantics . 69
4.2.3 Illustrative Example . 76
4.2.4 Limitations of the Approach . 77

4.3 Semantic Matchmaking . 79
4.3.1 Goal Template Level . 79
4.3.2 Goal Instance Level . 83
4.3.3 Illustrative Example . 87

4.4 Implementation in Vampire . 91
4.4.1 Modeling in TPTP . 92
4.4.2 Matchmaking as Proof Obligations 95
4.4.3 Illustrative Example . 96

4.5 Summary and Related Work . 100

5 Semantic Discovery Caching 106

5.1 Motivation and Overview . 108
5.1.1 The Need for Scalable Web Service Discovery 108
5.1.2 The SDC Approach . 110

5.2 Concepts and Definitions . 114
5.2.1 Goal Similarity and Inference Rules 114
5.2.2 The SDC Graph . 118
5.2.3 Properties of the SDC Graph . 128

5.3 Management and Maintenance . 132
5.3.1 SDC Graph Creation . 132
5.3.2 Illustrative Example . 142
5.3.3 Evolution Support . 144
5.3.4 Complementing Techniques . 151

5.4 Optimized Web Service Discovery . 153
5.4.1 Runtime Discovery Algorithms . 155
5.4.2 Illustrative Example . 158
5.4.3 Expectable Performance Improvements 161

iv

5.5 Prototype Implementation . 162
5.5.1 Design and Architecture . 162
5.5.2 A Goal-based Web Service Browser 167

5.6 Summary and Related Work . 169

6 Evaluation 173
6.1 Performance Analysis . 174

6.1.1 Methodology . 174
6.1.2 Use Case Scenario and Modeling . 179
6.1.3 Results and Discussion . 185

6.2 Practical Relevance . 207
6.2.1 Methodology . 207
6.2.2 The Verizon SOA System . 214
6.2.3 Other Application Areas . 221

7 Conclusions 226
7.1 Summary . 226
7.2 Discussion and Outlook . 233

Bibliography 235

Appendices 256

A Appendix for Chapter 4 256
A.1 Proof for Proposition 4.1 . 256
A.2 Proof for Proposition 4.3 . 260
A.3 Proof for Theorem 4.1 . 262

B Appendix for Chapter 5 264
B.1 Proof for Theorem 5.1 . 264
B.2 Proof for Theorem 5.2 . 268
B.3 Documentation of the SDC Prototype . 270

C Appendix for Chapter 6 276
C.1 Resource Descriptions in WSML . 276
C.2 SDC Graph Management Evaluation . 288
C.3 Runtime Web Service Discovery Evaluation 294

v

List of Figures

2.1 Ingredients of WSDL . 11
2.2 Web Service Usage Procedure . 14
2.3 From Web Services to Semantic Web Services 15
2.4 The Semantic Web Layer Cake (revised version, 2005) 17
2.5 Overview OWL-S . 18
2.6 WSMO Top Level Notions . 19
2.7 SAWSDL Overview . 21
2.8 Purpose of Goals in SOA . 28
2.9 Automated Goal Solving in SWS Environments 29
2.10 Overview of Approach . 33

3.1 Core of the Goal Model . 42
3.2 Goal Templates and Goal Instances . 43
3.3 Elements for Automated Web Service Usage 47
3.4 Composite Goal Example . 52

4.1 Overview of Two-Phase Web Service Discovery 59
4.2 Conceptual Abstraction Layers . 61
4.3 Executions of a Web Services . 63
4.4 The Meaning of a Match . 66
4.5 The Meaning of a Functional Description 75

5.1 Overview of SDC-Optimized Web Service Discovery 107
5.2 Example of a SDC Graph . 112
5.3 Disconnected Sub-Graphs in the SDC graph 121
5.4 Minimality of Discovery Cache . 122
5.5 Example for an Intersection Goal Template 124
5.6 Intersection Goal Templates in the Goal Graph 125

vi

5.7 Avoidance of Cycles in the Goal Graph . 126
5.8 Example for Avoiding Cycles in the Goal Graph 127
5.9 Overview of SDC Graph Creation Algorithm 133
5.10 Illustrative Example for SDC Graph Creation 143
5.11 Illustrative Example for Optimized Runtime Discovery 159
5.12 SDC Prototype Architecture . 163
5.13 SDC Graph Visualization in WSMT . 168

6.1 Overview of the SDC Graph for the Shipment Scenario 182
6.2 Created SDC Graph for the Shipment Scenario 186
6.3 Stepwise Creation of the SDC Graph . 189
6.4 Updated SDC Graph after Removal Operations 191
6.5 Performance Comparison Charts Goal Instance gi3 197
6.6 Performance Comparison Charts Goal Instance gi10 198
6.7 Overview of SDC Graph for Extended Shipment Scenario 203
6.8 Test Results SDCfull vs. SDClight . 204
6.9 Overview of Verizon SOA System . 215
6.10 Structure of SDC Graph for Verizon SOA System 220
6.11 SDC Graph for Travel Scenario . 223

B.1 UML Class Diagram of SDC Prototype . 274
B.2 UML Class Diagram of Matchmaker used in SDC Prototype 275

vii

List of Tables

4.1 Examples for Functional Descriptions . 77
4.2 Definition of Matching Degrees for Web Service Discovery 80
4.3 Relevant Information for Semantic Matchmaking Illustration 89
4.4 Example for a Functional Description in TPTP 95
4.5 Proof Obligations for Matching Degrees in TPTP 96

5.1 Example for Semantically Similar Goal Templates 111
5.2 Definition and Meaning of Goal Similarity Degrees 116
5.3 Situations for New Root Node Insertion . 136
5.4 Situations for Insertion of a New Child Node 137
5.5 Situations for Insertion of an Intersection Goal Template 138
5.6 Situations for Removal of Intersection Goal Templates 147
5.7 Basis for Automated Goal Template Generation 151
5.8 Example for Translation from WSML FOL to TPTP 165

6.1 Examples for Functional Descriptions . 180
6.2 Overview of Web Services in the Shipment Scenario 181
6.3 Overview of Goal Instances for the Shipment Scenario 184
6.4 Operations and Times for SDC Graph Creation (Top-Down) 187
6.5 Operations and Times for Stepwise SDC Graph Creation 188
6.6 Actions and Times for SDC Graph Maintenance Operations 190
6.7 Test Data for Runtime Web Service Discovery 193
6.8 Overview of Used Statistical Notions . 194
6.9 Test Results SDC vs. Naive (Single Web Service Discovery) 195
6.10 Test Results SDC vs. Naive (All Web Services Discovery) 200
6.11 Additional Goal Templates and Web Services 202
6.12 Web Service Descriptions in the Verizon SOA System 216
6.13 Functional Descriptions for Verizon SOA System 218

viii

Abstract

The concept of Service-Oriented Architectures (SOA) is the latest design paradigm for IT
systems. The idea is to use Web services as the basic blocks, which provide programmatic
access to computational facilities over the Internet. The aim is to exploit the potential of
the World Wide Web as an infrastructure for computation, help to reduce the development
and maintenance costs of IT systems, and also to tackle the integration problem within and
in between collaborating organizations.

The realization of sophisticated SOA technologies is a massive challenge. The initial
Web service technology stack around WSDL, SOAP, and UDDI facilitates the technical
provision and usage of Web services. However, it limits the detection and usability analysis
of suitable Web services for a particular client request to manual inspection. To overcome
these deficiencies, the emerging concept of Semantic Web services (SWS) develops inference-
based techniques for the automated discovery, composition, and execution of Web services
on the basis of exhaustive semantic annotations. This also addresses the problem of semantic
interoperability by using ontologies as the underlying data model and by applying reasoning
techniques developed in the context of Semantic Web.

One of the central operations in SOA environments is the detection of suitable Web
services for solving a given request, commonly referred to as Web service discovery. This
is usually performed as the first processing step that finds potential candidates out of the
available Web services. Most techniques – in particular in the area of SWS – primarily
consider functional aspects for the discovery task. The usability of the discovered Web
services is then further inspected in subsequent processing steps that consider non-functional
aspects such as the quality-of-service or behavioral compatibility. Next to the automation
of the discovery tasks, recent approaches for advanced SWS technologies further envision to
integrate automated Web service discovery engines as a heavily used software component.
Examples for this are approaches for dynamic Web service composition or for semantically
enabled business process management wherein the actual Web services shall be detected
dynamically at runtime in order to achieve higher flexibility and better maintainability.

ix

From this application purpose, two central requirements arise for automated Web service
discovery engines: (1) a high retrieval accuracy in order to perform the discovery task
with an appropriate quality, and (2) a high computational performance in order to serve
as a operationally reliable software component, in particular within larger search spaces
of available Web services that can be expected in real-world applications. The former can
most adequately be achieved by semantic matchmaking techniques that work on sufficiently
rich descriptions, which can achieve a better accuracy than other techniques. For the latter,
it is necessary to reduce the time and the computational costs for the discovery task.

The present work addresses this challenge by developing a goal-based, semantically
enabled Web service discovery technique along with a caching mechanism for enhancing the
computational performance. In consequence, the thesis consists of three consecutive parts
and aims at advancing the state-of-the-art in respective SWS technology developments:

1. a refined goal model for Semantic Web services for facilitating problem-oriented Web
service usage in SOA systems: the client merely specifies the objective to be achieved
as a goal that abstracts from technical details, and the system automatically discovers,
composes, and executes suitable Web services for solving this;

2. a formally defined approach for semantically enabled Web service discovery that sep-
arates design time and runtime operations and warrants high retrieval performance
by matchmaking of ontology-based functional descriptions of goals and Web services;

3. a caching mechanism for Web service discovery that captures the relevant knowledge
of design time discovery runs and effectively exploits this in order to enhance the
computational performance of Web service discovery at runtime.

The goal model defines goals as formal descriptions of the objectives that clients want to
achieve by using Web services, and specifies how these are used and processed within SWS
environments. A central aspect is the distinction of goal templates as generic and reusable
objective descriptions that are stored in the system, and goal instances that describe con-
crete client requests and are defined by instantiating a goal template with concrete input
values. This allows us to separate design time and runtime operations for the discovery
task. The suitable Web services for goal templates are discovered at design time. The re-
sult is captured in a specialized knowledge structure which serves as the heart of the caching
technique. At runtime, a client – either a human or a machine – formulates the concrete ob-
jective to be achieved in terms of a goal instance. As the time critical and expectably most
frequent operation in real-world SOA applications, the discovery of suitable Web services
for goal instances at runtime is optimized by exploiting the captured knowledge.

x

The Web service discovery techniques developed in this work perform semantic match-
making of sufficiently rich functional descriptions. For this, we define functional descriptions
that precisely describe the start- and end-states of the possible executions of Web services,
respectively solutions of goals in terms of preconditions and effects. These are specified on
the basis of ontologies, and we define their formal semantics in a first-order logic framework.
Upon this, we specify the necessary semantic matchmaking techniques for Web service dis-
covery at both design time and runtime. We shall show that these achieve a higher precision
and recall than most existing techniques for semantically enabled Web service discovery.

The caching mechanism is based on a directed acyclic graph that organizes the goal
templates in a subsumption hierarchy with respect to the requested functionalities and cap-
tures the relevant knowledge on the usability of the available Web services from the design
time discovery results. This provides a formally defined index for the efficient search of
goals and Web services, and we specify the necessary algorithms for automatically gener-
ating and properly maintaining this graph whenever a goal template or a Web service is
added, removed, or modified. The optimized discovery algorithms exploit this to enhance
the computational performance by minimizing the relevant search space and the number
of necessary matchmaking operations. This is a novel approach in the field of Semantic
Web services that can achieve a better performance increase than existing optimization
techniques and maintain a high retrieval accuracy for automated Web service discovery.

To evaluate the achievable performance increase, we compare our caching-enabled Web
service discovery with other engines that do not apply any or merely less elaborated opti-
mization techniques. In the shipment scenario that has been defined in the Semantic Web
Services Challenge – a widely recognized initiative for the demonstration and comparison
of SWS techniques – our prototype implementation shows significant improvements in the
efficiency, scalability, and stability for performing the discovery task. To also assess the
practical relevance of the developed technology, we examine its applicability in one of the
largest existing SOA systems maintained by the US-based telecommunication provider Ver-
izon as well as in prominent application scenarios for Semantic Web services. This reveals
that the goal-based approach and semantically enabled discovery techniques can greatly in-
crease the quality of SOA technology, and that optimized techniques appear to be necessary
in order to warrant the operational reliability of automated discovery engines in real-world
applications wherein larger numbers of available Web services can be expected.

The specifications throughout this work are by purpose kept on a generic level. We only
formally define the central aspects, using classical first-order logic (FOL) as the specification
language. The aim is to support the adaption of the developed techniques to several SWS
frameworks as well as to other, not semantically enabled SOA technologies.

xi

Acknowledgements

This work presents the research results achieved during my employment at the Digital En-
terprise Research Institute (DERI) – now called the Semantic Technology Institute (STI)
– that, under the lead of Univ.-Prof. Dr. Dieter Fensel, has been involved in the edge of
research around the Semantic Web and Semantic Web services. Despite the very dynamic
growth and changes of the institute, this has given me the chance to collaborate with several
internationally renowned researchers in the field.

I would like to thank my advisor Univ.-Prof. Dr. Dieter Fensel for the supervision of this
work, and also Univ.-Prof. Dr. Martin Hepp for fruitful discussion and support. I dedicate
special thanks to my fellow PhD students for the continuous collaboration, in particular
to Uwe Keller, Holger Lausen, and Rubén Lara. I also want to thank Dr. Jörg Hoffmann
and Dr. Stijn Heymans for fruitful feedback. I was able to gain valuable insights from
the collaboration and discussions with academic and industrial partners in international
research projects, in particular within the EU FP 6 Integrated Project DIP (2004 – 2006).
The discussions with Prof. Michael Genesereth during a four-month research exchange at
the Stanford University in California, USA, helped to define the scientific scope and focus
of the work. I also thank Dr. Michael Brodie, chief scientist at Verizon, for interesting dis-
cussions and the provision on non-confidential information about the Verizon SOA system.
Moreover, the feedback received from several people at numerous conferences, workshops,
and other events has helped to continuously improve the presented work.

Last but not least, I would like to thank my family for the thorough and all-embracing
support that has allowed me to complete this thesis.

xii

Chapter 1

Introduction

The aim of the present work is to develop a scalable, semantically enabled Web service
discovery technique in order to meet the requirements that arise for the deployment of
automated discovery engines in Service-Oriented Architectures.

To introduce into the work, this chapter explains the motivation and aim of the the-
sis, identifies the relevant research questions, and defines the scientific methodology for
addressing these. Finally, we outline the structure of the document.

1.1 Motivation and Objectives

The idea of Service-Oriented Architectures (SOA) is to use Web services as the basic building
blocks for IT systems [Erl, 2005]. A Web service supports the invocation and consumption
of a computational facility via a standardized interface over the Internet, facilitating the
usage of the World Wide Web as an infrastructure for computation [Alonso et al., 2004]. To
overcome the deficiencies of the initial technology stack around WSDL, SOAP, and UDDI
that limits the detection of suitable Web services to manual analysis, research on Seman-
tic Web services (SWS) develops inference-based techniques for the automated discovery,
composition, and execution of Web services [McIlraith et al., 2001; Fensel et al., 2006].

One of the central operations in SOA is the detection of suitable Web services for a given
task, which commonly is referred to as Web service discovery [Sycara et al., 2003; Preist,
2004]. The aim of SWS research is to provide sophisticated techniques for automating the
discovery task, and further to employ this as a heavily used component for dynamically
detecting the actual Web services at runtime [Hepp et al., 2005; Bertoli et al., 2007]. With
respect to this, two central requirements arise for automated discovery engines: they should

1

2 Chapter 1. Introduction

expose (1) a high retrieval accuracy in order to perform the discovery task with an appropri-
ate quality, and (2) a high computational performance in order to serve as a operationally
reliable software component in SWS environments.

The first requirement is concerned with the functional quality of automated Web service
discovery. In order to ensure that the discovered Web service can actually solve the given
client request, the discovery engine should ensure that every discovered Web service is
usable (precision) and every usable Web service can be discovered (recall). This can most
suitably be achieved by semantic matchmaking on sufficiently rich descriptions of Web
services and requests for these, which can in general achieve a higher retrieval accuracy than
other techniques. Although there is a wealth of work on semantically enabled Web service
discovery (e.g. [Paolucci et al., 2002; Li and Horrocks, 2003; Noia et al., 2003; Benatallah
et al., 2005; Keller et al., 2006a]), most existing approaches lack in the achievable retrieval
accuracy due to deficiencies in the used functional descriptions as well as a proper support
for the client side in SOA applications.

The second requirement addresses the computational performance of automated discov-
ery engines, which becomes in particular relevant for larger search spaces of available Web
services that can be expected in real-world applications. In SWS environments, discovery
is usually performed as the first processing step which needs to consider all potential can-
didates. In order to perform this in an adequate time and also to warrant the scalability of
the whole system, it is necessary to reduce the average processing time and as well as the
computational costs for performing the discovery task. This can be achieved by reducing
the relevant search space and minimizing the number of necessary matchmaking operations.
While having received far less attention in SWS research than semantic matchmaking tech-
niques, existing approaches address this challenge by clustering Web services in tree-like
structures in order to reduce the set of potential candidates by pre-filtering (e.g. [Constan-
tinescu et al., 2005; Verma et al., 2005; Tausch et al., 2006; Abramowicz et al., 2007]).
However, these techniques commonly lack in the achievable performance increase as well as
in the accuracy of the pre-filtering results.

This thesis aims at contributing to the development of sophisticated Web service dis-
covery technologies with respect to the identified requirements, and at providing scientific
progress beyond the state-of-the-art in this field. In contrast to most other works, we take a
goal-based approach for Semantic Web services. Therein, clients formulate the objective to
achieved in terms of a goal that abstracts from technical details, and the system automati-
cally discovers, composes, and executes suitable Web services for solving this. This allows
us to enable problem-oriented Web service usage in SOA systems, and also to overcome
the deficiencies in the flexibility that result from hard-wired Web service invocations. We

1.1. Motivation and Objectives 3

define a model for describing and processing goals in SWS environments, and develop a
two-phased discovery framework for this: the suitable Web services for goal templates as
generic and reusable objective descriptions are discovered at design time, and the actual
Web services for goal instances that describe concrete client requests are determined at
runtime. Web service discovery is performed by semantic matchmaking on the basis of
sufficiently rich functional descriptions in order to warrant a high retrieval accuracy. To
enhance the computational performance as the time critical operation, a novel technique is
developed which adopts the concept of caching to Web service discovery. This captures the
relevant knowledge from design time discovery runs, and effectively utilizes this for reducing
the search space and minimizing the reasoning effort for runtime Web service discovery. The
underlying knowledge structure can be created and maintained automatically, and a better
performance increase than existing techniques can be achieved because – in certain cases –
the suitable Web services can be discovered without invoking a matchmaker.

To summarize, the overall aim of this work is to elaborate an approach for automated,
semantically enabled Web service discovery that satisfies the requirements on a high retrieval
accuracy and a high computational performance. For this, we take a goal-based approach
and develop a two-phase discovery technique which applies semantic matchmaking on rich
functional descriptions and is extended with a caching mechanism for enhancing the com-
putational performance. The aim of the thesis is to design the technique, formally specify
the central aspects, and present a prototypical implementation which can be adapted into
specific SWS frameworks as well as to other, non-semantically enabled SOA environments.
In consequence, the work is centered around the following research questions:

1. How to properly define, model, and utilize goals as formalized client objectives in order
to facilitate problem-oriented, dynamic, and automated Web service usage within
SWS environments?

2. What is the appropriate distinction between design- and runtime operations in a two-
phased discovery framework, and how to formally specify functional descriptions for
goals and Web services as well as the necessary semantic matchmaking techniques in
order to achieve high precision and recall for Web service discovery?

3. How to define a caching mechanism that correctly captures the relevant knowledge of
Web service discovery operations and effectively utilizes this for enhancing the compu-
tational performance of subsequent runtime discovery tasks? What is the achievable
performance increase in comparison to other optimization techniques, and is the tech-
nique beneficially applicable to real-world scenarios?

4 Chapter 1. Introduction

1.2 Methodology

The aim of this thesis is to address the identified research questions in an appropriate
manner, to provide a suitable solution for each one, and to properly position these within
related work. In consequence, the work consists of three main parts.

The first part develops a conceptual model for describing and processing goals as for-
malized client objectives in SWS environments. The aim is to provide a sophisticated basis
for realizing goal-driven SOA technologies, and we refine and extend existing approaches
for this. The second part is a semantically enabled Web service discovery technique that
separates two phases: at design time, Web services for goal templates are discovered, i.e. for
generic objective descriptions that are stored in the system. At runtime, a client formulates
the concrete objective to be achieved as a goal instance by instantiating a goal template with
concrete input values, for which the actually suitable Web services are discovered. In order
to ensure a high retrieval accuracy, the discovery techniques developed in this thesis apply
semantic matchmaking techniques that work on sufficiently rich functional descriptions of
goals and Web services with precise formal semantics.

On this basis, the third part develops a novel technique for optimizing the computational
performance of Web service discovery. It automatically creates a graph structure that
organizes goal templates in a subsumption hierarchy and captures the minimal knowledge
on the usability of the available Web services. This provides an index structure for efficient
search of goals and Web services, which is exploited for reducing the search space and
minimizing the number of necessary matchmaking operations for runtime discovery. The
major gain of this technique is that in certain cases suitable Web services can be discovered
without invoking a matchmaker while maintaining a high retrieval accuracy, which appears
to be superior to existing optimization techniques. The achievable performance increase
is evaluated by a quantitative comparison with less optimized engines, and we verify the
applicability of the overall approach in existing, real-world SOA applications.

The following scientific techniques are applied in this work in order to properly elaborate
the overall approach and the technical solutions. We use conceptual analysis and examine
literature for the design and scientific positioning of the overall approach. The central as-
pects of the technical solutions are provided in terms of formal definitions along with proofs,
and we provide prototypical implementations in order to demonstrate the realizability. For
the empirical evaluation, we apply statistical analysis and a qualitative field study, and we
discuss several use case scenarios for illustration and demonstration throughout the thesis.
In particular, we use the shipment scenario defined in the Semantic Web Services Challenge
– a widely recognized initiative for demonstrating and comparing SWS technologies – as

1.2. Methodology 5

the use case for the quantitative evaluation, and we show the practical relevance of the
developed technology by examining its applicability within one of the largest existing SOA
systems that is maintained by the US-based telecommunication provider Verizon.

While the individual parts of the thesis are self-contained, the technical solutions de-
veloped in this work successively build on top of each other: the two-phase Web service
discovery is based upon the distinction of goal templates and goal instances which is de-
fined in the goal model, and the caching mechanism applies the semantic matchmaking
techniques. The following outlines the central line of argumentation in order to provide
a concise overview of the overall approach that underlies this work. We formulate this in
terms of hypotheses that will be addressed and verified in the course of the thesis.

1. The search space, i.e. the number of available Web services in real-world SOA appli-
cations will be huge. For instance, the Verizon system encompasses about 1.500 Web
services that are used by more than 600 client applications. It is commonly expected
that the amount of available Web services will grow significantly in the future.

2. The bottleneck for the scalability of SOA environments is Web service discovery, i.e.
the detection of suitable Web services out of the available ones. As the first operation
for solving a given task, this requires a 1 : n search on the complete search space.

3. The automation of Web service discovery can greatly enhance the quality of SOA
technology. Techniques based on semantic matchmaking developed in the field of
Semantic Web services can achieve a high retrieval accuracy. To increase the com-
putational performance, existing approaches aim at reducing the search space by
clustering Web services. This has several deficiencies, in particular with respect to
the accuracy of pre-filtering results as well as the achievable reduction of the time
and reasoning effort for the discovery task.

4. Goals as formalized descriptions of client objectives provide an appropriate means for
lifting the client interaction with a SOA system to the knowledge level. It appears to
be expedient to distinguish goal templates as generic objective descriptions that are
stored in the system and goal instances that denote concrete client requests. This
allows us to develop efficient Web service discovery techniques that separate design-
and runtime operations, and also to ease the goal formulation by clients.

5. In typical SOA applications, there is a significant degree of similarity among client
requests when these are described in terms of goals. This seems to be a promising
starting point for enhancing the computational performance of automated Web service
discovery techniques.

6 Chapter 1. Introduction

6. It thus is possible to develop a novel optimization technique that adopts the concept
of caching to Web service discovery. The idea is to organize goal templates in a
subsumption hierarchy with respect to the requested functionalities and capture the
relevant knowledge from design time discovery runs. The underlying graph structure
can be created automatically, and runtime discovery can be optimized by reducing
the search space and minimize the number of necessary matchmaking operations.

7. This technique is able to significantly reduce the computational costs of Web ser-
vice discovery while exposing a high retrieval accuracy, and thus can overcome the
bottleneck for the scalability of SOA environments.

8. The approach is superior to all known approaches for performance optimization of
Web service discovery under consideration of the structure and requirements in typical
SOA applications. In particular, it enables efficient runtime discovery on the level of
goal instances as the expectably most frequent operation in real-world scenarios.

1.3 Outline

After having explained the objectives and the methodology of the work, the following out-
lines the structure of the thesis.

Chapter 2 introduces into the context of the thesis and identifies the research problem
addressed in this work. For this, we review the concept of Service-Oriented Architectures
and the existing Web service technologies as well as the idea and the state-of-the-art in
Semantic Web services. We then discuss the need and requirements for scalable automated
Web service discovery techniques with a high retrieval accuracy in detail, examine existing
solutions, and depict their deficiencies. On the basis of this, we motivate and substantiate
the approach undertaken in this work.

Chapter 3 presents the goal model for Semantic Web services as the first element of
the developed technology. This is a refinement and extension of previous works towards
goal-based SWS technologies. We discuss the intended usage of goals in SOA applications,
identify the requirements for goal descriptions by examining existing works, and present the
conceptual structure and definitions of the refined goal model that integrates several ideas.
We finally discuss the suitability of the model and position it within related work.

Chapter 4 presents the semantically enabled Web service discovery technique that builds
upon the goal model. This distinguishes design time discovery that is concerned with finding
suitable Web services for goal templates as generic objective descriptions that are stored

1.3. Outline 7

in the system, and runtime discovery that finds the actual Web services for goal instances
which denote specific client requests. We define functional descriptions with precise formal
semantics for describing the possible executions of Web services and the possible solutions for
goals with respect to the start- and end-states. Upon this, we define semantic matchmaking
techniques for precisely determining the usability of a Web service goal templates as well
as for goal instances under functional aspects. We present the prototype implementation
that uses classical first-order logic (FOL) as the specification language and an automated
theorem prover for matchmaking, and we position the approach within related work.

Chapter 5 specifies the caching mechanism for enhancing the computational performance
of Web service discovery. As the third element of the developed technology, it works upon
the goal model and applies the semantic matchmaking techniques from above. Essentially,
it automatically creates a graph structure that organizes goal templates in a subsumption
hierarchy and captures relevant knowledge on the usability of available Web services from
the results of design time discovery. We explain the design of the technique, formally define
the graph structure and specify the algorithms for its automated creation and maintenance,
and define the optimized algorithms for Web service discovery that effectively exploit the
captured knowledge. We present the prototype implementation, discuss the expectably
improvements for optimizing the Web service discovery task and identify complementary
technologies, and finally position it within related work.

Chapter 6 presents the evaluation of the work that consists of a quantitative and a
qualitative part. The first part is realized as a comparison test between the optimized Web
service discovery and other, not or less optimized engines. We use the original scenario
and data set from the SWS challenge, and the statistical preparation of the results reveals
that the developed technology satisfies the requirements on the high retrieval accuracy and
computational performance of automated discovery engines. The second part addresses the
relevance of the overall approach for real-world applications. Examining its applicability
for the Verizon SOA system reveals that (1) the goal-based approach goals can significantly
improve the flexibility of the system, (2) that Web service discovery techniques with a
high retrieval accuracy are highly desirable, and (3) that the optimization technique can
reveal its potential because of the high similarity of the usage requests for Web services in
the client applications. Similar observations can be made in other SOA application areas
wherein larger numbers of Web services are expected.

Chapter 7 finally summarizes the thesis, discusses the contributions, and outlines pos-
sibilities for future research and developments. The appendices provide additional informa-
tion such as formal proofs and technical specifications, and the accompanying CD-R contains
the prototype implementations and the original data of the quantitative evaluation.

Chapter 2

Web Services, SOA, and Semantics

This chapter introduces the research context and identifies the problem addressed in this
thesis. For this, we explain the relevant concepts and technologies, discuss the need for
scalable Web service discovery techniques with a high retrieval accuracy, and depict the
deficiencies of existing technical solutions in order to motivate the relevance of this work.

As the broader research context, Section 2.1 reviews the idea of Web services along
with the existing technology stack as well as the emerging concept of Service-Oriented
Architectures (SOA). We then explain the idea of Semantic Web services as a prominent
approach for realizing more sophisticated SOA technologies, and examine the start-of-the-
art in research and development. In Section 2.2, we identify and motivate the research
problem addressed in this work. For this, we explain the motivation and expected benefits
of the goal-driven approach for SOA technologies, discuss the importance of Web service
discovery and the arising requirements for automation, and depict the deficiencies of existing
technical solutions. On this basis, we substantiate the approach undertaken in this work,
and finally Section 2.3 summarizes the chapter and outlines the remainder of the thesis.

2.1 Research Context

The growth and expansion of the World Wide Web (WWW) in the 1990s triggered several
technology developments in order to exploit its potential as a world-wide infrastructure for
information exchange and communication. One of these new technologies are Web services
that enable the invocation of programs, or, more generally, of computational facilities over
the Web [Alonso et al., 2004]. A Web service is accessible via an interface that specifies
the messages and further technical information for invocation and consumption. The major

8

2.1. Research Context 9

vantage is that the WWW can be used as an infrastructure for intra- and inter-organizational
computing while the technology is independent of the platform, language, and protocols used
for the technical implementation of the Web services.

This has led to the idea of Service-Oriented Architectures (SOA) as a new paradigm for
IT system design that currently receives a lot of attention in industry [Erl, 2005]. The idea
is that software systems use Web services as the basic building blocks instead of proprietary
solutions. This shall enable a better reuse of existing computational facilities in order to
reduce the effort and costs for the development and maintenance of software systems. To
provide a generic, domain independent technology that can replace specialized software sys-
tems, the overall aim of SOA is to provide technologies for dynamically finding, combining,
and executing those Web services that are needed for solving a given request.

The initial Web service technology stack around WSDL, SOAP, and UDDI supports the
creation, publication, and consumption of Web services. However, the service descriptions
remain on a syntactic level with a strong technical focus, which limits the identification
of suitable Web services for a given task to manual inspection. To overcome this, the
emerging concept of Semantic Web services (SWS) develops inference-based techniques
for automated discovery, composition, and execution of Web services on the basis of rich,
semantic descriptions [McIlraith et al., 2001; Fensel et al., 2006]. Most SWS technologies use
ontologies as the underlying data model, therewith aiming at treating the interoperability
problem on a semantic level as well as at the integration of Web services with the Semantic
Web, another prominent technology proposal for the next generation of the WWW.

The realization of suitable SOA technologies, and in particular of SWS-based solutions,
is a massive challenge. As the research context of this work, the following explains the central
concepts and technologies and reviews the state-of-the-art in research and development.

2.1.1 Web Services

The concept of Web services has been invented in the late 1990s by a mostly industry-
driven initiative. The aim was to define a new technology that makes use of the WWW as
an infrastructure for computation, and also provides a new means for effectively tackling
the intra- and inter-organizational integration of information and services. For this, three
contiguous technologies have been specified which are commonly referred to as the basic
Web service technology stack that has been published by standardization bodies (W3C,
respectively OASIS): WSDL as the language for describing the interface of a Web service,
SOAP as a messaging protocol for exchanging XML data over the Web, and UDDI as a
registry technology for Web services.

10 Chapter 2. Web Services, SOA, and Semantics

The following explains the basics of these technologies. While this appears to be suf-
ficient for our purposes, we refer to the technical specifications as well as to extensive
secondary literature for details, e.g. [Alonso et al., 2004; Erl, 2005; Marks and Bell, 2006].1

Web Service Description Language (WSDL). This is an XML-based language
for describing the interface of a Web service which denotes the heart of Web service technol-
ogy. Essentially, a WSDL description specifies the supported operations for invoking and
consuming the Web service, its physical location, and it supports bindings to several trans-
port protocols and formats for the actual information exchange between the Web service
and the requester. The main merit is that WSDL is independent of the platform, language,
and protocol used for the implementation of the Web service, and that it supports message
exchange over the WWW via SOAP (see below).

The WSDL description of a Web service is an XML document that consists of the
following elements as illustrated in Figure 2.1. The service element describes the name and
the physical location of the Web service, mostly in form of a URI. A Web service can have
several physical endpoints. These are called ports, for which a binding defines the supported
transport protocols and formats. While this specifies how to carry out the actual information
exchange, the port type element specifies the set of operations that are supported by the
Web service. An operation consists of a set of messages and their direction (i.e. in- or
out-going). A message describes the data being communicated between the requester and
the provider. The message content is described in terms of XML Schemas, for which the
used data types are specified in the type element of the WSDL description.

1The initial specifications have been published in 2000 - 2002; in the meantime, updated versions
with minor changes and additions have mostly been recommended as standards:

• Web Services Description Language (WSDL) 1.1, W3C Note, 15 March 2001,
online: http://www.w3.org/TR/wsdl

• Web Services Description Language (WSDL) Version 2.0, W3C Proposed Recommendation,
23 May 2007, online: http://www.w3.org/TR/wsdl20-primer

• Simple Object Access Protocol (SOAP) 1.1, W3C Note, 08 May 2000,
online: http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

• SOAP Version 1.2, W3C Recommendation (Second Edition) 27 April 2007,
online http://www.w3.org/TR/soap/

• UDDI Data Structure Reference V1.0, UDDI Published Specification, 28 June 2002,
online: http://uddi.org/pubs/DataStructure-V1.00-Published-20020628.pdf

• Universal Description, Discovery and Integration v3.0.2 (UDDI), OASIS Standard, 03 Febru-
ary 2005, online: http://uddi.org/pubs/uddi v3.htm

http://www.w3.org/TR/wsdl�
http://www.w3.org/TR/wsdl20-primer�
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/�
http://www.w3.org/TR/soap/�
http://uddi.org/pubs/DataStructure-V1.00-Published-20020628.pdf�
http://uddi.org/pubs/uddi_v3.htm�

2.1. Research Context 11

Figure 2.1: Ingredients of WSDL

SOAP. Initially the abbreviation for Simple Object Access Protocol, SOAP is a messaging
technology for the exchange of XML data over the Web. This has become the standard
communication protocol for consuming Web services by the exchange of messages.

As outlined above, every operation in a WSDL description is associated with one or
more messages. To consume a Web service, these need to be instantiated with concrete
values and then are exchanged between the endpoints via a specific transport protocol.
While in the context of Web services SOAP is mostly bound to HTTP in order to facilitate
document exchange over the WWW, it can also be bound to other transport protocols. A
SOAP message is a XML document which consists of a header with technical information,
and a body that carries the actual content in form of XML data. This is wrapped into
an envelope, which then can be bound to a transport protocol for conducting the actual
information exchange. Listing 2.1 shows an example for a SOAP message for invoking
a Web service for weather forecast. These messages are processed by respective SOAP
engines, which denote the heart of execution environments for Web services.

<?xml version=”1.0” encoding=”UTF−8”?>

<soap:Envelope xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>

<soap:Body>

<GetWeather xmlns=”http://www.webservicex.net”>

<CityName>Innsbruck</CityName>

<CountryName>Austria</CountryName>

</GetWeather>

</soap:Body>

</soap:Envelope>

Listing 2.1: An example SOAP message

12 Chapter 2. Web Services, SOA, and Semantics

Universal Description, Discovery and Integration Protocol (UDDI). This
is a registry technology intended to support publishing, management, and discovery of Web
services. It defines a generic data model for describing Web services with respect to the
providing business entity, the technical access information, a natural language description,
and a keyword-based classification scheme. In addition, the detailed specification of Web
services can be bundled in so-called technical models. The specification comes along with
an API in order to support programmatic access to UDDI registries.

The purpose of a UDDI registry is to allow service providers to publish and advertise
their Web services, and also to facilitate the search and inspection of suitable Web services
by clients. Initially, big vendors such as Microsoft, SAP, and IBM maintained the UDDI
Business Registry (UBR) as a single repository for publicly available Web services. However,
this effort has been abandoned because the used categorization scheme as well as the UDDI
support for publishing and searching Web services turned out to be insufficient. Nowadays,
most SOA systems employ registry techniques that are specialized for the specific application
scenario. Nevertheless, these proprietary registries follow the principles of UDDI – i.e.
describing and organizing Web services in a classification scheme to support clients in the
detection of the suitable Web services.

Concluding, the initial Web service technology stack is comprised of three cohesive tech-
nologies: (1) WSDL as the standardized description language for Web services, (2) SOAP
as the communication protocol for executing Web services, and (3) UDDI as a registry tech-
nology for publishing and searching Web services. In addition, several accessory technology
standards have been specified for handling usage policies, addressing schemes, security, and
other aspects that appear to be relevant for real-world applications [Weerawarana et al.,
2005]. A reliable indicator for the thorough adaptation and success of Web services is that
essentially all big software vendors committed to this technology.

2.1.2 Service-Oriented Architectures

The invention of Web services and the standardization of the basic technology stack has
triggered the concept of Service-Oriented Architectures (SOA) as a new IT system design
paradigm [Erl, 2005]. The idea is to use Web services as the basic building blocks of IT
systems, and the motivation for this is manifold:

• software fragments from distributed locations that are offered as Web services can
be seamlessly combined, which eases the integration and aggregation of services from
different providers [Alonso et al., 2004]

2.1. Research Context 13

• Web services can help to reduce the development and maintenance costs of IT systems
by reuse of existing services and by flexible replacement [Marks and Bell, 2006]

• Web services provide a new technology for the integration problem: if two businesses
provide their public processes as Web services, then the relevant information can be
interchanged while the internal processes remain unchanged [Bussler, 2003].

The initial Web service technology stack as explained above provides a suitable basis
for realizing the SOA vision, and the standardization has triggered major research and de-
velopment efforts in industry as well as in academia. Existing SOA technologies range from
freely available tools (e.g. the Methods Web service browser), over open source development
kits (e.g. AXIS from Apache), to exhaustive development and management environments
from the major software vendors, e.g. the Microsoft’s .NET framework, IBM’s WebSphere,
Oracle’s SOA Suite, NetWeaver (SAP), or Crossvision (Software AG). Moreover, the rising
interest in Web service and SOA has led to further technology developments such as the
integration into business process management (e.g. BPEL4WS, [Andrews et al., 2003]) as
well as to service orientation as a new business model [Allen, 2006].

However, the development of sophisticated SOA technologies is an immense challenge.
A central problem is the support for the detection of suitable Web services for a concrete
client request. This requires an appropriate description that allows clients to determine
whether a Web service is actually suitable for the given problem, and SOA systems should
support this in an adequate manner. We discuss the deficiencies of the basic Web service
technologies for the usability analysis in more detail, which will reveal the motivation for
Semantic Web services and in particular for the technology developed in this work.

Figure 2.2 illustrates the procedure of Web service usage by clients on the basis of
WSDL, SOAP, and a registry technology like UDDI. The client – which in most cases is the
developer of an application wherein Web services shall be used – wants to find a suitable
Web service for a certain problem setting. As the first step, the client searches a registry of
the available Web services. When a candidate has been found, its actual usability must be
determined. This means that the client needs to figure out in what order which messages
with what content and under which transport binding must be exchanged with the Web
service in order to consume the desired functionality. The relevant information for this is
available in the WSDL description of a Web service. However, the client needs to manually
analyze the supported operations as well as the required data in order to determine how
to invoke the Web service in a way such that it will solve the given task. This problem
remains when using tools that automatically generate client stubs, because the generated
code merely reflects the WSDL description in a programmatic environment. Once the

14 Chapter 2. Web Services, SOA, and Semantics

Figure 2.2: Web Service Usage Procedure

usability analysis is completed successfully, the Web service can be invoked and consumed
over the specified binding, which usually is SOAP as explained above.

Obviously, the outlined procedure can not be considered to provide sophisticated support
for the detection of suitable Web services, because most of the usability analysis tasks are
left to manual analysis by the client. Moreover, several problems may arise during the
analysis, e.g. that the classification scheme in the repository is too inexpressive so that the
candidate search result is imprecise, or that the data of the client and the Web service are
incompatible. Thus, more appropriate technologies are needed for supporting Web service
detection and the usability analysis, which is at least as important for realizing the SOA
vision as the technical infrastructure for the publication and consumption of Web services.
One prominent approach that addresses this problem is the emerging concept of Semantic
Web services that we will explain in the following.

2.1.3 Semantic Web Services

The aim of Semantic Web services (SWS) is to overcome the deficiencies of the initial Web
service technologies, especially for the service detection and usability analysis as discussed
above. The approach is to extended Web service descriptions with rich semantic annotations
and, upon this, provide inference-based techniques for automating the detection and usage
of Web services [McIlraith et al., 2001; Fensel and Bussler, 2002]. Several research and
development efforts work on SWS technologies, and there exists a wealth of work on this.
We here provide a concise overview that is sufficient in the context of this work, referring to
more exhaustive literature for further details (e.g. [Sycara et al., 2003; Cardoso and Sheth,
2006; Stollberg et al., 2006b; Fensel et al., 2006; Studer et al., 2007]).

2.1. Research Context 15

Figure 2.3: From Web Services to Semantic Web Services

Essentially, SWS technologies apply reasoning techniques on formalized descriptions in
order to better support the usability analysis of Web services and also to handle the inte-
gration problem on a semantic level. The primary tasks that can beneficially be supported
by SWS technologies are discovery as the detection of suitable Web services for a given
task, composition as the combination of several Web services to solve a more complex task,
and mediation as the handling of potentially ocurring heterogeneities that may hamper the
interaction between the requester and the provider. For this, the SWS approach extends
Web service descriptions as follows (see Figure 2.3):

1. Instead of XML, ontologies are used as the data model for describing Web ser-
vices. These provide formalized knowledge models of a domain that support advanced
information processing. Moreover, this pursues the alignment of Web services with
the Semantic Web for which ontologies are the base technology (see below).

2. Apart from non-functional information such as the owner, usage rights, quality-of-
service and financial information, also the provided functionality of a Web service
is formally described. The primary purpose is to support semantic matchmaking
techniques for more precise Web service discovery.

3. The Web service interface for consumption is formally described in order to
support automated compatibility analysis of the communication behavior supported
by the client and the Web service; this corresponds to the WSDL description which
merely enlists the supported operations but does not specify in which order these
need to be executed.

16 Chapter 2. Web Services, SOA, and Semantics

4. In addition, the aggregation of Web services describes how a complex Web service
achieves its functionality by combining several other Web services. This aims at
automated techniques for analyzing the executability of Web service aggregations in
more complex SOA applications.

The following examines the state-of-the-art in SWS research and development in more detail.
We commence with the Semantic Web and ontologies, then present and compare the most
prominent SWS frameworks, and finally discuss existing SWS technologies for automated
discovery, composition, mediation, and execution support for Web services.

Ontologies and the Semantic Web

Ontologies are a modern AI knowledge representation technique. They have been identified
as the base technology for the Semantic Web – the grand vision for the further evolution of
the WWW [Berners-Lee et al., 2001] – and they are used as the formalized domain knowledge
specifications for SWS descriptions. The following explains the definition and the potential
of ontologies, and depicts the status of Semantic Web technology developments.

Adopting the denotation from the philosophical study of being and existence, an ontol-
ogy is defined as a ”formal, explicit specification of a shared conceptualization” [Gruber,
1993]. This means that an ontology defines a conceptual model of a domain that ideally
represents an agreed consensus among involved parties. The conceptual model is defined in
terms of concepts that denote the entities in the domain of discourse. These are character-
ized by properties, and relations describe associations between concepts whereby subsump-
tion and membership relations define the taxonomic backbone of the ontology. Additional
domain knowledge can be specified in terms of axioms. Individuals in the domain are rep-
resented as instances of a concept. The conceptual model is then represented in a formal,
machine-processable language upon which reasoning techniques can be applied for advanced
information processing. The major merit is that ontologies can bridge the gap between the
real world and IT systems [Fensel, 2003], and that heterogeneous data can be integrated on
the semantic level by defining mappings between ontologies [Alexiev et al., 2005].

The Semantic Web envisions that Web resources are described in terms of ontologies in
order to exploit their potential for advanced and meaning-preserving information processing.
Proposed by Tim Berners-Lee – inventor of the WWW and director of the W3C – this is
embedded in a larger vision for subsequently augmenting the current WWW with additional
languages and technologies that shall be standardized by the W3C. Figure 2.4 shows the
so-called Semantic Web Layer Cake that illustrates the overall vision: the bottom layers
are the already existing WWW technologies (URI, XML, Namespaces) upon which different

2.1. Research Context 17

ontology languages are defined that are the current focus of standardization work. Op top
of this, languages for proof and trust on the Web are targeted as future work.2

The idea of the Semantic Web has received high interest in academia and industry,
which has led to the formation of a steadily growing, international research community.
This has produced a wealth of work that mainly covers:

• formal ontology languages cf. [de Bruijn, 2006]) and efficient reasoning techniques
(e.g. [Horrocks et al., 2004; Motik et al., 2007]);

• ontology management technologies [Hepp et al., 2007] which cover methodologies and
tools for ontology engineering [Goméz-Peréz et al., 2003], scalable ontology reposi-
tories (e.g. [Harth and Decker, 2005]), and techniques for ontology versioning and
evolution support (e.g. [de Leenheer and Mens, 2006]);

• ontology-based data integration (e.g. [Noy, 2004; Scharffe and de Bruijn, 2005]);

• several applications for Semantic Web technologies [Davis et al., 2006].

Figure 2.4: The Semantic Web Layer Cake (revised version, 2005)

2Figure 2.4 is taken from a keynote talk by Tim Berners-Lee at the WWW 2005 conference,
see www.w3.org/2005/Talks/0511-keynote-tbl/. At the time of writing, W3C standard recom-
mendations exist for the Resource Description Framework RDF (see www.w3.org/RDF/), the Web
Ontology Language OWL [McGuinness and van Harmelen, 2004], and the RDF query language
SPARQL [Manola and Miller, 2007]; standardization work on a rule language is ongoing, e.g. in the
RIF working group (see http://www.w3.org/2005/rules/wg).

www.w3.org/2005/Talks/0511-keynote-tbl/�
www.w3.org/RDF/�
http://www.w3.org/2005/rules/wg�

18 Chapter 2. Web Services, SOA, and Semantics

SWS Frameworks

We now examine existing frameworks that define comprehensive specifications for seman-
tically describing Web services, in general following the SWS approach as outlined above.
The aim is to provide an overview of the conceptual frameworks that most of the research
in SWS is based upon. As the most relevant ones, we here depict the approaches that have
been submitted to or published by standardization bodies.

OWL-S [Martin, 2004]. As the chronologically first approach, OWL-S has been de-
veloped in the years 2003 – 2006 by a mostly US-based consortium under the DAML pro-
gramme (see www.daml.org). It defines an upper ontology for semantically annotating Web
services that consists of elements as shown in Figure 2.5 (taken from [Martin, 2004]). Every
description element is defined on the basis of an domain ontology, and the current standard
ontology language OWL is used as the specification language (see above):

Figure 2.5: Overview OWL-S

1. the Service Profile provides information for service advertisement, which contains the
name of the Web service, its provider, a natural language description, and a formal
functional description that is defined in terms of in- and outputs, preconditions and
effects (short: IOPE)

2. the Service Model describes how the Web service works. The service is conceived as
a process, and the description model defines three types of processes (atomic, simple,
and composite processes). These are described by IOPE along with a proprietary
process language that defines basic control- and dataflow constructs.

www.daml.org�

2.1. Research Context 19

3. the Service Grounding gives details of how to access the service, which is realized as
a mapping from the abstract descriptions to WSDL.

The intended usage of OWL-S description is as follows. The service profile relate to the
information stored in UDDI repositories. While the natural language descriptions are for
human consumption, the formal functional description is used for automated Web service
discovery by semantic matchmaking (see below). The service model formally describes the
external visible behavior of a Web service, i.e. how to invoke and consume the service and
what happens when it is executed. This is used to determine whether the communication
between a client and the Web service as well as with other aggregated Web services can
be carried out successfully. Finally, the service grounding maps the abstract, semantic de-
scriptions to conventional Web service technologies in order to conduct the actual message
exchange for execution. Although being criticized on conceptual insufficiencies and espe-
cially on the inadequacy of the process description language [Lara et al., 2004], OWL-S has
served as the basis for various SWS research and development activities.

WSMO [Lausen et al., 2005]. The Web Service Modeling Ontology WSMO is devel-
oped by a European initiative since 2004 (see www.wsmo.org). It takes a broader approach
than OWL-S, aiming at a comprehensive framework for semantically enabled SOA technolo-
gies [Brodie et al., 2005]. For this, it defines four top-level notions as shown in Figure 2.6:
ontologies that define formalized domain knowledge, goals that describe objectives that
clients want to achieve by using Web services, semantic description of Web services, and
mediators for resolving potentially occurring heterogeneities.

Figure 2.6: WSMO Top Level Notions

www.wsmo.org�

20 Chapter 2. Web Services, SOA, and Semantics

In contrast to the other frameworks, WSMO does not only cover the semantic annotation
of Web services but propagates a goal-based approach for Semantic Web services along with
mediation as an integral part. The idea is that a client formulates requests in terms of a
goal, which formally describes the objective to be achieved while abstracting from technical
details; the system then automatically detects and executes the suitable Web services in
order to solve the goal [Stollberg and Norton, 2007]. The notion of goals provides an explicit
element for the client side of SOA applications that enables the lifting of Web service usage
by clients to the level of problems that shall be solved. In addition, the integrated mediators
support the handling of potentially occurring heterogeneities that can be expected in open
and decentralized environments like the Web and may hamper the successful interaction
between clients and Web services [Cimpian et al., 2006].

The WSMO framework defines description models and formal specification languages
for all four elements. Analogous to Figure 2.3 above, Web services in WSMO are described
by non-functional properties, a capability that specifies the provided functionality in terms
of preconditions, assumptions, postconditions, and effects, a choreography interface that
describes how a client can invoke and consume a Web service, and an orchestration that
describes how the Web service interacts with other Web services to achieve its functionality.
WSMO provides an own specification language called WSML [de Bruijn et al., 2005b], which
is a conceptual language for the WSMO elements along with five variants of logical languages
that corresponds to the ontology languages developed for the Semantic Web (cf. Figure 2.4).
Several tools are provided for WSMO, including a suite of reasoners for the different WSML
variants and an API for the programmatic management of WSMO elements and definitions.
Moreover, there are implementations of execution environments for Semantic Web services,
namely WSMX as the WSMO reference implementation (see www.wsmx.org) and IRS as a
goal-based broker for Semantic Web services [Domingue et al., 2008].

SWSF [Battle et al., 2005]. The Semantic Web Services Framework (SWSF) has
been developed by a joint working group of industrial and academic researchers. Essen-
tially, it provides an extension of OWL-S that aims at replacing the initial, insufficient
specification model and language for the Service Model with an appropriate formal process
language. The major contribution of SWSF is a rich behavioral process model based on
the Process Specification Language (PSL) [Gruninger and Menzel, 2003]. SWSF provides
two axiomizations: (1) FLOWS is based on first-order logic with extensions form situation
calculus to model changes of the world; (2) SWSLRules is a logic programming language
that serves as both a specification and implementation language and provides support for
tasks like discovery, contacting, and policy specification for Semantic Web services.

www.wsmx.org�

2.1. Research Context 21

WSDL-S [Akkiraju et al., 2005]. The WSDL-S approach has been defined in a joint
effort of IBM and the University of Georgia. Instead of defining a comprehensive framework
for semantically describing Web services, WSDL-S defines extensions to WSDL in order
to semantically annotate the XML data types as well as the messages and operations in a
WSDL description. For this, a WSDL document is augmented with additional tags that refer
to an external domain ontology. In particular, WSDL-S defines three types of annotations
independent of the used ontology specification language: (1) WSDL types, i.e. XML data
elements, are referenced to concepts of the domain ontology, (2) WSDL operations can
be described by preconditions and effects by referencing to respective axioms, and (3) a
categorization of Web services can be defined on the basis of the ontology taxonomy.

SAWSDL [Farrell and Lausen, 2007]. While the previously presented approaches
have been published as W3C member submissions, Semantic Annotations for WSDL and
XML Schema (short: SAWSDL) is the only official W3C technology recommendation for
Semantic Web services existing at this point in time. It essentially follows the idea of
WSDL-S, i.e. the annotation of WSDL documents with additional tags that reference to a
domain ontology, independent of the ontology specification language.

Figure 2.7: SAWSDL Overview

22 Chapter 2. Web Services, SOA, and Semantics

SAWSDL consists of two parts as illustrated in Figure 2.7 (taken from [Kopecky, 2007]):
(1) mappings of XML schema definitions to ontology concepts for specifying the correspon-
dence of SOAP message contents to ontology data, and (2) the semantic annotation of
WSDL operations. For the latter, SAWSDL defines the annotation by references to only
ontology concepts, so that the definition of preconditions and effects in terms of logical
expression is not supported. Although this limits the expressivity of the semantic annota-
tions to keywords associated with a domain ontology, several recent works take over this
light-weight SWS approach (e.g. [Vitvar et al., 2007a; Martin et al., 2007]).

A comparison of the SWS frameworks reveals the following commonalities and differences.
As the chronologically first approach, OWL-S defines a description model for Web services
that covers all aspects of the SWS approach as described above – i.e. non-functional aspects,
a formal functional description, and formal descriptions of the interfaces for consumption
and aggregation of Web services. It uses OWL as the specification language, thus is com-
pliant with the W3C standards for the Semantic Web. SWSF extends this model with a
more sophisticated process description language. WSMO is a more exhaustive framework
that propagates a goal-driven approach along with integrated mediation facilities. This goes
beyond the idea of merely annotating Web services, aiming at an all-embracing framework
for semantically enabled SOA technology. WSMO defines an own specification language
that covers all ontology languages that are considered for the Semantic Web, and provides
reasoners for this along with a set of development tools as well as reference implementa-
tions. WSDL-S only partially realizes the SWS approach, therewith can be considered as
a light-weight framework. However, it follows the tradition of extending existing technolo-
gies standardized by the W3C, and it has served as the conceptual basis for SAWSDL as
the only approach for the semantic annotation of Web services that is recommended by a
standardization body as of today.

SWS Technologies

After explaining the motivation and overall approach for Semantic Web services, we now
turn towards the state-of-the-art in SWS technology research and development. The fol-
lowing focusses on techniques for discovery as the detection of suitable Web services for a
given task, composition as the combination of several Web services to solve a more complex
task, mediation as the handling of potentially occurring heterogeneities, and automated ex-
ecution of Web services. These are the tasks for which SWS technologies can provide the
most surplus value in the service detection and usability analysis phase, and in consequence
most existing works address one or more of these topics.

2.1. Research Context 23

Discovery. This is concerned with the detection of those Web services out of the available
ones that are suitable for a given task. This is a central operation in SOA systems for
which significant quality increase can be achieved by SWS techniques: on the basis of more
precise Web service descriptions, discovery techniques can be developed that expose a higher
precision and recall than the syntactic keyword-based search supported by UDDI.

A wealth of work exists on semantically enabled Web service discovery. Most approaches
address this by semantic matchmaking of formally described requested and provided func-
tionalities, i.e. OWL-S service profiles or WSMO capabilities as explained above. This
allows clients to determine whether a Web service can solve the given request with re-
spect to the preconditions and effects, and is commonly referred to as functional discovery.
Prominent works for this are [Paolucci et al., 2002; Li and Horrocks, 2003; Kifer et al.,
2004; Benatallah et al., 2005; Keller et al., 2006a]. In addition to this, techniques have been
developed for handling cases where a match is not given but can be established by relaxing
requirements in the request (e.g. [Colucci et al., 2005]), and approaches that integrate other
techniques for discovery (e.g. [Klusch et al., 2006; Noia et al., 2003]).

However, also other aspects are considered to be relevant for discovery for which several
works present SWS-based techniques. Among these are approaches that consider quality-
of-service aspects such as security, robustness, or availability as well as other non-functional
aspects (e.g. [Vu et al., 2005; Wang et al., 2006]), ranking techniques that determine a
priority list of possible candidates (e.g. [Lu, 2005; Toma et al., 2007]), and techniques that
consider the behavioral compatibility as well as input data for determining the suitability of
a Web service (e.g. [Stollberg, 2005; Vitvar et al., 2007b]). Also, techniques are proposed for
handling cases where a match is not given but can be established by relaxing requirements
in the request (e.g. [Colucci et al., 2005; Stollberg et al., 2005a]), and approaches that
integrate multiple discovery techniques (e.g. [Klusch et al., 2006; Lara et al., 2006]). We
shall discuss the relationship of different discovery techniques in more detail in this work.

Composition. This is concerned with combining several Web services in order to obtain
a more complex functionality when this is needed to solve a given client request. The
surplus value of Web service composition is that new functionalities can be created that are
not provided by the actually existing Web services, which is hardly achievable without any
automation support. The aim of composition techniques is to determine possible execution
sequences of Web services for solving a given goal. We can distinguish two approaches
for automated Web service composition in literature: (1) functional-level composition that
applies AI Planning techniques to determine suitable compositions on the basis of formal
functional descriptions (e.g. [McIlraith and Son, 2002; Wu et al., 2003; Hoffmann et al.,

24 Chapter 2. Web Services, SOA, and Semantics

2007]), and (2) process-level composition that takes the behavioral aspects of the Web
services into account (e.g. [Berardi et al., 2003; Gerede et al., 2004; Albert et al., 2005]). In
fact, both types of composition techniques need to be integrated in order to attain executable
compositions of Web services. For this, [Traverso and Pistore, 2004] propose an approach
wherein functional composition provides a skeleton of the composition which is then refined
by process-level composition. Besides, recent approaches consider Web service discovery
and composition as interleaved operations: composition is only needed if a directly usable
Web service can not be discovered, and discovery techniques are used to find the candidates
during the composition procedure (e.g. [Bertoli et al., 2007]).

Mediation. In the context of Semantic Web services, mediation refers to the handling
and resolving potentially occurring heterogeneities which may hamper the interoperability
between a requester and a provider. This becomes in particular important within open and
distributed environments like the Web where requesters and providers may use different data
representation formats, incompatible terminologies, or expose business processes that are
not compatible a priori. The main merit of SWS technologies is that such heterogeneities
can be handled on the semantic level, i.e. by domain independent techniques that can
properly resolve and handle the mismatches [Fensel and Bussler, 2002].

WSMO is the only SWS framework that encompasses mediation as an integral part. It
defines several types of mediators along with the necessary techniques for handling different
types of heterogeneities, and defines an integrated architecture for the usage of mediators in
SWS environments [Cabral and Domingue, 2005; Stollberg et al., 2006a]. The most relevant
mediation techniques are (1) data level mediation for handling mismatches on terminologies,
domain knowledge, and representation formats [Mocan and Cimpian, 2007], and (2) process
level mediation for establishing a compatible communication behavior between the requester
and the provider if this is not given a priori [Cimpian and Mocan, 2005]. The other SWS
frameworks do not consider mediation; in fact, they are merely concerned with the semantic
description of Web services while remaining orthogonal to all other aspects related to the
employment of semantic technology in SOA systems. However, existing techniques for
heterogeneity handling can be employed, e.g. ontology-based data integration techniques
that have been developed for the Semantic Web (see [Noy, 2004]).

Automated Execution. Once the suitable Web services for solving a given request
have been detected, they should be executed automatically in order to minimize the need
for human intervention. For this, the semantic descriptions of the Web services need to
be mapped to suitable technologies for carrying out the actual information interchange.
Commonly, this is achieved by mapping the semantic annotations to a WSDL description,

2.2. Problem Identification and Approach 25

so that the Web service can be invoked and consumed via SOAP as explained above. This
usually also includes an explicit mapping between the XML data types used within SOAP
messages and domain ontologies used for the semantic descriptions in order to facilitate the
processing of the interchanged data on the semantic level.

This is supported by all the SWS frameworks presented above. OWL-S and SWSF
define the mappings in the service grounding element by mapping the domain ontology to
an XML Schema and the service model descriptions to WSDL operations. This can be
processed by the OWL-S Virtual Machine for automated execution [Paolucci et al., 2003].
The same approach is realized in WSMO: the mappings from the ontology definitions to
XML as well as the mapping to WSDL operations is defined within the WSMO choreography
interface description, and the WSMX execution component invokes the Web services via
WSDL [Kopecký et al., 2006]. Within WSDL-S and SAWSDL, the mappings are defined
explicitly by the references to a domain ontology within additional tags in the WSDL
document, and this can be processed by respective execution environments.

Concluding, we observe that there exists a wealth of work on Semantic Web services in
terms of both overall frameworks and technical solutions for specific tasks. However, these
can not yet be considered to be sophisticated as we shall discuss in the following.

2.2 Problem Identification and Approach

After providing an overview of the larger research context, we now turn towards the problem
of retrieval accuracy and scalability for automated Web Service discovery engines as the
research problem that is addressed in this work.

From the preceding investigations we have learned that Web services support the in-
vocation and consumption of computational facilities over the Internet, and that they are
considered as the base technology for SOA as the latest design paradigm for IT systems
which receives a lot of attention in academia and industry. The initial Web service tech-
nology stack provides a suitable infrastructure for creating and consuming Web services,
but it has significant deficiencies in the support for the Web service detection and usability
analysis by clients. The emerging concept of Semantic Web services (SWS) is a promising
approach to overcome this by developing inference-based techniques for the automated dis-
covery, composition, mediation, and execution of Web services. These work on rich semantic
descriptions that are defined on the basis of domain ontologies, and the state-of-the-art ex-
amination has shown that a wealth of work on SWS technologies exists in terms of both
overall frameworks as well as technical solutions for specific tasks.

26 Chapter 2. Web Services, SOA, and Semantics

However, existing SWS techniques are not yet mature enough to provide sophisticated
support for the Web service detection and usability analysis phase. In particular, we identify
the following shortcomings of existing solutions:

1. most SWS frameworks and techniques lack in proper support for the client side of SOA
technology, i.e. the formulation and handling of client requests for using Web services.
A promising approach for this are goals that formally describe client objectives while
abstracting from technical details for Web service invocation. This can facilitate
problem-oriented Web service usage by clients, and support the dynamic detection of
Web services in order to enhance the flexibility of SOA systems.

2. Web service discovery is one of the central operations in SOA systems, and the aim
of the SWS approach is to automate this. In order to provide a functionally and
operationally reliable component in SWS environments, automated discovery engines
should expose a high retrieval accuracy and perform the discovery task in an efficient
manner. Most existing technical solutions for this are insufficient, in particular with
respect to the appropriate integration of both aspects.

3. SOA techniques must be scalable in order to be capable of handling the large amount
of Web services that can be expected in real-world applications. This becomes in
particular important for SWS environments wherein several expectably complex rea-
soning operations need to be performed. Under the assumption that usually Web
service discovery is performed as the first processing step which needs to consider all
potential candidates, it appears to be sufficient to provide scalable discovery tech-
niques in order to warrant the scalability of the whole system.

In order to contribute to the development of more sophisticated SWS technologies, the
aim of this work is to elaborate an integrated solution for automated Web service discov-
ery that supports the formulation and processing of client requests on the level of goals,
ensures a high retrieval accuracy by semantic matchmaking of sufficiently rich functional
descriptions, and is capable of performing the discovery task in an efficient manner also
within larger search spaces of available Web services. The following discusses the men-
tioned deficits of the existing approaches and techniques in more detail, and then outlines
the technical solution developed in this thesis. We commence with the motivation for the
goal-based approach, then discuss the requirements that arise for the successful deploy-
ment of automated discovery engines within SWS environments, and finally explain how
the approach taken in this work aims at overcoming the deficiencies of existing solutions.

2.2. Problem Identification and Approach 27

2.2.1 Motivation for Goal-based SOA Technologies

The existing Web service technologies as well as most works in the field of SWS pay only
very little attention to the client side of SOA systems. The following depicts the deficiencies,
and outlines how the goal-based approach aims at overcoming these.

The initial Web service technology stack limits the detection of suitable Web services
to manual inspection, and merely supports the consumption of Web services by hard-wired
invocations (see Section 2.1.2). After a usable Web service has been found by searching a
UDDI-like registry and the technical details for the invocation have been determined from
the WSDL description, the client can integrate the Web service into the target application
via so-called client stubs that support the exchange of SOAP messages out of programmatic
environments. Apart from the insufficient support for the detection and usability analysis,
this hampers the flexibility of the system: whenever a Web service is changed, its invocation
in all dependent client applications must be updated. Most SWS techniques merely focus
on the semantic descriptions for Web services, in particular those based on OWL-S or
WSDL-S (see Section 2.1.3). In order to utilize these for automated Web service detection
and usability analysis, clients are expected to formulate queries or conditions on specific
description elements. This requires sophisticated knowledge on the description model as
well as on the operating mode of the applied SWS techniques.

The idea of the goal-based approach is to overcome these deficiencies by describing
client requests in terms of goals. Here, a goal is a formal description of the objective that a
client wants to achieve by using Web services, which focusses on the problem to be solved
while abstracting from technical details. Such a goal is submitted to the SWS system,
which then shall automatically detect and execute the necessary Web services for solving
the goal. This approach has two central benefits for better supporting the client side of SOA
applications as illustrated in Figure 2.8. The first one is that goals provide an abstraction
layer for facilitating problem-oriented Web service usage by clients: a client merely describes
the objective to be achieved in terms of a goal, while the usability analysis as well as the
technical details for the invocation of the necessary Web services is handled by the SWS
system [Fensel et al., 2006]. The second one is that goals can serve as a cache from which the
actual Web services for a concrete client requested can be detected dynamically at runtime.
The figure illustrates this for a business process wherein the activities are defined in terms
of goals. At runtime, one of the Web services that are suitable for solving the goal can
be selected with respect to the concrete input data defined by the client. This allows us
to overcome the problems on the flexibility of Web service usage in dynamic environments
which result from hard-wired invocations [Zaremba and Bussler, 2005; Hepp et al., 2005].

28 Chapter 2. Web Services, SOA, and Semantics

(a) Abstraction Layer (b) Dynamic Web Service Usage

Figure 2.8: Purpose of Goals in SOA

Goal-based techniques with a similar purpose have been developed in AI technologies
for automated problem solving, e.g. in BDI agents [Bratman, 1987], cognitive architec-
tures [Newell, 1990], and knowledge engineering (e.g. in UPML [Fensel et al., 2003]). In the
field of Semantic Web services, the goal-based approach is propagated by the WSMO frame-
work. It defines goals as one of the top-level elements, which are described by a requested
capability and requested interfaces for consuming Web services [Roman et al., 2006].

However, experiences from the development of techniques for the automated discovery,
composition, and execution of Web services have shown that the initial model for describing
and handling goals as defined in WSMO appears to be not yet sophisticated enough to
properly support goal-based Web service usage as outlined above. In particular, it appears
to be reasonable to explicitly distinguish goal templates as generic and reusable descriptions
of client objectives and goal instances that describe concrete requests. Also, the approach
for the automated invocation and consumption of Web services for solving a goal as well
as the support for specifying and processing more complex client objectives appears to be
immature. With respect to this, in this thesis we present a refinement of the WSMO goal
model in order to better support the goal-based approach for SOA technologies.

2.2. Problem Identification and Approach 29

2.2.2 Requirements for Automated Web Service Discovery

We now investigate the Web service discovery task in more detail. We commence with the
architectural allocation in SWS environments, and then explain the arising requirements
for automated discovery engines and depict the shortcomings existing technical solutions.

Figure 2.9 illustrates the procedure for automatically solving goals in a SWS envi-
ronment by the automated and dynamic detection and execution of Web services. This
is an abstraction of the architecture and execution semantics of WSMO reference imple-
mentation WSMX [Haller et al., 2005], which complies with early works on SWS system
architectures [Preist, 2004] and is currently being specified in detail by the OASIS technical
committee for SWS environments (www.oasis-open.org/committees/semantic-ex/).

The input is a goal that shall be solved, and procedure specifies the workflow of func-
tional components which perform distinct operations by the SWS techniques explained
in Section 2.1.3. The first processing step is Web service discovery. Here, this refers to
functional discovery by matchmaking of the formally described requested and provided
functionalities. When a suitable Web service has been discovered, the selection & ranking
facilities choose one of the candidates or determine a priority list for the further processing
with respect to quality-of-service criteria as well as data security requirements and usage
rights. Then, the behavioral compatibility is checked in order to ensure that the client can

Figure 2.9: Automated Goal Solving in SWS Environments

www.oasis-open.org/committees/semantic-ex/�

30 Chapter 2. Web Services, SOA, and Semantics

successfully invoke and consume the chosen Web service. When this is given, the Web service
is automatically executed in order to solve the goal. If a single Web service for solving the
goal does not exist, then the composition component is invoked in order to create a suitable
composition of the available Web services; this utilizes the other components for detecting
possible candidates for the composition procedure. In addition, the components can use
mediation facilities in order to resolve and handle potentially occurring heterogeneities that
hamper the successful interaction between the client and the Web service.

Examining this procedure reveals the importance of automated Web service discovery
within SWS environments. It usually is performed as the first processing step which needs
to inspect all available Web services, while the successive components merely need to deal
with the set of discovered candidates. Moreover, the discovery engine is a heavily used
component within the system: it needs to be invoked for each incoming client request in
order to facilitate the dynamic Web service usage as outlined above, and it might be invoked
several times for solving a single goal – e.g. in the course of automated composition in order
to detect the possible candidate Web services. This substantiates the two requirements on
automated Web service discovery engines mentioned above: they should expose (1) a high
retrieval accuracy in order to perform the discovery task with an appropriate quality, and
(2) a high computational performance in order to serve as a operationally reliable software
component in SWS environments. The following discusses both aspects in more detail and
depicts the deficiencies of existing technical solutions.

On the Retrieval Accuracy

This is related to the quality of the discovery technique for determining the suitability of
Web services for a given goal. For this, a high retrieval accuracy appears to be desirable
in order to provide a sophisticated filtering facility for potential candidates which are then
further inspected in the subsequent processing steps. In terms of the central quality criteria
for information retrieval [Baeza-Yates and Ribeiro-Neto, 1999], this means that, under
functional aspects, every Web service in the discovery result should be suitable for solving
the goal (precision), and that every suitable Web service can be discovered (recall).

As outlined above, this can most adequately be achieved by employing semantic match-
making techniques for the discovery task. In principle, these can achieve a very high retrieval
accuracy: given sufficiently rich functional descriptions that are defined on the basis of an
exhaustive domain ontology, one can specify semantic matchmaking techniques for very pre-
cisely determining whether a Web service can be used for the given goal or not. However,
most existing approaches for semantically enabled discovery lack in exactly this respect.

2.2. Problem Identification and Approach 31

Some merely work with keyword-based descriptions (e.g. [Oundhakar et al., 2005]), while
others only consider in- and outputs for the matchmaking (e.g. [Paolucci et al., 2002]) or
simplify this to subsumption reasoning on logically separated elements of the functional
descriptions (e.g. [Li and Horrocks, 2003; Noia et al., 2003]). It thus is necessary to de-
fine formal functional descriptions for goals and Web services that can precisely describe
the requested and provided functionalities, and upon this define semantic matchmaking
techniques that warrant a high precision and recall for the discovery task. The discovery
techniques developed in this thesis address this challenge, for which existing works can serve
as a starting point (e.g. [Kifer et al., 2004; Keller et al., 2006a]).

On the Computational Performance

The second requirement addresses the computational performance of automated discovery
engines, which relates to the time and resource efficiency for performing the discovery task.
This becomes in particular relevant within larger search spaces of available Web services
that can be expected in real-world applications, and also for the employment of discovery
engines as heavily used components in SWS environments.

At the time of writing, the SOA system maintained by the US-based telecommunica-
tion provider Verizon encompasses around 1.500 registered Web services (see Section 6.2.2
for details), and the Web service search engine developed by SeekDa finds around 15.000
Web services that are publicly available on the Internet (see http://seekda.com/). The
number of both public and access restricted Web services is expected to grow significantly
in the next years with the adoption of SOA technology in industry [Marks and Bell, 2006].
SOA technologies need to be scalable in order to adequately operate in such environments,
and this becomes especially important for SWS technologies wherein several, expectably
expensive reasoning tasks need to be performed. Considering SWS systems as outlined in
Figure 2.9 where discovery is performed as the first processing step and is the only opera-
tion that needs to consider all available Web services, it appears to be sufficient to provide
scalable discovery techniques in order to warrant the scalability of the whole system.

Also related to the computational performance is the efficiency and the stability for
performing the discovery task. This becomes especially relevant for advanced SWS tech-
nologies that aim at employing a discovery engine as a heavily used component. For ex-
ample, recent approaches for Web service composition aim at using discovery for detecting
the suitable candidates in each step of the composition algorithm [Bertoli et al., 2007].
Similarly, approaches for semantically enabled business process management plan to define
specific activities in a process in terms of goals for which the actual Web services shall be

http://seekda.com/�

32 Chapter 2. Web Services, SOA, and Semantics

determined at execution time [Hepp et al., 2005]. Considering that compositions or pro-
cesses can be complex and may consist of several Web services, the absolute overhead and
the predictability of the discovery engine becomes critical for realizing such techniques.

Thus, we can judge the computational performance of automated discovery engines by
adopting the standard criteria for performance measurement as follows: efficiency as the
time required for completing a discovery task, scalability as the ability to deal with a large
search space of available Web services, and stability as a low variance of the execution time
of several invocations [Ebert et al., 2004]. A discovery engine can be considered to provide
an operationally reliable software component in SWS systems if it exposes a sophisticated
performance with respect to these criteria. A suitable approach to achieve this is to reduce
the relevant search space as well as the necessary reasoning effort for the discovery task.
Although reasoning techniques can be optimized for specific tasks (e.g. [Duschka and Gene-
sereth, 1997; Motik et al., 2007]), they in general have significant deficits in efficiency when
dealing with large search spaces [Wache et al., 2004; Fensel and van Harmelen, 2007].

Existing approaches address this by applying clustering techniques for Web services. The
basic idea is to organize the available Web services in tree-like cluster structures, which is
traversed for discovery so that matchmaking is only required for the Web services in a specific
cluster [Giunchiglia et al., 2005; Tausch et al., 2006]. Several works address this by extending
the classification mechanism that is already supported in UDDI by annotating Web services
with concepts of a domain ontology, so that the taxonomy of the ontology constitutes the
indexing structure. Upon this, pre-filtering mechanisms for the discovery task are deployed
that usually also take non-functional properties into account (e.g. [Srinivasan et al., 2004b;
Verma et al., 2005; Lara et al., 2006; Abramowicz et al., 2007]).

However, the central requirement for such pre-filtering mechanisms as an appropriate
extension for Web service discovery is to ensure a high retrieval accuracy. This means that
the Web services that are grouped in a cluster should be a proper superset of those that
a discovery engine would find for a request that corresponds to the cluster. The keyword-
based clustering techniques are too imprecise for this. Thus, the per-filtering result may
conflict with the discovery result, so that the techniques might become counterproductive.
Besides, the referred approaches require the annotation of Web services by the provider as
an additional manual effort with the risk of incorrectness. An approach that overcomes
these problems is presented in [Constantinescu et al., 2005], which organizes Web services
on the basis of their formal functional descriptions. It automatically creates a search tree
whose leaf nodes are the Web services while the inner nodes are predicates that define
common conditions for all child nodes. However, the approach defines a proprietary model
for functional descriptions with significant limitations in expressivity.

2.2. Problem Identification and Approach 33

In order to overcome these deficiencies, it appears to be necessary to develop an opti-
mization technique that can perform Web service discovery in an efficient manner with a low
variance among several invocations and also ensures the scalability in larger search spaces
while maintaining a high retrieval accuracy by applying semantic matchmaking techniques
that work on sufficiently rich functional descriptions. This work aims at developing a novel
technique for this, which we shall outline in the following.

2.2.3 Overview of Approach

After discussing the motivation for the goal-based approach and identifying the requirements
for automated Web service discovery, we now outline the approach developed in this work
and explain how this aims at overcoming the mentioned deficiencies of existing solutions.

Figure 2.10 provides an overview of the approach that we shall elaborate in detail in
the remainder of the thesis. We take the goal-based approach, and explicitly distinguish
between goal templates as generic and reusable objective descriptions that are kept in the
system, and goal instances that describe concrete client requests by instantiating a goal
template with concrete input values. For this, we define a semantically enabled discovery
framework that distinguishes two phases: at design time, the suitable Web services for goal
templates are discovered. The result is captured in a specialized knowledge structure, which
serves as the heart of the caching mechanism for optimizing the computational performance.
At runtime, a client – either a human or a machine – formulates the concrete objective to
be achieved in terms of a goal instance. As the time critical and expectably most frequent
operation in real-world SOA applications, the discovery of suitable Web services for goal
instances at runtime is optimized by exploiting the captured knowledge.

Figure 2.10: Overview of Approach

34 Chapter 2. Web Services, SOA, and Semantics

In order to realize this and to overcome the deficiencies of existing solutions as discussed
above, the first part of the thesis develops a conceptual model for describing and processing
goals in SWS environments. For this, we refine and extend the initial goal model defined
in the WSMO framework. In particular, we define the explicit distinction of goal templates
and goal instances, and we revise the approach for enabling the automated invocation and
consumption of Web services for solving a goal.

The second part specifies two-phased Web service discovery and defines the necessary
semantic matchmaking techniques for this. This allows us to perform potentially expensive
operations at design time (which is not time critical), and the results can be used to reduce
the reasoning effort at runtime (which is time critical). This follows the idea of heuristic
classification that has been identified in [Clancey, 1985] as a basic principle for efficient
inference-based matchmaking. A given problem is first lifted to a more abstract level that
deals with concepts instead of concrete data. Then, suitable candidates for solving the
problem are detected by matchmaking on the abstract level, and finally the candidate set is
refined with respect to the concrete data and conditions of the given problem. This approach
has been proven to facilitate the development of effective search techniques for large-scale
and knowledge-intensive application areas [Fensel et al., 2003], and has also been shown to
be suitable for developing workable and efficient SWS techniques [Keller et al., 2005]. A
similar approach is realized in the IRS system: the suitable Web services for abstract goal
descriptions are defined at design time, and at runtime the actual Web services are selected
with respect to the concrete inputs defined by a client [Galizia et al., 2007].

In order to ensure a high retrieval accuracy for the Web service discovery task, we define
sufficiently rich functional descriptions that precisely describe the requested and provided
functionalities on the level of the possible executions of Web services and solutions for goals.
These are defined in terms of preconditions that specify the possible start-states and effects
that define the end-states on the basis of domain ontologies. We define the functional
descriptions such that they explicitly specify the dependencies between the preconditions
and effects, and also consider the computational in- and outputs. Upon this, we define
semantic matchmaking techniques for both the design time and runtime discovery task
that are able to precisely determine the functional usability of a Web services for solving
a goal template as well as for a goal instance. We use classical first-order logic (FOL) as
the specification language, and apply an automated theorem prover for the matchmaking.
Although FOL is undecidable in the general case, this provides a sufficient expressivity for
functional descriptions and also the necessary reasoning facilities. Besides, we expect that
most functional descriptions can be expressed within decidable subsets of FOL, so that the
limitations of the approach become less significant for real-world applications.

2.3. Summary and Outlook 35

Finally, the third part of the technical solution is a optimization technique for automated
Web service discovery. The approach is to organize goal templates in a subsumption hier-
archy with respect to the requested functionalities, and capture the relevant knowledge on
the usability of the available Web services from design time discovery results. This provides
a index structure for the efficient search of goals and Web services, which is generated auto-
matically on the basis of semantic matchmaking and is also properly maintained whenever
a goal template or a Web service is added, removed, or modified. The optimized discov-
ery algorithms exploit this knowledge in order to enhance the computational performance
by minimizing the relevant search space as well as the number of necessary matchmaking
operations. This is a novel approach in the field of Semantic Web services which adopts
the concept of caching as a well-established means for performance optimization applied in
several areas of computing (e.g. [Astrachan and Stickel, 1992; Handy, 1998; Wessels, 2001]),
and also follows a common approach for efficient reasoning techniques by pre-computing
relevant knowledge at design time (e.g. [Horrocks et al., 2004; Kiryakov et al., 2005]).

This technique can significantly increase the computational performance of the discovery
task, because only the minimal set of potential candidates needs to be inspected and also
the necessary reasoning effort is minimized. Moreover, it maintains the retrieval accuracy
of our semantically enabled discovery techniques, and therewith overcomes the deficiencies
of existing optimization techniques as discussed above. We shall evaluate the achievable
performance increase within an exhaustive use case analysis, and also examine the practical
relevance of the developed technology within real-world applications.

2.3 Summary and Outlook

In this chapter we have introduced into the field of Web services, SOA, and Semantic Web
services, motivated the need for efficient and scalable Web service discovery techniques with
a high retrieval accuracy as the research topic of this work, and finally outlined the technical
solution for this which shall be elaborated in the course of this thesis.

Web services are a technology for invoking and consuming computational facilities over
the Internet. They are considered as the basis for Service-Oriented Architectures (SOA)
as a novel design paradigm for IT systems that receives a lot of attention in industry. We
have shown that the initial Web service technology stack provides a basic infrastructure
for creating and consuming Web services, and we have presented the state-of-the-art in the
emerging concept of Semantic Web services (SWS) that aims at developing inference-based
techniques for automated discovery, composition, and execution of Web services.

36 Chapter 2. Web Services, SOA, and Semantics

Although there is a wealth of work on SWS frameworks as well as technical solutions
for the relevant tasks, existing SWS techniques still have deficiencies for supporting and
automating the Web service usage by clients in a sophisticated manner. In particular, most
existing solutions only pay little attention to the client side of SOA applications. We have
argued that a goal-based approach seems to be suitable for this: a goal formally describes
the objective that a client wants to achieve while abstracting from technical details, and
SWS techniques can be used to automatically detect and execute the necessary Web services
for solving a goal. This allows us to lift the interaction of clients and Web services to the
level of problems that can be solved, and also to achieve a better flexibility of SOA systems.

We further have identified Web service discovery as a central operation in SOA, which
is concerned with detecting suitable Web services out of the available ones and is usually
performed as the first processing step in SWS systems in order to solve a given client request.
We have determined two central requirements on automated discovery engines: (1) a high
retrieval accuracy in order to perform the discovery task with an appropriate quality, and
(2) a high computational performance in order to serve as a operationally reliable software
component in SWS systems. The inspection of existing approaches has shown that most
technical solutions lack in the achievable quality for either of the requirements, and in
particular in the adequate integration of both aspects which appears to necessary in order
to provide sophisticated automated Web service discovery components for SWS systems.

With respect to this, we have outlined the approach that is elaborated in this work. This
takes a goal-based approach, and defines a two-phased discovery framework that separates
design time and runtime operations and applies semantic matchmaking techniques that
work on sufficiently rich functional descriptions in order to warrant a high retrieval accuracy.
This is extended with a caching mechanism that captures relevant knowledge from design
time discovery runs, and effectively utilizes this in order to enhance the computational
performance of Web service discovery at runtime.

The remainder of the thesis is concerned with the detailed elaboration of the approach.
As the three parts of the technical solution, Chapter 3 specifies the refined goal model for
Semantic Web services, Chapter 4 defines the two-phased discovery framework along with
the necessary semantic matchmaking techniques, and Chapter 5 specifies the caching mech-
anism for enhancing the computational performance of automated Web service discovery
engines. Chapter 6 evaluates the achievable performance increase and discusses the practical
applicability of the developed techniques, and finally Chapter 7 concludes the work.

Chapter 3

A Goal Model for Semantic Web

Services

This chapter presents a conceptual model for the specification and usage of goals as formal
descriptions of client objectives in the context of Semantic Web services (SWS). A goal
describes what a client wants to achieve while abstracting from the technical details related
to the invocation and consumption of Web services. The overall aim is to facilitate problem-
oriented Web service usage: the client shall merely specify the objective to be achieved in
terms of a goal, and the SWS system automatically detects and executes the necessary Web
services for solving this. Therewith, goals represent a modeling element for the client side
of SOA technology, which is not covered by the initial Web service technology and is also
neglected in most SWS approaches.

The aim is to specify a conceptual model for describing goals and their usage in SWS
systems in order to better support the idea of goal-driven SOA technology. For this, we
refine the goal model defined in the WSMO framework, which is the only SWS approach
that identifies goals as a top level element and promotes the idea of goal-driven SWS tech-
niques [Fensel et al., 2006]. The examination of existing works reveals that the following
three aspects are desirable for realizing goal-based SWS techniques: (1) the expressiveness
of goal descriptions should be sufficient for all kinds of objectives that clients may want
to achieve by using Web services, (2) the explicit distinction of goal templates as generic
and reusable objective descriptions and goal instances that denote concrete client requests
appears to be desirable in order to allow the development of efficient and workable SWS
techniques and also to ease the goal formulation by clients, and (3) the support for auto-
mated Web service invocation and consumption for solving a goal should be enhanced.

37

38 Chapter 3. A Goal Model for Semantic Web Services

We consider these aspects as the requirements for a suitable goal model. The definition
of goals in the WSMO framework appears to be too immature in this respect, although
it aims at the same usage purpose. We thus refine the specification of the goal model
elements while maintaining the general structure as well as the intended usage of goals as
defined in WSMO. The main focus of the following elaborations is the conceptual structure
of the goal model, i.e. the definition of its elements and the relation to SWS techniques
for automated discovery, composition, mediation, and execution of Web services. We use
the WSMO specification languages for illustrating the definitions. However, the conceptual
model can also be adopted to other specification languages.

The chapter is organized as follows. At first, Section 3.1 explains the origin of the
concept of goals and identifies the requirements that arise in SWS systems. Then, Section 3.2
presents the specification of the refined goal model with the main attention on the conceptual
structure, the usage purpose, and relationship of its elements. Finally, Section 3.3 discusses
the suitability of the goal model and positions it within related work. We use the travel
scenario for illustration throughout the chapter, which is often used for demonstration and
explanation of SWS techniques [He et al., 2004; Stollberg and Lara, 2004].

3.1 Aim and Requirements Analysis

The following first explains the concept of goals as formal descriptions of client objectives
that originates from works on automated problem solving in different AI disciplines. Then,
we discuss the specific requirements that arise for describing and using goals in the context
of SWS, and, with respect to this, we depict the deficits of the initial WSMO goal model.

3.1.1 Goals – Origin and Purpose

The concept of goals as we understand it here originates from AI research on technologies for
automated problem solving. The theoretic foundations root in cognitive science that studies
the human mind and behavior as the basis for developing intelligent technologies [Hofstadter,
1979; Wilson and Keil, 1999]. Therein, problem solving is understood as a part of human
thinking that is concerned with solving a given task when the procedure for this is not known
a priori, and the aim of AI technologies is to automate this in order to enable computers to
perform problem solving in a human-like manner [Anderson, 1991].

A primary theory for this has been presented in [Newell and Simon, 1972]. Therein,
problem solving is understood as a goal-driven process: a goal describes the desired state
of the world, and the task of problem solving is to determine and perform suitable actions

3.1. Aim and Requirements Analysis 39

in order to reach the goal state. To automate this, goals are specified in terms of rules and
conditions in a logical language. If these hold, then the goal state is reached and the problem
is considered to be solved. The applicable operators – which are mostly computational
facilities that are able to perform actions – are described by usage conditions and the
effects of their execution. Upon this, inference-based techniques automatically determine
suitable operators whose execution will change the world from the current state into the
goal state. This allows the user to delegate problem solving to a computer system whereby
the client-system interaction takes place on the level of goals.

Although being criticized for reducing the model of human mind to a production system
for information processing, this model as served as the conceptual basis for further develop-
ments of goal-based techniques for automated problem solving. Prominent approaches are
the belief-desire-intention (BDI) model for rationale behavior of goal-driven, autonomous
agents [Bratman, 1987; Cohen and Levesque, 1990; Rao and Georgeff, 1991], AI planning
techniques that are concerned with the automated construction of plans as suitable se-
quences of operators to solve a given goal [Allen et al., 1990], and the UPML framework
that defines a comprehensive framework for describing the reasoning behavior of knowledge-
based systems wherein so-called tasks describe the problems to be solved [Fensel et al., 2003].
Also, specific AI technologies adopt the notion of goals, e.g. logic programming languages
wherein the user requests are called goals (e.g. in Prolog, [Bratko, 2000]). We shall discuss
these approaches in more detail in Section 3.3.

The main merit of such goal-based techniques is that the client-system interaction can
be lifted to the knowledge level that is concerned with tasks, actions, effects, and behavior
in the world [Newell, 1982]. The connection to the lower symbol level that deals with the
technical implementation details is handled by the system, and the client (ideally) does not
need to care about this. This corresponds to the idea of goal-based SOA technologies for
problem-oriented Web service usage as outlined in Section 2.2.1: clients formulate requests
in terms of goals, i.e. as objective descriptions on the knowledge level, and the SWS system
automatically detects and executes the relevant Web services for solving this.

To realize this, a goal description must carry all information that are necessary to detect
the suitable Web services and to invoke them on the symbol level. We shall discuss this
in more detail in the following. We here consider Web services to correspond to operators,
i.e. to be passive computational facilities that can be used to solve a goal. Web services
might provide complex functionalities, but they do not solve problems in an autonomous and
proactive manner by themselves, which distinguishes them from intelligent agents [Dickinson
and Wooldridge, 2005]. This corresponds to SOA idea of using Web services as basic building
blocks in IT systems as discussed in Section 2.1.2.

40 Chapter 3. A Goal Model for Semantic Web Services

3.1.2 Requirements on a Goal Model for SWS

We now turn towards the requirements that arise on a goal model for semantic SOA tech-
nologies in order to properly support the idea of automated, goal-driven Web service usage
as outlined above. The following identifies the requirements by analyzing existing works on
goal-based SWS techniques. On this basis, we then examine the goal model defined in the
WSMO specification, and we depict its deficiencies in order to motivate the need for the
refinements presented in the next section.

Requirements

(1) Expressiveness of Goal Descriptions. This is concerned with the sufficiency
of the goal model for describing all kinds of objectives that clients may want to achieve by
using Web services. These can range from simple requests to complex problems that require
the usage of several Web services. Formal descriptions based on domain ontologies seem to
be most suitable for this, also in order to facilitate reasoning within SWS environments.

We find different types of goals in literature. Most are concerned with a desired state
of the world (e.g. the goal state in the famous ’Tower of Hanoi’ puzzle), with functions
between inputs and outputs that shall be performed (e.g. a booking request in the travel
scenario), or with notification requests (e.g. on-time reception of stock market information).
Goals that abide over a longer time period and require several reconsideration steps are
usually assigned to intelligent agents, but we hardly find them as usage requests for Web
services. However, we find goals that require a workflow to be sustained for their resolution
(e.g. [Albert et al., 2005]), and goals that specify non-functional aspects in addition to
the basic objective description (e.g [Galizia et al., 2007; Toma et al., 2007]). Besides, we
observe that goals are used for different purposes: (a) to describe the overall aim that a
client wants to achieve by using Web services (e.g. [Keller et al., 2005]), and (b) to define the
functionality required for performing an activity that is part of a larger process for which
the actual Web service shall be detected at execution time (e.g. [Wetzstein et al., 2007]).

(2) Support for Automated Web Service Usage. This relates to the automated
execution of the detected Web services in order to automatically solve a goal as envisioned
by the SWS approach (see Section 2.1.3). For this, a goal must carry all information that is
needed to actually invoke and consume a Web service, in particular: (1) all inputs required
by the Web service, (2) a compatible counterpart of the communication behavior supported
by the Web service for consuming its functionality, and (3) the actual information exchange
can be performed, e.g. via SOAP on the basis of WSDL bindings (see Section 2.1.1).

3.1. Aim and Requirements Analysis 41

(3) Distinction of Goal Templates and Goal Instances. This refers to the ex-
plicit distinction of generic and reusable goal descriptions (goal templates) and goal descrip-
tions that represent concrete client requests (goal instances). As discussed in Section 2.2.3,
this enables the development of efficient SWS techniques that perform expectably expensive
operations on goal templates at design time and utilize this to reduce the operational costs
for solving goal instances at runtime. Existing SWS environments that support the goal-
driven approach already make this distinction, e.g. the Semantic Web Fred system [Stollberg
et al., 2005b], the IRS system [Domingue et al., 2008], and also the WSMO reference im-
plementation WSMX [Haller et al., 2005]. However, the separation of design- and runtime
operations in SWS environments requires a precise definition of the relationship of goal
templates and goal instances. We shall discuss this in more detail throughout this work.

(4) Ease of Goal Formulation by Clients. From a pragmatic perspective, it seems
to be reasonable to request as little as necessary from clients for specifying a goal [Domingue
et al., 2008]. Moreover, minimizing the manual specification effort by end-users can help to
reduce the risk of faulty and imprecise goal definitions [Lara et al., 2006].

The WSMO Goal Model

We complete the requirements analysis with examining the goal description model as defined
in the latest final version of the WSMO specification [Roman et al., 2006]. This defines
two central description elements for goals. The first one is a capability that describes the
requested functionality in terms of preconditions, assumptions, postconditions, and effects.
This appears to be expressive enough for specifying all kinds of client objectives identified
above (cf. requirement 1). The second element is a requested interface, which is intended to
provide the counterpart of a Web service interface description for the automated invocation
and consumption (cf. requirement 2). While not further defined in the specification, most
works use this to specify the communication behavior that is supported by the client for
consuming Web services. The descriptions are based on domain ontologies, and mediators
can be used to handle data level mismatches and to connect related goals. A WSMO goal
can further be described by non-functional properties.

This model does not distinguish between goal templates and goal instances (cf. re-
quirement 3), and solutions for supporting the goal formulation by clients is left open to
implementations (cf. requirement 4). Moreover, the definition of constraints on the reso-
lution process of goals is not supported, and the concept of requested interfaces remains
unclear and vague. We thus consider the current WSMO goal model to be not sufficient to
support the idea of goal-driven SWS techniques with respect to the identified requirements.

42 Chapter 3. A Goal Model for Semantic Web Services

3.2 Conceptual Model and Specification

This section presents the specification of the goal model for Semantic Web services. It
extends and refines the existing WSMO goal model, aiming at adequately satisfying the
requirements identified above. Figure 3.1 shows the core of the goal model as a UML Class
diagram that defines the elements along with their description structure and relationships.

Figure 3.1: Core of the Goal Model

The model explicitly distinguishes goal templates as generic and reusable objective de-
scriptions, and goal instances that describe concrete client requests. This is an extension
to the WSMO goal model in order to enable efficient SWS techniques and also to ease the
goal formulation by clients. We shall specify this in more detail in Section 3.2.1. The sec-
ond central aspect is the approach for automated Web service invocation and consumption.
For this, we connect each Web service that is suitable for solving a goal template with a
mediator that carries a client interface for the automated invocation and consumption of
the Web service to solve associated goal instances. This is a refinement of the previously
insufficient solution in WSMO, and we shall specify this in detail in Section 3.2.2. While
the former two aspects are the core elements, we consider the goal model to be extensible.
In particular, it supports the specification of composite goals that aggregate several goals in
order to describe more complex objectives, and also the definition of non-functional aspects
in addition to the requested functionality. We shall discuss this in Section 3.2.3.

The following specifies the goal model in detail with examples from the travel scenario
and discusses related works. We use the WSMO specification languages for exemplifying
the modeling, in particular the Web Service Modeling Language WSML which supports the
specification of both conceptual and logical aspects [de Bruijn et al., 2005b]. However, the
conceptual model can be adopted to other specification languages.

3.2. Conceptual Model and Specification 43

3.2.1 Goal Templates and Goal Instances

With respect to requirement 3, the first aspect of the goal model is the explicit distinction
goal templates and goal instances. A goal template is a generic and re-usable objective
description that is kept in the system; a goal instance describes a concrete client objective
that is created by instantiating a goal template with concrete inputs. We consider goal
instances as the primary element for end-users to interact with the system, while the creation
and management of goal templates mainly resides on the system administration level.

Purpose and Definition

Figure 3.2 illustrates the basic idea for the objective of buying train tickets in Germany.
The goal template describes the objective on the schema level. Here, it defines that the
origin and destination city must be located in Germany as well as the data type for the
travel date. This description is stored in the system. Then, different clients instantiate
the goal template with concrete inputs in order to buy tickets for particular trips. The
run-time data are not stored permanently in the system, but are only kept as long as the
process of solving a goal instance is going on. Below, Listing 3.1 shows the description of
the goals in WSML. We can model goal templates as WSMO goals; the listing shows the
definition in terms of a WSMO capability with a pre- and a postcondition. Goal instances
are not defined in the WSMO framework, and thus not supported in WSML. We define
a goal instance as a pair of the corresponding goal template and the set of concrete input
values. The listing shows a possible extension to WSML for defining goal instances.

Figure 3.2: Goal Templates and Goal Instances

44 Chapter 3. A Goal Model for Semantic Web Services

goal trainTicketGermany

importsOntology ”http://www.wsmo.org/ontologies/trainConnection”

capability

sharedVariables {?origin , ?destination ,?dateTime}
precondition

definedBy ?origin memberOf city and locatedIn(?origin ,germany) and

?destination memberOf city and locatedIn(?destination ,germany) and

?dateTime memberOf dateTime.

postcondition

definedBy ?ticket [from hasValue ?origin , to hasValue ?destination ,

date hasValue ?dateTime] memberOf trainTicket.

goalInstance buyTrainTicketClientA goalInstance buyTrainTicketClientB

correspondingGoalTemplate trainTicketGermany correspondingGoalTemplate trainTicketGermany

inputs ?origin = munich, ?destination = berlin , inputs ?origin = hanover, ?destination =

?dateTime = 20070512−1030. hamburg, ?dateTime = 20070609−1215.

Listing 3.1: A Goal Template with Goal Instances in Extended WSML

This conceptual model has two purposes. At first, the detection and usability analysis
of Web services can be performed at design time on the level of goal templates, and the
captured results of design operations can be used to reduce the necessary reasoning efforts
for solving goal instances at runtime as the time critical aspect of SWS technologies (cf.
requirement 3). Secondly, the model reduces the effort required from clients for the for-
mulation of goal instance to a minimum by merely requesting the provision of inputs for a
given goal template. This can be supported by graphical user interfaces in order to reduce
the error-proneness of goal definitions (cf. requirement 4).

Regarding the description of goals, we consider functional descriptions as the primary
description element. Defined in terms of preconditions and effects in a sufficiently expressive
formal language, a functional description defines conditions on the initial and the desired
final state of the world as the basic description of what shall be achieved. This appears
to be expressive enough to describe all kinds of goals that can be expected in the context
of Web services (cf. requirement 1). In addition, a goal description can define further
conditions on suitable Web services, e.g. quality-of-service requirements or usage rights of
clients as well as constraints on the workflow that shall be sustained during its resolution
(see Section 3.2.3 for details on this). We further consider inputs and outputs as a primary
description element of goals, because in the first place Web services are programs that
provide computational outputs with respect to the specific inputs that they are invoked
with, and the client side element for using Web services should support this. In accordance
to the general SWS approach explained in Section 2.1.3, the goal descriptions should be
based on ontologies that define the domain terminology and background knowledge.

3.2. Conceptual Model and Specification 45

Goal templates describe the objective on the schema level, meaning that the conditions
are defined on the level of concepts in the used domain ontology. A goal instance is defined
by a reference to the instantiated goal template, and the set of concrete input values for
specifying the particular client objective (see Listing 3.1). We consider the inputs to usually
be defined at the time of the goal instance formulation by a client. However, not all necessary
inputs must be provided up-front. In particular, inputs whose value is dependent on the
interaction with a Web service can only be provided at execution time [Vitvar et al., 2007b].
Nevertheless, independent of when and how the concrete inputs are defined, it is mandatory
that the input values are valid for the corresponding goal template, i.e. that they satisfy the
conditions and constraints in the goal template description – otherwise, the goal instance
is an inconsistent objective description that can not be solved.

Related Work

As mentioned above, existing SWS environments that rely on the WSMO framework already
make the distinction of goal templates and goal instances. However, they commonly lack
in a precise definition of the relationship between goal templates and goal instances as well
as sophisticated techniques for validating goal instantiations:

• The IRS system provides a goal-based broker for Semantic Web services. Goals
represent the client objectives, and are described by input and output roles that are
defined with respect to domain ontologies; WSMO capabilities are used to define
further conditions [Domingue et al., 2008]. Goal instances are created by end-users
via a form-based GUI. The instantiation verification is limited to validate the provided
input values with respect to the ontology-based conditions defined in the input roles.

• The WSMX system is the reference implementation of WSMO that strictly follows
the WSMO specification. It uses WSMO goals as generic objective descriptions in the
sense of goal templates. Concrete client objectives are defined by adding an ontology
to the goal description that defines the inputs in terms of instances of the used domain
ontologies [Zaremba et al., 2006]. However, the system does not perform any explicit
instantiation validation.

• The SWF system is an environment for goal-driven, collaborative agents that, among
other facilities, use Web services [Stollberg et al., 2005b]. So-called goal schemas are
pre-defined in the system, and concrete goal instances are assigned to an agent by
either humans or other agents. The inputs in a goal instance are defined as instances
of domain ontologies; the instantiation verification is similar to the one in IRS.

46 Chapter 3. A Goal Model for Semantic Web Services

We shall discuss this in more detail and present a formal definition of goal templates
and goal instances along with instantiation validation in the context Web service discovery
and formal functional descriptions in Chapter 4. To summarize, we define the distinction of
goal templates and goal instances such that the former are generic and reusable objective
descriptions on the schema level that are kept in the system, and the latter denote concrete
client objectives for which clients merely need to define the specific inputs. As we shall
show in the subsequent chapters of this work, this enables the development of efficient and
workable SWS techniques for solving goals.

3.2.2 Automated Web Service Usage

We now turn towards the automated Web service usage that should be supported in goal-
based SWS environments. The aim is that the Web services should be executed automat-
ically after having been detected to be suitable for solving a goal. For this, it is necessary
that all the inputs needed to invoke and consume the Web service are provided, and that
a counterpart of the Web service interface with compatible communication behavior and a
technical binding for the actual information interchange is given (cf. requirement 2).

In accordance to other approaches – in particular the conceptual model that underlies
the IRS system [Domingue et al., 2008] – we consider this as a level of technical detail
that clients should not have to deal with. With respect to the overall aim of goal-based
SWS approach of lifting the client-system interaction to the level of problem solving, clients
should be relieved from dealing with the technical details on the implementation level (see
Section 3.1.1). In order to solve a goal, the detected Web services should be executed
automatically in a way that no or only minimal involvement of the client is required. Nev-
ertheless, the connections to the implementation level must be defined along with the goal
description in order to facilitate the actual invocation of Web services. For this, it is neces-
sary to provide a compatible counterpart for the Web service interfaces which ensures that
the result of executing the Web service will solve the goal.

Mediators and Client Interfaces

Figure 3.3 illustrates our conceptual solution for the automated Web service usage for
solving goals with minimal intervention by clients. We connect each Web service that is
suitable solving a goal template via a mediator that carries a so-called client interface which
facilitates the invocation and consumption of the Web service for solving the goal. Following
the definition of mediators in the WSMO framework [Mocan et al., 2005], a mediator is a
logical component that connects a goal template as its source element with a Web service

3.2. Conceptual Model and Specification 47

Figure 3.3: Elements for Automated Web Service Usage

as its target element. The client interface defines a semantically described communication
behavior for invoking and consuming the target Web services such that the execution result
will solve the goal. The interaction is managed on the semantic level between the client
interface and the semantically described interface of the Web service, while the technical
execution of the Web service is performed via the grounding to WSDL. At runtime, the
inputs defined in a goal instance are used to initiate and conduct the interaction with the
Web service via the client interface. We shall discuss this below in more detail.

The mediator can further employ mediation facilities for handling heterogeneities on
the data and the process level that may occur between the client, the goal description,
and the Web service (see Section 2.1.3). Such a mediator is defined for every Web service
that is suitable for solving a goal template. Therewith, every Web service that is potentially
suitable for solving a goal instance can be executed automatically with the respective inputs,
independent of the specific communication behavior supported by the Web service.

The central element for enabling automated Web service usage in this conceptual model
is the client interface. This defines a semantically described communication behavior that is
compatible to the one of the target Web service, and enables the invocation of this particular
Web service in a way that the execution result will solve the goal. The communication
behavior defines the order of the information that must be interchanged with the Web
service in order to solve the goal; compatibility in this context means that an interaction
can take place with respect to the communication behavior defined in the client interface
and the one supported by the Web service [Martens, 2003]. The interaction between the

48 Chapter 3. A Goal Model for Semantic Web Services

client interface and the Web service can be controlled on the semantic level, while the
grounding to WSDL that usually is defined in SWS descriptions of Web services is sufficient
to perform the actual information exchange. Thus, the client interface does not need to
define a grounding to WSDL or bindings to SOAP messages. The following illustrates
the definition and usage of client interfaces within the description model for interaction of
clients and Web services defined in the WSMO framework; however, the principle can also
be adopted SWS frameworks that use other specification languages.

The WSMO model for describing the interaction behavior of Web services is based on
Abstract State Machines [Roman et al., 2007]. A so-called choreography interface describes
the communication behavior supported by a Web service for consuming its functionality.
This is described by a state signature which defines the ontology concepts that are used as
the content of incoming and outgoing messages, and guarded transition rules of the form if
condition then updateFunction that specify the communication behavior. The functions
add(),delete(),update() define that information is written, removed, or modified in the
common information space wherein the interaction between the client and Web service takes
place; so-called controlStates allow a partner to control the interaction.

Listing 3.2 shows such a choreography interface description for a German train ticketing
Web service offered by the Deutsche Bahn AG (left hand side), and a mediator that connects
this Web service with the goal template from Listing 3.1 above along with a client interface
(right hand side). For the purpose of illustration, we assume that the Web service supports

webService DBticketing | mediator trainTicketGermany2DBticketing

interface | source trainTicketGermany

choreography | target DBticketing

stateSignature | interface clientInterface

in | stateSignature

city withGrounding <input−message> | in trainTicket

dateTime withGrounding <input−message> | out {city , dateTime}
out | controlled controlState

trainTicket withGrounding <output−message> | transitionRules

transitionRules | if (controlState = init) then

if (?origin memberOf city and | add(?origin memberOf city and

locatedIn (?origin ,germany) and | locatedIn (?origin ,germany)),

?destination memberOf city and | add(?destination memberOf city and

locatedIn (?destination ,germany) | locatedIn (?destination ,germany)),

and ?dateTime memberOf dateTime) | add(?dateTime memberOf dateTime).

then add(?ticket [from hasValue ?origin , | if (?ticket [from hasValue ?origin ,

to hasValue ?destination , | to hasValue ?destination , date hasValue

date hasValue ?dateTime] | ?dateTime] memberOf trainTicket)

memberOf trainTicket). | then read(?ticket) .

Listing 3.2: A Client Interface in the WSMO Choreography Language

3.2. Conceptual Model and Specification 49

a simple request-response behavior. At first, an input message shall provide the necessary
inputs (i.e. origin, destination, and travel date), and then an output message provides the
train ticket to the requester. The transition rules describe this behavior as explained above.
The Web service is suitable for solving the goal template which seeks for train tickets in
Germany. Thus, a mediator connects them and defines a client interface for automated in-
vocation and consumption of the Web service. The client interface first writes the requested
inputs to the communication space via the add() function. If all three inputs are given, the
condition of the transition rule in the choreography interface of the Web service is satisfied,
and the Web service writes the respective train ticket to the communication space. This
result can be obtained via the read()-function, and then be presented to the client.

This provides a schema for the successful invocation and consumption of the target
Web service in order to solve the goal. At runtime, the concrete inputs defined in a goal
instance are used to instantiate the communication behavior defined in the client inter-
face and successively invoke the Web service with concrete data. Given the goal instance
buyTrainTicketClientA from Listing 3.1 above, the origin city is instantiated with Mu-
nich, the destination is Berlin, and the travel date is May 12th, 2007; these data are then
used to invoke the DBticketing Web service. The interaction between the client interface
and the Web service takes place by reading and writing ontology-based information in the
communication space. The technical invocation of the Web service is performed via the
grounding defined in the Web service choreography interface description, which facilitates
the lowering and lifting of the ontology data to XML as well as the necessary connections to
WSDL messages [Kopecký et al., 2006]. Thus, the client interface does not need to define
a technical grounding because it is only concerned with the behavior for consuming a Web
service on the semantic level. The execution engine for client-service interaction on the
basis of WSMO choreography descriptions that is provided in the WSMX system already
supports this execution model [Haller and Scicluna, 2005; Haselwanter et al., 2006].

So far, we have discussed client interfaces for the automated invocation and consumption
of single Web services. If the usage of several Web service is necessary to solve a goal, then
Web service composition techniques are applied to determine a suitable execution sequence
of the Web services. Mostly, existing techniques for constructing executable compositions
for a given goal provide the composition result in form of a new Web service (e.g. [Traverso
and Pistore, 2004; Albert et al., 2005; Bertoli et al., 2007]). This means that the constructed
aggregation of Web services serves as the implementation of the newly created functionality,
and also the communication behavior for invocation and consumption is exposed as a Web
service interface. This appears analogously to a single Web service to clients, and for this
a client interface for a Web service composition can be constructed as discussed above.

50 Chapter 3. A Goal Model for Semantic Web Services

Relation to WSMO and Other Works

The conceptual model of client interfaces that are defined within mediators that connect a
goal template with a suitable Web service replaces the notion of requested interfaces in the
initial WSMO goal model ([Roman et al., 2006], see Section 3.1.2). As outlined above, the
initial solution in WSMO appears to be inappropriate for realizing the idea of goal-driven
SWS techniques because it requires the explicit specification of an interface for consuming
Web service as a part of the goal description. This contradicts the desired abstraction
from technical details. Moreover, defining the requested interface without knowing the Web
services to be used is rather an additional restriction on suitable candidates than a means
for automated invocation: the compatibility with a Web service interface that is necessary
for the successful consumption is left to coincidence, and maybe suitable Web services
can not be invoked because required inputs are missing or because presumably occurring
mismatches in the communication behaviors can not be resolved. In contrast, the solution
presented here supports the automated invocation and consumption of every Web service
that is suitable for solving a goal, independent of its specific communication behavior.

Our model maintains the peer-to-peer concept for the interaction of clients and Web ser-
vices that underlies the WSMO approach: Web services as well as client interfaces describe
the supported communication behavior from an individual perspective, and respective algo-
rithms determine whether a successful interaction can take place [Fensel and Bussler, 2002;
Stollberg, 2005; Cimpian and Mocan, 2005]. Other approaches that describe the commu-
nication behavior between Web services and clients from a global perspective – e.g. the
W3C Web Service Choreography Description Language WS-CDL [Kavantzas et al., 2005] –
appear to be dispensable in this context. However, there are other application contexts of
Web services wherein such global interaction models are desirable, e.g. for the management
and maintenance of business cooperations that are realized via Web services.

A similar approach for the automated invocation and consumption of Web services has
been developed for the IRS system [Domingue et al., 2005]. Therein, a so-called choreog-
raphy describes how IRS as the broker invokes and communicates with a Web service in
order to solve a goal. This is described by soap bindings for the input- and output-roles
defined in a goal, and uses the WSMO choreography description language for specifying the
communication behavior of the IRS to interact with the Web service in terms of guarded
transitions. In addition, the management of the interaction as well as the handling ex-
ecution failures and asynchronous communication is supported on the basis of respective
control primitives. This corresponds to the concept of client interfaces introduced above,
and the IRS system provides the facilities for executing and controlling the interaction.

3.2. Conceptual Model and Specification 51

Summarizing, we define client interfaces as a compatible counterpart to the semantically
described interface of a Web services in order to facilitate the automated invocation and
consumption of Web services for solving a goal. Such a client interface is defined for every
suitable Web service, and is allocated within a mediator that can employ further mediation
facilities in order to resolve possibly occurring heterogeneities. This follows the concept
of client stubs, a standard element in modern middleware technologies that support the
invocation of remote procedures out of a programmatic environment [Birell and Nelson,
1984; Serain and Craiq, 2002]. This is also provided by existing Web service technologies,
and there are several tools for automatically generating client stubs from WSDL descriptions
(e.g. by the WSDL2Java tool from the Apache Axis project, see http://ws.apache.

org/axis2/). However, while such client stubs merely support the invocation of specific
WSDL operations out of a client application, a client interface as defined here facilitates the
automated invocation and consumption of a complete Web service. One can also imagine
semi-automated support for the creation of the client interface for a goal and a Web service.

3.2.3 Extensibility

As outlined above, the goal model is extensible. This means that it can be augmented
with further constructs and description elements that appear to be desirable in specific
application scenarios. In order to remain compatible with the core of the goal model, such
extensions should retain the distinction of goal templates and goal instances as well as
the concept of client interfaces for automated Web service usage as specified above. The
following discusses two examples for such extensions that have been presented in existing
works.

Composite Goals

One possible extension of the core goal model is the specification of composite goals for
describing more complex client objectives as an aggregation of several other goals. This
appears to be desirable for describing goals that require a certain workflow to be sustained
for their resolution, i.e. a certain order of subgoals for which the actual Web services shall be
determined dynamically at runtime. A prominent application area for this are semantically
enabled business process management techniques where the distinct process activities are
described as goals and the actual Web services are detected at execution time [Weber et al.,
2007]. Other examples for goals that consist of multiple aspects and require a certain process
to be sustained during their resolution can be found in the area of automated Web service
composition (e.g. [Pistore et al., 2004; Albert et al., 2005]).

http://ws.apache.org/axis2/�
http://ws.apache.org/axis2/�

52 Chapter 3. A Goal Model for Semantic Web Services

A composite goal can be described as a collection of subgoals with the control- and data
flow among them, i.e. as a decomposition of a more complex objective into smaller parts
along with a workflow of how the subgoals shall be solved. For illustration, let us consider
the following example setting from the travel scenario. The client objective is to book a
flight and a hotel for a holiday trip. In order to get the cheapest offer, the following workflow
shall be sustained: at first, a suitable flight shall be found for the earliest departure date
and the latest return date. Then, a suitable hotel shall be found where the arrival and
departure date fit with the flight dates. If both a flight and a hotel have been found, then
first the flight is booked and finally the hotel. Figure 3.4 illustrates this as a composite goal
that consists of four sub-goals and defines the necessary control- and data flow.

Figure 3.4: Composite Goal Example

This can be described in terms of a WSMO orchestration that specifies how a Web
service aggregates and interacts with other Web services for achieving its functionality. The
specification language for this extends the WSMO choreography language explained above
with the call-construct that specifies the invocation of other WSMO elements within the
update function of a transition rule [Roman and Scicluna, 2007]. This can be used to specify
the desired workflow, e.g. by if (controlState = init) then call flightSearchGoal

in order to solve the flight-search subgoal as the first step for solving the overall goal. We
refer to [Stollberg and Norton, 2007] for a more detailed discussion on the modeling of
composite goals, including an solution for properly defining the data flow by mediators that
specify the necessary variable bindings between the composite goal and the sub-goals.

3.2. Conceptual Model and Specification 53

In our goal model, such composite goals denote a specialization of the basic goals as
specified above. The generic structure of the composite goal is defined as a goal template at
design time, and at runtime a client creates an instantiation of this by defining concrete input
values as explained in above in Section 3.2.1. Then, the actual Web services for the subgoals
can be detected dynamically at runtime, and the actual invocation and consumption can
be performed via the client interfaces as explained in Section 3.2.2.

Composite goals can be defined explicitly in order to describe a desired workflow that
shall be solved by Web services, or they can be created by automated goal decomposition
techniques (e.g. [Anton et al., 1994; Giorgini et al., 2003]). Aside from the WSMO orches-
tration language, also other languages could be used to specify the control- and dataflow,
e.g. the composition description language based on UML Activity Diagrams presented
in [Albert et al., 2005], the Cashew language that provides a formal workflow model for
Semantic Web services [Norton and Pedrinaci, 2006], or the BPEL4SWS process language
that is currently developed in the super project [Haller et al., 2007].

Non-Functional Aspects

Another extension that appears to be relevant for real-world applications is the support for
specifying client requirements on non-functional aspects within goal descriptions. While in
the above specifications we have mainly focussed on the requested functionality as the basic
objective description of what shall be achieved, also further aspects might be relevant that
are concerned with how Web services shall be used to solve a goal. The client requirements
on such non-functional aspects can be integrated into the goal model by extending the goal
descriptions with respective conditions or policy statements.

We consider non-functional aspects to be concerned with usage conditions on suitable
Web services for solving that go beyond the requested functionality as the basic objective
description. As the most prominent criteria, this covers quality-of-service aspects (e.g. [Vu
et al., 2005; Wang et al., 2006]), negotiation and contracting on the details of a service offer
(e.g. [Preist, 2004; Paurobally et al., 2005]), the establishment of trust between interacting
entities (e.g. [Olmedilla et al., 2004; Galizia, 2006]), or the handling of service level agree-
ments (SLA) that deal with usage rights and other business-level aspects (e.g. [Ludwig et al.,
2003; Oren et al., 2005]). In SWS environments, these criteria are usually evaluated within
the selection and ranking component: at first, the functionally suitable candidates are de-
tected by Web service discovery, and then their usability for solving the given goal with
respect to non-functional and behavioral aspects is inspected in the subsequent processing
steps (see Figure 2.9 in Section 2.2.2).

54 Chapter 3. A Goal Model for Semantic Web Services

A common approach for modeling non-functional aspects is to define policies that specify
conditions along with possible alternatives on how a Web service can be used [Vedamuthu
et al., 2007]. In the field of Semantic Web services, this is extended with mostly rule-based
conditions that are defined on the basis of a domain ontology [Antoniou et al., 2007]. An
approach for modeling this for WSMO goals and Web services is presented in [Toma et al.,
2007]. The conditions on a specific non-functional aspect are defined in terms of ontology-
based constraints in addition to the capability that describes the requested, respectively
the provided functionality. For example, one can specify the cancelation policies for flight
tickets that are offered by a ticketing Web service, and analogously define the respective
client requirements within the goal description. These policies can then be evaluated in
order to provide a ranking of flight offers for a specific client request. A similar approach is
presented in [Galizia et al., 2007] where security-related policies are used to select the most
adequate candidate out of the functionally suitable Web services.

The goal descriptions in our model can be extended analogously, i.e. with semantically
described policies or requirements on non-functional aspects in addition to the requested
functionality. The distinction of goal templates and goal instances can be maintained in
such extended goal descriptions: the client-side policies can be defined in a generic manner
at design time, and then be evaluated at runtime with respect to the concrete input data
defined by a client. The automated invocation and consumption of Web services via client
interfaces at execution time is orthogonal to this.

3.3 Discussion and Related Work

We conclude the presentation of the goal model with a discussion on its applicability and the
relation to previous works on goal-based techniques. For this, the following first summaries
the specification of the goal model and discusses its suitability for facilitating the goal-based
approach for Semantic Web services. Then, we depict the commonalities and differences to
previous works on goal-based techniques that have been developed for automated problem
solving in different AI disciplines.

3.3.1 Summary and Applicability

The goal model specified in this work aims at properly facilitating the goal-based approach
for SWS technology. It supports the specification of typical client objectives that can be
expected in the context of Web services with respect to the problem that shall be solved,
and facilitates the automated execution of Web services for solving goals. A central question

3.3. Discussion and Related Work 55

is why this appears to be suitable for adequately supporting the goal-based approach. To
answer this, the following summarizes the central aspects of the goal model and depicts its
benefits in comparison to previously existing approaches.

The overall aim of goal-based SWS technologies is to provide an abstraction layer that
allows clients to automatically request and consume the suitable Web services on the level
of the problems that can be solved by them while abstracting from the technical details.
Based on the examination of existing works, we have identified four central requirements
for a sophisticated goal model: the support for expressing all types of goals that can be
expected in the context of Web services, the automated execution of Web services to solve
a goal, the explicit distinction of goal templates and goal instances in order to develop
efficient and workable SWS technologies, and the ease of goal formulation by clients. While
WSMO is the only existing SWS framework that promotes a goal-based approach, we have
shown that its goal model does not satisfy the requirements in an appropriate manner.

We thus have refined the goal model such that basic objective descriptions for reaching
a desired goal state or for performing a function between in- and outputs are defined in
terms of preconditions and effects. Clients formulate concrete objectives by instantiating
goal templates with concrete inputs, and the Web services for actually solving a given goal
instance are invoked and consumed via client interfaces. We have integrated the ideas and
conceptual solutions from several works and adopted standard notions and principles for the
specification of the goal model: the separation of goal templates as schema-level descriptions
handled at design time and goal instances as data-level descriptions that are considered at
runtime follows the principle of heuristic classification in order to facilitate the development
of efficient and scalable technologies, and the concept of client interfaces adopts the idea of
client stubs as a standard element in modern middleware technology.

The core of the goal model adequately satisfies the requirements we have identified for
the goal-based approach: it supports the development of efficient SWS techniques that
separate design- and runtime operations, the goal formulation for concrete client requests
is simplified to the provision of concrete input data, and the concept of client interfaces
facilitates the automated usage of Web services with minimal efforts from the client. In
addition, the goal model is extensible with further constructs and description elements that
appear to be desirable in some application scenarios. As example for this, we have outlined
the specification of composite goals for specifying more complex objectives as aggregations
of other goals, and the extension of goal description with client-side requirements on non-
functional aspects. These extensions support the specification of additional conditions on
how a goal shall be solved, and can be defined in addition to the requested functionality
that specifies what shall be achieved as the basic objective description within a goal.

56 Chapter 3. A Goal Model for Semantic Web Services

Therewith, the goal model as specified here appears to be suitable for properly support-
ing the goal-based approach for Semantic Web services, and it overcomes the deficiencies
of previously existing solutions. Regarding the usage of goals, we primarily consider them
as the element via which clients search and consume Web services, i.e. they replace the
hard-wired invocation of Web services that is supported by conventional Web service tech-
nologies. The major benefit is that the developers of client applications are relieved from
dealing with technical details, and respective SWS techniques can be employed to better
support and automate the complete Web service usage process within client applications.
However, also end-user applications that utilize Web services via graphical user interfaces
can be supported by the goal model.

3.3.2 Relation to Automated Problem Solving in AI

We already discussed specific related works within the explanations of the distinct goal
model elements above. Now, we explain the relation to preceding works on goal-based
techniques for automated problem solving developed in different AI disciplines.

In accordance to the overall aim of AI research of creating intelligent machines that
can solve problems in human-like manner [Turing, 1950], several research efforts have de-
veloped techniques for automated problem solving that use goals in a similar way as in the
presented goal model for Semantic Web services. Referring to a detailed survey in [Stoll-
berg and Rhomberg, 2006], the most relevant ones in this context are (1) the soar system
that presents a cognitive architecture on the basis of the theory of human mind and prob-
lem solving explained in Section 3.1.1 [Newell, 1990], (2) the belief-desire-intention (BDI)
model [Bratman, 1987] that provides the conceptual basis for describing, controlling, and
reasoning on the goal-solving behavior of rationale, intelligent agents [Wooldridge and Rao,
1999], (3) AI planning that is concerned with automated construction of plans as a valid
sequence of actions for reaching a goal state from an initial state [Allen et al., 1990; Ghallab
et al., 2004], and (4) Problem Solving Methods (PSM) that specify generic strategies which
can be adapted to several specific problems [Nilsson, 1971; Motta, 1999; Fensel, 2000], and
for which the UPML framework provides a comprehensive description model to support
logical reasoning and re-use of PSMs in knowledge-based systems [Fensel et al., 2003].

The general purpose of these techniques is the same as in the goal-based SWS approach,
i.e. to automatically solve a formally described goal by finding and executing suitable
operators or other problem solving facilities. However, there are some differences to our
goal model with result from its specialization to Web services. An important one is that
in the soar system, in classical AI planning (e.g. strips [Fikes and Nilsson, 1971]), and

3.3. Discussion and Related Work 57

also in BDI logics [Cohen and Levesque, 1990; Rao and Georgeff, 1991] goals are described
by conditions only on the desired final state; the initial state is given by the internal status
of the system, respective by the knowledge and beliefs of individual agents. In our model,
we describe goals by conditions on both possible start states and desirable goal states. The
reason for this is that because of the decoupled and distributed nature of the World Wide
Web, we can not know the current state of the world from a global perspective. Describing
goals in terms of preconditions and effects ensures that the relevant information on the
specific start state and the desired final state of a concrete goal instance is known.

Another difference concerns the types of goals and the resolution techniques for them.
The soar technology as well as most AI planning techniques are concerned with finding
suitable sequence of operators in order to reach the goal state; the applied reasoning tech-
niques resemble those developed for SWS discovery and composition (see Section 2.1.3). In
the BDI model, a desire denotes the goal that shall be achieved. The agent solves this in an
interleaved manner of observation, re-consideration, and interaction with other agents via
so-called intentions as the intermediate steps. As discussed in Section 3.1, this goal solving
technique appears to be dispensable in the context of Web services because they provide
passive and non-adaptive computational facilities. Following [Dickinson and Wooldridge,
2005], we thus consider BDI-like goal solving techniques to be suitable for agent-based
applications that build on top of Web services and SWS techniques.

A main source of inspiration has been the UPML framework, which also has served as
the conceptual predecessor of the WSMO framework [de Bruijn et al., 2005a]. Therein,
so-called tasks describe the problem that shall be solved in terms of in- and output roles,
preconditions, assumptions, and the desired goal state; all description elements are based on
ontologies. This corresponds to the notion of functional descriptions as the basic objective
descriptions in our goal model (see Section 3.2.1). Furthermore, the description model for
complex PSMs by the aggregation of other PSMs has inspired the definition of WSMO
orchestration that cab be used to specify composite goal descriptions (see Section 3.2.3).

Chapter 4

Two-Phase Web Service Discovery

This chapter presents an approach for semantically enabled Web service discovery. It sup-
ports the goal-based approach for Semantic Web services and facilitates the development
of efficient automated discovery techniques by separating two phases: the suitable Web
services for goal templates as generic and reusable objective descriptions are discovered at
design time, while the actual Web services for goal instances that represent concrete client
objectives are discovered at runtime. For this, we specify the necessary semantic match-
making techniques that work on sufficiently rich functional descriptions in order to warrant
a high retrieval accuracy for the discovery task at both design- and runtime.

We briefly recall the overall context from the preceding chapters. Web service discovery
is concerned with the detection of suitable Web services for a given request or an application
context. This is a central operation in Service-Oriented Architectures (SOA), and research
around Semantic Web services (SWS) aims at automating the discovery task. In SWS
systems, discovery is usually performed as the first processing step for solving a given goal.
It detects suitable Web services out of the available ones with respect to the requested and
provided functionalities, and their usability is then further investigated within subsequent
processing steps that take other aspects into account (cf. Figure 2.9 in Section 2.2.2).
A central requirement on automated discovery engines is a high retrieval accuracy, which
means that every discovered Web service is suitable (= high precision) and that every
suitable Web service can be discovered (= high recall). This appears to be desirable in
order to provide a serviceable component for SWS environments, and can most adequately
be achieved by employing semantic matchmaking techniques that work on sufficiently rich
functional descriptions. The aim of the following elaborations is to specify this for the two-
phased discovery approach, and therewith overcome the deficiencies of existing solutions.

58

59

Figure 4.1: Overview of Two-Phase Web Service Discovery

Figure 4.1 provides an overview of the two-phased approach for Web service discovery.
Following the goal model presented in Chapter 3, it is based on the explicit distinction of
goal templates as generic and reusable objective descriptions that are kept in the system,
and goal instances that represents concrete client objectives by instantiating a goal template
with concrete inputs (see Section 3.2.1). This allows us to separate the Web service discovery
task into two phases: at design time – that is whenever a goal template or a Web service
is added, removed, or changed in the system – the suitable Web services for goal templates
are discovered; the actual Web services that are suitable for solving a goal instance are
discovered at runtime. The design time discovery results can be used to reduce the necessary
matchmaking efforts of runtime discovery, because – due to the instantiation relationship –
only those Web services that are suitable for the corresponding goal template are potentially
suitable for a goal instance. We therewith can increase the efficiency of runtime Web service
discovery as the expectably most frequent operation in SOA applications, and we shall
present an extension for the performance optimization in Chapter 5.

In this chapter we formally define the relevant concepts and the necessary semantic
matchmaking techniques for this approach. The aim is to ensure a high retrieval accuracy
for both design time and runtime discovery, and therewith to overcome the deficiencies of
existing approaches as identified in Section 2.2.2. For this, we define functional descriptions
with precise formal semantics for accurately describe the overall functionality provided by
a Web service and the one requested by a goal. Upon this, we define semantic matchmak-
ing techniques for both design time and runtime discovery for precisely determining the
functional usability of Web services, as well as the conditions for the valid instantiation of
goal templates during the goal instance formulation process. We use classical first-order
logic (FOL) as the specification language, and apply an automated theorem prover for the

60 Chapter 4. Two-Phase Web Service Discovery

matchmaking. Although undecidable in the general case, FOL provides an adequate expres-
sivity while not imposing possibly unnecessary restrictions on the modeling of functional
descriptions, and theorem provers provide the necessary reasoning support for the discovery
task. Moreover, FOL serves an umbrella for most of the ontology languages developed for
the Semantic Web, so that our discovery techniques can be adopted to other specification
languages. We shall discuss the limitations of this approach, and also their relevance for
the practical applicability of the discovery techniques.

The chapter is organized as follows. Section 4.1 introduces the underlying understanding
of goals and Web services and discusses the meaning of a match in the context of Web
service discovery. On this basis, Section 4.2 defines the structure and the formal meaning of
functional descriptions for goals and Web services, and Section 4.3 specifies the necessary
semantic matchmaking techniques for the two-phase Web service discovery. Section 4.4
explains the implementation of the matchmaking techniques within an automated theorem
prover for first-order logic, and finally Section 4.5 summarizes the chapter and discusses
related work. Throughout this chapter, we use a scenario of finding restaurants in specific
cities as well as other examples for illustrating the definitions.

4.1 Foundations

The aim of Web service discovery is to determine the suitability of Web services for solving
a goal with respect to the requested and provided functionalities. The common approach
for this is to consider the initial usage conditions and the final effects of Web services and
match this with the requirements defined in the goal, while abstracting from details on the
behavior and technical accessibility. For automating the discovery task, appropriate formal
descriptions and semantic matchmaking techniques are required.

Following the standard approach from formal software specification, requested and pro-
vided functionalities can most suitably be described in terms of preconditions that define
the usage conditions and effects that describe the results of an execution. Such a functional
description is the part of a formal specification that describes what is provided by a pro-
gram, i.e. a “black box” description of the provided functionality that abstracts from how
it is achieved. Commonly, preconditions and effects are defined as axioms over a signature
that defines the data structure and the relevant background knowledge [Hoare, 1969; Gan-
non et al., 1994; Fensel, 1995]. The same approach can be used to formally describe the
functionality provided by a Web service and the one requested by a goal, and upon this
define semantic matchmaking techniques for automated Web service discovery.

4.1. Foundations 61

Figure 4.2: Conceptual Abstraction Layers

To ensure a high retrieval accuracy for the discovery task, the functional descriptions
of goals and Web services should abstract from unnecessary details but they must properly
reflect the actual functionality. Moreover, they should support the employment of reason-
ably simple reasoning techniques for the necessary matchmaking tasks. For this, we define
a conceptual model that distinguishes three levels of abstraction as shown in Figure 4.2.

On the lowest level, we consider the executions of Web services and the solutions of goals
as sequences of states (s0, . . . , sm), i.e. from a start-state s0 via some intermediate states to
the end-state sm. This denotes the actual changes that can be observed in the world when a
Web service is executed. On the second level, we take a more abstract view that merely con-
siders the start- and end-states. Here, the abstraction of an observable execution is defined
as (s0, sm) where s0 is the start-state and sm is the end-state, along with the relationship be-
tween them. This covers the aspects that appear to be relevant for describing and reasoning
on requested and provided functionalities, and the formal relationship between level 3 and
level 2 is defined by an abstraction function (s0, sm) := abstration((s0, . . . , sm)). Finally,
on the highest abstraction level we consider the logical models of functional descriptions
that formally describe a Web service execution, respectively a solution for a goal. Here, a
functional description is a single first-order logic formula that describes the requested and
provided functionalities in terms of preconditions and effects, and its formal meaning is
defined on the basis of the second abstraction level.

The following elaborates this model in detail. The remainder of this section explains
the understanding of Web services and goals in more detail, and discusses the meaning of
a match in the context of Web service discovery. Then, we define the structure and formal
semantics of functional descriptions in Section 4.2, and on this basis we specify the semantic
matchmaking techniques for our two-phased discovery framework in Section 4.3.

62 Chapter 4. Two-Phase Web Service Discovery

4.1.1 Understanding of Web Services and Goals

The following explains the conception of Web services and goals that underlies our approach.
We consider Web services on the level of their possible executions that are observable in the
world, and formally define the relationship between the lowest level and the second level of
the abstraction model outlined above. Then, we explain the meaning of goals that shall be
solved by Web services, and define the distinction of goal templates and goal instances.

Web Services

In accordance to the common understanding, we consider a Web service as a computational
facility that is invocable over the Internet via an interface (see Section 2.1.1). As an abstrac-
tion that is sufficient for our purposes, we define a Web service W as a pair W = (IF , ι)
where IF is the interface of W wherein a finite set of names (i1, . . . , in) is defined that
denotes all inputs that are required for invoking W , and ι is the implementation of W that
is executed when W is invoked.

In order to precisely examine the functionality of a Web service W , we consider its actual
executions that are observable in the world. For this, we follow the state-based model of
the world wherein Web services operate that has been presented in [Keller et al., 2006b].
Therein, a particular execution of W denotes a finite sequence of states τ = (s0, . . . , sm),
i.e. a change of the world from a specific start-state s0 via some intermediate states to a
certain end-state sm. Such an execution is triggered by the invocation of W with concrete
input values in a particular state of the world; we shall refer to this as an input binding β

in the following. The resulting execution of W is dependent on the input binding β and the
state of the world wherein it has been triggered. It terminates in a specific end-state, after
traversing possibly several intermediate states that are dependent on the behavior of W

and changes in the world that result from the execution of ι. In consequence, the individual
executions of W are unique and have exactly one start-state s0 and exactly one end-state
sm. Then, we can consider the overall functionality provided by W as the set of all its
possible executions; we shall denote this by {τ}W in the following. This can be further
differentiated into the distinct sets of possible executions of W for each valid input binding,
such that {τ}W =

⋃{τ}W (β) where {τ}W (β) denotes the set of possible executions of W

when it is invoked with a particular input binding β.
Figure 4.3 illustrates this understanding of Web services. For illustration, let us consider

a Web service for finding the best restaurant in a city. It expects a specific city as the input,
and returns the best restaurant in this city as the execution result. Imagine that this Web
service is invoked with city A at a state of the world when “Alfredo’s Ristorante” is ranked

4.1. Foundations 63

Figure 4.3: Executions of a Web Services

as the best restaurant in city A. This restaurant will then be returned as the execution
result. If the Web service is invoked with a different city as the input, naturally a different
restaurant will be returned as the execution result. Also, if the Web service is invoked with
city A at a different state of the world wherein another restaurant “Aux Michele” is ranked
better than “Alfredo’s Ristorante”, then this will be returned. Analogously, the executions
of more complex Web services can be observed as sequences of states whose structure is
determined by the actual communication between the client and the Web service.

This conception relates to the lowest level of the abstraction model outlined above.
In the context of Web service discovery, we are merely interested in the start- and end-
states of the possible Web service executions. For this, we define the tuple T = (s0, sm) as
an abstraction that merely considers the start-state s0 and the end-state sm of an actual
execution τ = (s0, . . . , sm). Every sequence of states that is observable in the world can
be represented by such an abstraction. When there are several executions τ1, . . . , τn of a
Web service with the same start- and end-state but with different sequences of intermediate
states, these are represented by the same T = (s0, sm) because this level of detail is not
differentiated any more. The following defines this formally.

Definition 4.1. Let τ = (s0, . . . , sm) be a finite sequence of states that can be observed in
the world as an actual execution of a Web service.

We define T = (s0, sm) as the abstraction of all τ = (s0, s1, . . . , sm−1, sm) with the start-
state s0 and the end-state sm.

64 Chapter 4. Two-Phase Web Service Discovery

This constitutes the second level of our abstraction model. Every execution of W that
is observable in the world as a sequence of states τ = (s0, . . . , sm) can be represented by an
abstraction T = (s0, sm) as defined above, and thus we can consider the overall functionality
of a Web service W as the set of its abstract executions {T }W .

Definition 4.2. Let W be a Web Service, and let {τ}W be the set of all its possible execu-
tions that can be observed as a finite sequence of states τ = (s0, . . . , sm) in the world.

{T }W = {T |T = (s0, sm) is the abstraction of a τ ∈ {τ}W } is the smallest set of all ab-
stract executions of W .

This allows us to focus on functional aspects while properly abstracting from details that
are irrelevant in the context of Web service discovery. There are two interesting properties
that follow from Definition 4.1. The first one is that there is a surjective mapping between
the actually observable executions τ ∈ {τ}W and the abstract executions T ∈ {T }W : the
executions τ = (s0, . . . , sm) with the same start- and end-state are represented by the same
T = (s0, sm), while for all other executions there is a one-to-one correspondence between
{τ}W and {T }W . In consequence, it further holds that every T ∈ {T }W is unique because
there can not be two abstract executions with the same start- and end-state.

Goals

We now turn towards the understanding of goals which formally describe the objectives that
clients want to achieve by using Web services. As discussed in Chapter 3, a goal describes
the desire of a client of getting from the current state of the world into a state wherein
the objective is achieved. In the state-based model, we can consider a sequence of states
τ = (s0, . . . , sm) from a start-state s0 to a desired end-state sm as a solution of a goal.
When a goal is solved by a suitable Web service, then the triggered execution is such a
solution and it exposes the properties of Web service executions as discussed above.

A central aspect of our approach is the distinction of goal templates as generic and
reusable objective descriptions that are kept in the system, and goal instances that repre-
sent specific client objectives by the instantiation of a goal template with concrete inputs.
Recalling from the conceptual model presented in Section 3.2.1, a goal template G describes
the objective to be achieved on the schema level. The basic objective description is the re-
quested functionality that defines conditions on the initial state and the final desired state
of the world. Goal templates can further be described by decompositions into sub-goals as
well as by requirements on non-functional aspects (see Section 3.2.3). However, these as-
pects are not relevant for the Web service discovery task, and thus it appears to be sufficient

4.1. Foundations 65

to consider the requested functionality on the second level of our abstraction model. Then,
in accordance to the above definitions, we can understand the solutions for a goal template
G as a set {T }G where for each abstract solution T = (s0, sm) ∈ {T }G the start-state s0

satisfies the conditions on the initial state and the end-state sm satisfies the conditions on
the desired state of the world. The actual solutions that are observable in the world are the
executions of the Web services that are used to solve a goal.

A goal instance GI(G, β) describes a concrete client objective. This is defined at run-
time by instantiating a goal template G with an input binding β that defines the concrete
input values. The input binding β must satisfy the conditions defined in the functional
description of the corresponding goal template G; otherwise, the goal instance GI(G, β) is
an inconsistent goal description that can not be solved. If this is given, then the solutions
for GI(G, β) are a subset of those for its corresponding goal template G, i.e. it always
holds that {T }GI(G,β) ⊂ {T }G. For example, consider a goal template for finding the best
restaurant in a German city. A goal instance that defines Berlin (the German capital) as the
input binding is a valid instantiation, and its solutions are a subset of the best restaurants
in all German cities; a goal instance that defines Innsbruck (located in Austria) as the input
binding is not valid because the condition on the inputs is not satisfied. Furthermore, the
input binding β defined in a goal instance GI(G, β) provides the concrete input values that
are used to invoke and consume a suitable Web service for solving the goal instance. This is
necessary in order to trigger an execution of the Web service that will provide a solution for
the goal instance. The invocation and consumption of the Web service can be conducted
via client interfaces as explained in Section 3.2.2.

4.1.2 The Meaning of a Match

After having defined the relevant conceptual entities, we can now turn towards the challenge
of Web service discovery. The aim is to find Web services that are suitable for solving a goal
with respect to the provided and the requested functionality. As the basis for the following
specifications, we define the notion of a match as the basic condition under which a Web
service is usable to solve a goal under functional aspects.

We consider a match to be given if the Web service can provide an execution that is a
solution for the goal. For the functional suitability it is sufficient to consider the abstract
executions of Web services and the abstract solutions of goals on the second level of our
abstraction model as defined above. Figure 4.4 illustrates this, and below we provide the
formal definition of a match for goal templates and for goal instances. These conditions are
evaluated by the semantic matchmaking techniques that are defined in Section 4.3.

66 Chapter 4. Two-Phase Web Service Discovery

Figure 4.4: The Meaning of a Match

Definition 4.3. Let W be a Web service, let G be a goal template, and let GI(G, β) be a goal
instance that instantiates G with an input binding β. Let T = (s0, sm) be the abstraction of
sequences of states τ = (s0, . . . , sm). We define the following sets:

{T }G := possible abstract solutions for G

{T }W := possible abstract executions of W

{T }GI(G,β) ⊂ {T }G := possible abstract solutions for GI(G, β) that defines β

{T }W (β) ⊂ {T }W := possible abstract executions of W when invoked with β

We define the basic conditions for the functional suitability of W for solving a goal as:

(i) match(G,W) : ∃T . T ∈ ({T }G ∩ {T }W).
(ii) match(GI(G, β),W) : ∃T . T ∈ ({T }GI(G,β) ∩ {T }W (β)).

This defines that a Web service W is usable for solving a goal template G under func-
tional aspects if there exists at least one abstract execution of W that is an abstract solution
for G (cf. clause (i)), and that W is usable for solving a goal instance GI(G, β) if there is
at least one abstract execution of W that is an abstract solution for GI(G, β) when W is
invoked with the input binding β that is defined in the goal instance (cf. clause (ii)).

Due to the instantiation relationship of a goal instance GI(G, β) and its corresponding
goal template G it holds that {T }GI(G,β) ⊂ {T }G. Because of this, it also holds that a
Web service W that is usable for solving GI(G, β) is also usable for the corresponding goal
template G: if W can provide an abstract execution T = (s0, sm) such that T ∈ {T }GI(G,β),
then also T ∈ {T }G. We can express this as match(GI(G, β), W) ⇒ match(G,W). As the
logical complement, it then also holds that ¬match(G,W) ⇒ ¬match(GI(G, β),W) 1, i.e.
that a Web service that is not usable for a goal template is also not usable for any of its goal

1This refers to the following tautology of two terms a, b: a ⇒ b ⇔ ¬a ∨ b ⇔ ¬b ∨ a ⇔ ¬b ⇒ ¬a.

4.2. Functional Descriptions 67

instances. This constitutes the basis of our two-phase approach for Web service discovery as
introduced above: the suitable Web services for goal templates can be determined at design
time, and only these need to be inspected to detect the actually suitable Web services for
goal instances at runtime (see Figure 4.1). The following defines the formal descriptions for
goals and Web services and the necessary semantic matchmaking techniques for this.

4.2 Functional Descriptions

This section formally defines functional descriptions for Web services and goals. In order
to provide a sophisticated basis for automated Web service discovery with a high retrieval
accuracy, the aim is to define sufficiently rich functional descriptions with accurate formal
semantics that allow us to precisely describe the provided and requested functionalities.

For this, the following first identifies the requirements for functional descriptions and
examines the state-of-the-art in the field of Semantic Web services. Then, we define the
structure and the formal meaning of functional descriptions on the basis of the conceptual
model explained above. Finally, we define the representation of a functional description as a
single first-order logic formula that allows us to deal with them in terms of classical model-
theoretic semantics, which denotes the third level of our abstraction model. We illustrate
the definitions within our running example and discuss the limitations of this approach.

4.2.1 Requirements and State of the Art

As outlined above, the concept of functional descriptions is a standard approach in AI
technologies for formally describing available computational resources and reasoning on
their suitability to solve a given problem. Commonly, these are declarative specifications
where preconditions specify the usage conditions and effects that describe the results of
a regular execution. One of the first calculi for this has been presented in [Hoare, 1969]
where a so-called Hoare triple {P} C {Q} describes a command C as an executable piece
of code by a set of preconditions P and a set of effects Q that are defined in predicate logic.
The intuitive reading is that whenever P holds before the execution of C, then Q will hold
afterwards. This has served as the basis for the definition and usage of formal functional
descriptions in several AI techniques, e.g. in AI planning for describing the functionality
of available operators [Fikes and Nilsson, 1971] or in formal software specification [Gannon
et al., 1994], and several formal specification languages have been developed for this, e.g.
algebraic specifications [Bidoit et al., 1991], formal development methods like VDM [Jones,
1990] and Z [Diller, 1994], and in knowledge engineering [Fensel, 1995].

68 Chapter 4. Two-Phase Web Service Discovery

The same approach can be used to formally describe the overall functionality that is
provided by a Web service or the one requested by a goal. On the basis of the results from
previous works and with respect to the understanding of Web services and goals discussed
above, we can identify the following requirements on functional descriptions in order to
precisely describe provided and requested functionalities:

1. a sufficiently rich specification language should be used for defining the preconditions
and effects, and functional descriptions should be specified on the basis of domain
ontologies that define the necessary data structures and the background knowledge
in a meaning preserving manner

2. apart from describing the usage conditions (= preconditions) and the possible execu-
tion results (= effects), also the computational in- and outputs should be considered
as a primary aspect of Web services

3. the relationship between the possible start- and end-states should be defined explicitly,
i.e. the formal dependencies between the preconditions and the effects; this is in
particular important in order to precisely describe the functionality of Web services
whose execution results are dependent on the provided inputs

4. the definition of precise formal semantics for functional descriptions is a pre-requisite
for specifying sophisticated semantic matchmaking techniques and for the employ-
ment of reasoning techniques for automated Web service discovery.

Analyzing the state-of-the-art in Semantic Web services reveals that most approaches
do not satisfy these requirements in a sufficient manner. We here examine the functional
description defined in the most prominent frameworks as presented in Section 2.1.3, while
we shall discuss other related works below in Section 4.5. In OWL-S [Martin, 2004], the
functional description is part of the service profile and is defined in terms of the expected
inputs, the provided outputs, preconditions that specify conditions before the Web service
can be invoked, and effects that hold after a successful execution (short: IOPE). We find the
same description model within SWSF [Battle et al., 2005] for describing the functionality
that is realized of by process. The descriptions are specified in the OWL ontology language,
and domain ontologies define the used terminology and background knowledge. However,
the IOPE-elements are defined in a detached manner so that their dependency can not be
specified explicitly; also, a formal semantics of functional descriptions is not defined.

In WSMO [Lausen et al., 2005], functional descriptions are called capabilities that are
defined in terms of preconditions, assumptions, postconditions, and effects. Each element

4.2. Functional Descriptions 69

is specified as a logical statement in the WSML language on the basis of domain ontologies;
so-called shared variables whose scope is the complete capability are used to define the
logical dependencies between the distinct elements. The motivation beyond this model is
the distinction of computational aspects from other changes in the world that result from
executing Web services [Fensel et al., 2006]. For the former, the preconditions constrain
the expected inputs and the postconditions define the computational results; for the latter,
assumptions specify further conditions that need to hold in order to invoke the Web service,
and the effects define the changes in the world that result from a successful execution. The
in- and outputs are defined within the interface descriptions of Web services. However, a
precise formal semantics of WSMO capabilities has not yet been defined.

While the above frameworks use functional descriptions to describe the overall func-
tionality of a Web service, the WSDL-S approach uses preconditions and effects to formally
describe the usage conditions and execution results of individual operations in a WSDL doc-
ument [Akkiraju et al., 2005]. The conditions are defined by referring to a respective axiom
in the domain ontology that is used for annotating the WSDL document; the description of
the overall functionality is limited to a keyword-based categorization. The same approach
is supported in SAWSDL [Farrell and Lausen, 2007]; however, the annotation of operations
is restricted to concepts which limits the expressivity to a keyword-based description. Al-
though these descriptions can be useful to determine the usage conditions and order of the
operations for consuming a Web service, we do not consider this approach to be suitable for
supporting Web service discovery wherein we are interested in the overall functionalities.

4.2.2 Definition and Semantics

The following defines the functional descriptions that we shall use to precisely describe the
overall functionality provided by a Web service as well as the one requested by a goal. The
aim is to adequately satisfy the requirements identified above and therewith to overcome
the deficiencies of the functional descriptions defined in prominent SWS frameworks.

We commence with defining the structure of functional descriptions. We use first-order
logic (FOL, [Smullyan, 1968]) as the specification language, and extend this with additional
symbols for specifying the logical dependencies between the description elements. Then, we
define the formal meaning of functional descriptions on the second level of our abstraction
model that considers the abstract executions of Web services, respectively the abstract
solution for goals. Finally, we define the representation of a functional description as a
single FOL formula that allows us to consider provided and requested functionalities in
terms of logical models and therewith constitutes the third level of our abstraction model.

70 Chapter 4. Two-Phase Web Service Discovery

Elements and Structure

In accordance to the common approach, we define a functional description as a declarative
specification that describes the overall functionality provided by a Web service or requested
by a goal in terms of preconditions that specify conditions on the possible start-states and
effects that describe the possible end-states. These are defined on the basis of domain on-
tologies, and, with respect to the requirements identified above, we further define functional
descriptions as follows:

• we use classical first-order logic (FOL) to specify preconditions φpre and effects φeff ,
and define an extended signature Σ? that consists of static symbols that are not
changed by a Web service execution and dynamic symbols that are changed

• we explicitly specify the inputs and outputs as part of the functional description: the
inputs are defined by a set of variables IN = (?i1, . . . , ?in) which are constrained in
the precondition φpre, and the output variables ?o1, . . . , ?on are defined in the effect
φeff and explicitly denoted by the predicate out()

• we specify the dependency between the start- and the end-states by a set Vfree of free
variables that occur as common variables in both the precondition φpre and the effect
φeff ; usually, the free variables correspond to the input variables IN , in particular for
functionalities whose expected results dependent on the provided inputs.

Definition 4.4. A Functional Description for a Web service or for a goal is defined as a
5-tuple D = (Σ?, Ω, IN , φpre, φeff) such that:

(i) Σ? = ΣS ∪ ΣD ∪ Σpre
D is a signature over first-order logic (FOL) that consists of

static symbols ΣS, dynamic symbols ΣD, and their pre-variants Σpre
D which are

interpreted for an abstract sequence of states T = (s0, sm) such that:
- for all symbols α ∈ ΣS : α(s0) = α(sm)
- for all symbols α ∈ ΣD : α(s0) 6= α(sm)
- for all symbols α ∈ Σpre

D : αpre(sm) = α(s0)
(ii) Ω defines consistent background knowledge in terms of domain ontologies

(iii) IN = (?i1, . . . , ?in) is the set of input variables; an input binding is a total function
β : (?i1, . . . , ?in) → U that assigns objects of the universe U to each ?i ∈ IN

(iv) the precondition φpre is a FOL formula that constrains the possible start-states
wherein a set Vfree of free variables occurs with IN ⊆ Vfree

(v) the effect φeff is a FOL formula that constrains the possible end-states wherein
- the same set Vfree of free variables as in φpre occurs with IN ⊆ Vfree

- the set of output variables ?o1, . . . , ?on are denoted by the predicate out().

4.2. Functional Descriptions 71

This defines the elements and the structure of functional descriptions in order to pre-
cisely describe the overall functionality provided by a Web service as well as the one re-
quested by a goal. While we shall discuss an example below in Section 4.2.3, the following
explains the central aspects of the definition in more detail.

The purpose of the extended signature Σ? defined in clause (i) is to precisely describe
the changes on the values of logical symbols that are performed by a Web service execution.
For this, we explicitly define dynamic symbols ΣD whose value is changed by an execution,
while the static symbols ΣS remain unchanged; the meaning of all symbols and the relevant
background knowledge is defined in a domain ontology (cf. clause (ii)). The pre-variants
Σpre

D of dynamic symbols, denoted by a suffix pre, can be used within the effect formulae
to explicitly refer to the value of a dynamic symbol in the start-state of an execution.
For example, consider a functionality for a bank account withdrawal. The precondition
φpre : account(?a)∧balance(?a) ≥?x defines the account, its initial balance, and the amount
that shall be withdrawn, and the effect φeff : account(?a)∧balance(?a) = balancepre(?a)−?x
states that the resulting balance is the initial value minus the withdrawn amount. Here, the
function symbol balance() is a dynamic symbol. In the effect, we refer to its initial value
by the pre-variant balancepre() in order to precisely describe the performed value change.
This follows a standard approach for denoting the relationship between the values of logical
symbols at different states of the world [Genesereth and Nilsson, 1987].

The clauses (iii) - (v) define our approach for explicitly defining the relationship between
the possible start- and end-states. The precondition and the effect define conditions on
different states of the world, and thus φpre and φeff each denote a closed FOL formula. To
explicate their logical dependency, we define a set Vfree(?v1, . . . , ?vm) of free variables that
occur commonly in both the precondition φpre and the effect φeff . A variable v ∈ Vfree

is not locally bound to φpre or to φeff , so that under a variable assignment (v|value) the
value refers to the same object in the universe U at both the start- and the end-state of a
particular execution. We assume that in most cases the free variable that occur in D are the
same as those that define the required inputs, i.e. Vfree = IN . Then, the value assignment
for the free variables is defined via an input binding β that is in any case required for
defining a goal instance and to actually invoke a Web service. For instance in the above
example, the required inputs are the bank account ?a and the withdrawal amount ?x. These
two variables denote the data items that that constitute the dependency between the start-
and the end-state, and thus they occur as free variables in both the precondition and the
effect. In the case that the modeling of a functional description requires free variables that
are not required as an input, we define an implicitly universally quantified formula of the
form ∀v1, . . . , vn(φpre, φeff) where v1, . . . , vn ∈ Vfree(φpre) ∪ Vfree(φeff) \ IN .

72 Chapter 4. Two-Phase Web Service Discovery

The final aspect that requires further explanation is the definition of the computational
outputs in a functional description. These are defined as as bound variables that are explic-
itly denoted by the predicate out(?o1, . . . , ?on) in the effect φeff of a functional description,
cf. clause (v). These denote the final outputs that are, respectively shall be obtained from a
successful Web service execution. A way to precisely specify an output is a statement of the
form ∀?o. out(?o) ⇔ φ(?o) where the expression φ(?o) is the part of φeff that constrains the
output variable ?o. The universal quantification along with the logical equivalence states
that ?o is the output of every possible execution for which φ(?o) is satisfied. However, the
outputs can also be defined by formulae with a different structure.

Formal Semantics

We now define the formal meaning of functional descriptions to enable logic-based reasoning
on them. For this, the following defines the conditions under which a functional description
D precisely describes the functionality provided by a Web service W , which we shall denote
as W |= D. We here consider the overall functionality of W as the set of its abstract
executions {T }W in accordance to Definition 4.2. The expression s, β |= φ states that the
FOL formula φ is satisfied at a certain state s under an input binding β that defines a value
assignment for each of the input variables defined in D, cf. clause (iii) of Definition 4.4.

Definition 4.5. Let W = (IF , ι) be a Web service, and let {T }W be the set of all its
possible abstract executions. Let D = (Σ?, Ω, IN , φpre, φeff) be a functional description, and
let β : (?i1, . . . , ?in) → U be an input binding for D.

W provides the functionality described by D, denoted by W |= D, if and only if:
(i) there is a bijection π : IN → IF such that D defines a corresponding

input variable ?i ∈ IN for each input i ∈ IF that is required by W
(ii) for every input binding β under consideration of the domain ontology Ω and

the interpretation of dynamic symbols ΣD and their pre-variants Σpre
D it holds

for all T = (s0, sm) ∈ {T }W that if s0, β |= φpre then sm, β |= φeff .

This states that a functional description D precisely describes the functionality of a Web
service W if two conditions are satisfied. As the first one, clause (i) requires a one-to-one
correspondence of the input variables defined in D and the inputs required by the Web
service. This compatibility is necessary in order to enable the invocation of W via an input
binding that is defined on the semantic level. The mapping to the syntactical level is usually
defined by the grounding part of a Semantic Web service description (see Section 2.1.3).
As the second condition, clause (ii) defines the formal semantics of D with respect to the

4.2. Functional Descriptions 73

understanding of Web services on the second level of our abstraction model. It states that
if under a specific input binding β the start state s0 of an abstract execution T = (s0, sm)
of W satisfies the precondition φpre, then the end-state sm must satisfy the effect φeff . This
must hold for every possible execution of W : if there is a T ∈ {T }W for which this does not
hold, then D does not properly describe the overall functionality provided by W . We refer
to this as implication semantics which requires that if the precondition is satisfied then also
the effect must be satisfied; when the precondition is not satisfied, we can not make any
statement about the behavior of W . This corresponds to the formal meaning of functional
descriptions defined in earlier works as discussed above in Section 4.2.1.

The structure and formal meaning of the functional descriptions for goals is analogous.
For a goal template G, the functional description DG formally describes the set of its possible
abstract solutions {T }G. In accordance to Definition 4.4, the precondition φpre describes
possible start states, and the effect φeff defines conditions on the final desired states wherein
the objective is achieved. The set IN = (?i1, . . . , ?in) defines the required inputs, and the
computational outputs that are expected from Web services are explicitly defined in the
effect φeff . A goal instance GI(G, β) instantiates a goal template G by defining an input
binding β : (?i1, . . . , ?in) → U for the input variables IN defined in the functional description
DG. The formal semantics is analog to Definition 4.5: for all solutions of the goal instance
T = (s0, sm) ∈ {T }GI(G,β) holds that, under the given input binding β, if s0, β |= φpre

then sm, β |= φeff . As discussed above, we require a goal instance GI(G, β) to be a valid
instantiation of a goal template G; otherwise, GI(G, β) is an inconsistent goal description
and we can not make any statement about its possible solutions. This is given if both the
precondition φpre and the effect φeff defined in DG are satisfiable under the input binding
defined in GI(G, β); we shall denote this by GI(G, β) |= G in the following. Then, the
solutions {T }G for a goal template G is the set of the solutions of all possible goal instances
GI(G, β) where GI(G, β) |= G is given.

Representation as a Single Formula

After having defined the structure and the meaning of functional descriptions, we now turn
towards the third level of our abstraction model that considers requested and provided
functionalities as the logical models of a single FOL formula. For this, the following defines
the representation of a functional description as a first-order logic structure that maintains
the formal semantics as defined above. The aim is to ease the handling of functional
descriptions, and in particular to facilitate the definition of the matchmaking techniques for
Web service discovery in terms of classical model-theoretic semantics.

74 Chapter 4. Two-Phase Web Service Discovery

Definition 4.6. A Functional Description D of a Web service or a goal is represented by
a 4-tuple DFOL = (Σ?, Ω?, IN , φD) such that:

(i) Σ? = ΣS ∪ ΣD ∪ Σpre
D is a signature with dynamic symbols and their pre-variants

(ii) Ω? = Ω ∪ [Ω]Σpre
D

defines consistent background knowledge in terms of ontologies

(iii) IN = (?i1, . . . , ?in) is the set of input variables
(iv) φD is a FOL formula of the form [φpre]ΣD→Σpre

D
⇒ φeff where:

- φpre is the precondition with a set Vfree ⊇ IN as the only free variables
- φeff is the effect wherein the same set Vfree ⊇ IN of free variables occurs

and the output variables ?o1, . . . , ?on are denoted by the predicate out()

- [φ]ΣD→Σpre
D

is the formula derived from φ by replacing every dynamic

symbol α ∈ ΣD by its corresponding pre-variant αpre ∈ Σpre
D .

This essentially defines the representation of a functional description as a single FOL
formula. For this, we take a functional description D as defined in Definition 4.4 above,
and explicitly define the implication semantics from Definition 4.5 within the FOL formula
φD that defines a logical implication between the precondition and the effect formulae, cf.
clause (iv). To properly handle the explicitly specified value changes of logical symbols
within φD, the renaming function [φ]ΣD→Σpre

D
replaces the dynamic symbols that occur

in the precondition φpre by their pre-variant. For illustration, let us recall the bank ac-
count withdrawal example discussed above. By the renaming function, we obtain φD =
(account(?a) ∧ balancepre(?a) ≥?x) ⇒ (account(?a) ∧ balance(?a) = balancepre(?a)−?x),
which is a single FOL formula wherein the initial and the final balance are described by
distinct symbols. For this, we need to augment the terminology and background knowl-
edge such that for each dynamic symbol α ∈ ΣD the meaning of αpre is defined in the
extended domain ontology Ω?, cf. clause (ii). All other elements of DFOL are the same as
in Definition 4.4: the extended signature Σ? explicitly defines the dynamic symbols for an
individual functional description, and the logical dependency of the precondition and the
effect is defined by the occurrence of the same free variables in both φpre and φeff , which
usually correspond to the required input variables IN = (?i1, . . . , ?in).

This allows us to deal with functional descriptions on the basis of logical models, i.e. Σ?-
interpretations that satisfy DFOL. In particular, there is a bijection between the models of
DFOL and the abstract executions {T }W of a Web service W that provides the functionality
described by D. A Σ?-interpretation I is a model of DFOL if φD is satisfied under an input
binding β, i.e. if I, β |= φD. Because every abstract execution T = (s0, sm) of W is unique
in accordance to Definition 4.2, it holds that W |= D if every model of DFOL describes
exactly one T ∈ {T }W . The following defines this formally.

4.2. Functional Descriptions 75

Figure 4.5: The Meaning of a Functional Description

Proposition 4.1. Let W be a Web service, and let {T }W be the set of all possible ab-
stract executions of W . Let D be a functional description that is represented by DFOL =
(Σ?, Ω?, IN , φD), and let β : (?i1, . . . , ?in) → U be an input binding for D.

W provides the functionality described by D, denoted by W |= D, if and only if:
(i) every Σ?-interpretation I with I |= Ω? and I, β |= φD under every input binding

β describes a T ∈ {T }W , and
(ii) every T ∈ {T }W is described by a Σ?-interpretation I with I, β |= φD and I |= Ω?

under every input binding β.

Referring to Appendix A.1 for the proof, this states that a Web service W provides the
functionality described by D if each of its possible executions corresponds to exactly one
model of DFOL and vice versa. A state s of the world is constituted by the concrete objects
that exist at this point in time. This can be described by an interpretation that assigns
concrete objects of the universe U to the symbols in a logical formula. Analogously, we
can define a Σ?-interpretation that describes the objects that exist at both the start- and
the end-state of a sequence of states. Following clause (iv) of Definition 4.6, it holds that
such a Σ?-interpretation I satisfies φD under a given input binding β if I, β |= φpre and
I, β |= φeff . This describes an abstract sequence of states T = (s0, sm) where s0, β |= φpre

and sm, β |= φeff . In accordance to Definition 4.5, this is a possible abstract execution of a
Web service W with W |= D. If this holds for every T ∈ {T }W , then D precisely describes
the functionality provided by W ; if there is a model of DFOL that does not describe a
T ∈ {T }W , then W |= D is not given. Figure 4.5 illustrates this relationship, which holds
analogously for functional descriptions that describe the possible solutions of goals.2

2A stronger definition of DFOL would be φD+ = [φpre]Σpre
D →ΣD

∧ φeff such that only those T are
described for which the precondition is satisfied. However, the implication semantics in Definition 4.6
better reflect the nature of Web services, and it holds that φD+ |= φD (see Appendix A.1).

76 Chapter 4. Two-Phase Web Service Discovery

This completes the definition of our 3-leveled abstraction model. On the lowest level
we consider the executions of Web services and the solutions of goals as finite sequence of
states that are actually observable in the world. On the second level we abstract this so that
merely the start- and end-states are considered, and on the highest level the representation
of functional descriptions defined above allows us to consider the overall requested and pro-
vided functional as the logical models of a single FOL formula. On this basis, we can define
the necessary semantic matchmaking for our two-phase discovery framework in terms of
classical model-theoretic semantics, which eliminates the need for more complex formalisms
that would be required for dealing with dynamic specifications. We therewith follow the
approach of the Situation Calculus for dealing with entities in a state-based model of the
world in terms of first-order logic as a static knowledge representation language [McCarthy,
1963]. A central difference is that the Situation Calculus uses fluents as non-standard FOL
symbols to explicitly defines states, while our functional descriptions merely describe the
dependency of start- and end-states on the data level without any notion of states.

4.2.3 Illustrative Example

To illustrate the above definitions, the following exemplifies the specification of functional
descriptions for goals and Web services in the best-restaurant-search example. We consider
a goal template G for finding the best restaurant in a city that is requested as an input,
and a Web service W that provides the best French restaurant in a given city.

Table 4.1 shows the functional descriptions for both G and W . We model DG with
one IN -variable that is constrained to be a city in the precondition φpre. The effect φeff

defines that a restaurant shall be obtained as the output which is located in the input city
and there is no better restaurant in the city. Analogously, DW describes the functionality
provided by the Web service W . The mere difference occurs in the effect: the output of W

is a French restaurant located in the input city such that there does not exist any better
French restaurant in the city. For both descriptions, the best restaurant ontology defines
that restaurants are located in cities and have exactly one distinct type, and it contains
axioms to specify that the predicate better(?r1, ?r2) denotes a partial order of restaurant
rankings; we shall discuss the modeling in more detail in Section 4.4. The upper part of
the table shows DG and DW in accordance to Definition 4.4, and the lower part shows their
representation within the FOL structure from Definition 4.6.

As explained above, the dependency between the preconditions and the effects is defined
by free variables that occur in both φpre and φeff . Here, the only variable of this type is ?x,
which at the same time is an input variable in both functional descriptions. We also specify

4.2. Functional Descriptions 77

Table 4.1: Examples for Functional Descriptions
Goal Web Service

“find best restaurant in a city” “provide best French restaurant in a city”
Ω: best restaurant ontology
IN : {?x}
φpre: city(?x)
φeff : ∀?y. out(?y) ⇔ (

restaurant(?y)
∧ in(?y, ?x)
∧ ¬∃?z.(restaurant(?z)
∧ in(?z, ?x)
∧ better(?z, ?y))).

Ω: best restaurant ontology
IN : {?x}
φpre: city(?x)
φeff : ∀?y. out(?y) ⇔ (

restaurant(?y)
∧ in(?y, ?x) ∧ type(?y, french)

∧ ¬∃?z.(restaurant(?z)
∧ in(?z, ?x) ∧ type(?z, french)
∧ better(?z, ?y))).

φDG : city(?x) ⇒ (
∀?y. out(?y) ⇔ (
restaurant(?y)
∧ in(?y, ?x)
∧ ¬∃?z.(restaurant(?z)
∧ in(?z, ?x)
∧ better(?z, ?y)))).

φDW : city(?x) ⇒ (
∀?y. out(?y) ⇔ (
restaurant(?y)
∧ in(?y, ?x) ∧ type(?y, french)

∧ ¬∃?z.(restaurant(?z)
∧ in(?z, ?x) ∧ type(?z, french)
∧ better(?z, ?y)))).

the computational outputs within φeff by a statement of the form ∀?o. out(?o) ⇔ φ(?o) as
explained above. This example does not contain any dynamic symbols, because neither the
goal expects nor the Web services performs value changes of variables, predicates, or function
symbols; however, we have illustrated this above within the bank withdrawal example. In
accordance to clause (iv) of Definition 4.6, the representation as a single FOL formula φD is
defined as a logical implication between φpre and φeff . Both φD-formulae shown in the table
can be transformed in to the prenex normal form such that all quantifiers are moved to the
front. When applying the conventional rules for this on the basis of the de Morgan’s laws,
then the formal meaning of the formulae will not be changed by such a normalization.

4.2.4 Limitations of the Approach

We conclude the definition of functional description with discussing the limitations of the
approach. In particular, we consider the problem of general undecidability that is concerned
with the computational complexity, and the Frame Problem that relates to the handling
of conditions in the world that are not affected by the execution of a Web service. Both
problems arise from the usage of first-order logic (FOL) as the specification language.

78 Chapter 4. Two-Phase Web Service Discovery

As mentioned above, the reason for using FOL is its high expressivity for defining
the preconditions and effects of functional descriptions, and also because it serves as an
umbrella for several static knowledge representation languages. We therewith follow the
approach of first defining the description elements and matchmaking techniques relevant for
the discovery task on a general level, while modeling restrictions for functional descriptions
to ensure desirable computational properties can be defined later on. We find the same idea
within other works for Semantic Web services, in particular in the SWSF framework that
uses first-order logic to axiomatize the description model for Web services (FLOWS) and
provides a FOL-based specification language (SWSL-FOL) [Battle et al., 2005].

A major drawback of FOL is the general undecidability. Related to the computational
complexity, this means that FOL allows the specification problems that can not be decided
by any algorithm, i.e. formulae whose validity in a logical theory can not be determined
[Börger et al., 1997]. This is downside of the high expressivity of FOL, and mainly results
from the support of function symbols and the arbitrary quantification in a formula. A central
motivation for the development of other logical languages is to ensure the decidability,
which is always a trade-off between the expressivity of a language and its computational
complexity. A prominent class of decidable languages are Description Logics (DL), a formal
subset of FOL [Baader et al., 2003]. The base description logic ALC is of polynomial
complexity (PSPACE-complete, [Horrocks et al., 1998]) but, on the other hand, it has a
very limited expressivity. The complexity of more expressive DLs is usually in exponential
time, e.g. ExpTime-complete for SHIQ or NExpTime-complete for SHOIN and OWL-DL
(see www.cs.man.ac.uk/∼ezolin/dl/ for details on this). While problems of polynomial
complexity can usually be solved effectively, this is not given for exponential complexity
with respect to the required time and space for the computation [Book, 1974].

However, the general decidability is a rather vague property for judging the suitability
of a logical language for a particular application purpose. Instead of merely considering the
general solvability of all problems that can possibly be defined by the language, it appears to
be more reasonable to deliberate the trade-off between the expressiveness and computational
complexity of a language in combination with the relevant reasoning tasks. In our context,
this refers to the semantic matchmaking conditions for Web service discovery. We can avoid
the undecidability for this by restricting the formulae that can be defined as preconditions
and effects of functional descriptions. A promising basis for this is the Bernays–Schönfinkel
class, which is a decidable subset of FOL that encompasses formulae without function
symbols where all existential quantifiers precede all the universal quantifiers when written
in prenex normal form [Bernays and Schönfinkel, 1928]. We shall discuss this in more detail
in the context of defining the semantic matchmaking techniques below in Section 4.3.1.

www.cs.man.ac.uk/~ezolin/dl/�

4.3. Semantic Matchmaking 79

Another general problem of using FOL is to properly handle conditions in the world
that are not affected by the execution of a Web service. Referred to as the Frame Problem,
the challenge is to properly describe the effects of an execution without the need of explic-
itly specifying everything that remains unchanged [McCarthy and Hayes, 1969]. Several
solutions have been elaborated for defining so-called frame axioms that explicitly specify
all conditions that are not changed by the execution [Shanahan, 1997]. An approach that
appears to be suitable for our framework is presented in [Reiter, 1991]. Therein, so-called
successor state axioms are defined to state that a condition is true if and only if (1) the
execution makes the condition true, or (2) the condition was previously true and the action
does not make it false. Following this, we can extend the formal semantics of a functional
description such that W |= D if for all T = (s0, sm) ∈ {T }W and for every consistent
formula ψ where φeff 6|= ψ holds that if s0, β |= φpre, ψ then s0, β |= eff , ψ.

4.3 Semantic Matchmaking

This section specifies the semantic matchmaking techniques for the two-phase Web service
discovery as introduced above (see Figure 4.1). The aim is to provide semantic means that
can precisely determine the usability of a Web service with respect to the matching condi-
tions on the goal template and the goal instance level from Definition 4.3 (see Section 4.1.2).
For this, we define the matchmaking techniques on the basis of the functional descriptions
for goals and Web services as specified above, which allow us to precisely describe requested
and provided functionalities on the level of possible executions of Web services and solutions
for goals. We commence with semantic matchmaking on the goal template level, and then
define the necessary matchmaking techniques for Web service discovery on the goal instance
level. Finally, we illustrate the definitions in our running example.

4.3.1 Goal Template Level

As explained in the introduction of this chapter, Web service discovery on the level of goal
templates is performed at design time. The purpose is to detect those Web services out
of the available ones that are usable to solve a goal template under functional aspects;
this serves as a pre-filter for determining the actual Web services for a goal instance at
runtime. As the basic condition under which a Web service W is suitable for solving a goal
template G under functional aspects, we have defined a match(G,W) to be given if there is
an execution of W that is also a solution for G (cf. clause (i) of Definition 4.3). This needs
to be evaluated on the basis of the formal functional descriptions of G and W .

80 Chapter 4. Two-Phase Web Service Discovery

For this, we express the functional suitability of Web service W for solving a goal
template G in terms of matching degrees between their functional descriptions DG and DW

with W |= DW (cf. Definition 4.5). The degrees denote specific relationships between the
possible executions of W and possible solutions for G: four degrees – exact, plugin, subsume,
intersect – denote different situations wherein the basic matching condition is satisfied;
the disjoint degree denotes that a match is not given. Table 4.2 shows the definitions
of the matching degrees on the basis of the formal notions introduced in Section 4.2; we
shall discuss this below in more detail. For a better comprehensibility, we also provide a
visualization of the matching degrees in terms of Venn diagrams with respect to the abstract
executions of W and the abstract solutions for G as defined in Section 4.1.

Table 4.2: Definition of Matching Degrees for Web Service Discovery

exact(DG,DW)

Definition Ω? |= ∀β. φDG ⇔ φDW

Meaning T ∈ {T }G if and only if T ∈ {T }W

plugin(DG,DW)

Definition Ω? |= ∀β. φDG ⇒ φDW

Meaning if T ∈ {T }G then T ∈ {T }W

subsume(DG,DW)

Definition Ω? |= ∀β. φDG ⇐ φDW

Meaning if T ∈ {T }W then T ∈ {T }G

intersect(DG,DW)

Definition ∃β.
∧

Ω? ∧ φDG ∧ φDW is satisfiable

Meaning ∃T . T ∈ {T }G ∩ {T }W

disjoint(DG,DW)

Definition ∃β.
∧

Ω? ∧ φDG ∧ φDW is unsatisfiable

Meaning {T }G ∩ {T }W = ∅

4.3. Semantic Matchmaking 81

We define the criteria for the matching degrees over the representation of functional
descriptions by the FOL structure DFOL = (Σ?,Ω?, IN , φD) from Definition 4.6. The main
merit is that we can define the respective conditions in terms of conventional model-theoretic
semantics, and thus can employ reasoning environments for static knowledge representation
languages for the technical implementation of a discovery engine. This would be significantly
more complicated when defining the matching degrees in a state-based model.

Let us clarify the definition of the matching degrees. The condition for the exact degree
defines that – with respect to a consistent and homogenous background ontology – under
every possible input binding β every model of DG,FOL as the functional description of the
goal template G must also be a model of DW,FOL that describes the Web service W with
W |= DW , and vice versa. Following Proposition 4.1, this means that the abstract executions
of W and the abstract solutions for G must be exactly the same. Analogously, the meaning
of the other matching is as follows: the plugin degree is given if every solution for G can
be provided by W ; as the opposite, the subsume degree requires that every execution of W

is a solution for G. The intersect degree requires that there is at least one execution of W

that is also a solution of G, and the disjoint degree denotes that this is not given.

The matchmaking conditions for the three former degrees are defined as logical entail-
ment relations; the ones for the intersect and the disjoint degrees are defined as satisfiability
checks. We define the conditions via a quantification over input bindings β, which assign
concrete values to each of the input variables IN = (?i1, . . . , ?in) that are defined in a func-
tional description (cf. clause (iii) in Definition 4.4). As explained in Section 4.2.2, the input
variables are usually a subset of the free variables that define the dependency between the
precondition φpre and the effect φeff , and all other free variables are handled by an implicit
universal quantification. This ensures that the matchmaking conditions can be evaluated
because all free variables are instantiated, respectively bound on the outside.

This definition of the matching degrees on the basis of our functional descriptions for
goals and Web services ensures that always the relations between every single T ∈ {T }W and
T ∈ {T }G are considered, and not merely subset relations between the possible executions
of W and the solutions of G. Moreover, the matchmaking conditions ensure that the
signature compatibility between G and W is given, i.e. that DG and DW define the same or
at least semantically equivalent input variables: if this is not given, then there can not be
any β under which both φDG and φDW are satisfied. Therewith, the semantic matchmaking
techniques for Web service discovery on the goal template level as defined here ensure a
high retrieval accuracy for the design time discovery task, and also that a Web service W

that is functionally be suitable for solving goal template G can be properly invoked in order
to solve a goal instance GI(G, β) that is a valid instantiation of G.

82 Chapter 4. Two-Phase Web Service Discovery

Similar matching degrees have been defined in several other works on semantically en-
abled Web service discovery, e.g. [Paolucci et al., 2002; Li and Horrocks, 2003; Benatallah
et al., 2005; Keller et al., 2006a]. The central difference is that these works mostly define
the matching degrees to denote concept subsumption or logical entailment relations between
separate elements of functional descriptions, e.g. between the inputs or the outputs. In con-
trast, the matching degrees as defined here precisely describe the relationship between the
abstract executions of a Web service and the abstract solutions for a goal, which appears to
be a much more significant for the purpose of Web service discovery. While we shall discuss
related work in more detail in Section 4.5, the following defines possible restrictions on the
functional descriptions of goals and Web services which ensure a proper meaning and the
general decidability of the semantic matchmaking techniques.

The first restriction is concerned with the suitability of functional descriptions to de-
scribe meaningful requested and provided functionalities, which determines the explanatory
power of the matchmaking degrees. For this, we require the functional descriptions of Web
services and goals to be consistent, i.e. that DFOL is satisfiable which is given if there is
at least one Σ?-interpretation I and an input binding β such that I, β |= φD. If this is not
given, the matching degrees as defined above might become meaningless because we can not
determine any logical model that represents a possible execution of a Web service, respec-
tively a solution for a goal [Keller et al., 2006b]. Under the assumption that all functional
descriptions of goals and Web services are consistent, we can always use the highest possible
matching degree in order to properly denote the functional suitability of W for solving G

on the basis of the following formal relationships between the matching degrees.

Proposition 4.2. Let DG be the consistent functional description of a goal template G,
and let DW be the consistent functional description of Web service W such that W |= DW .
The following relations hold between the matching degrees of DG and DW :

(i) exact(DG,DW) ⇔ plugin(DG,DW) ∧ subsume(DG,DW)
(ii) plugin(DG,DW) ⇒ intersect(DG,DW)
(iii) subsume(DG,DW) ⇒ intersect(DG,DW)
(iv) ¬ intersect(DG,DW) ⇔ disjoint(DG,DW).

The second restriction is concerned with the modeling of functional descriptions in
order to warrant the decidability of the semantic matchmaking techniques. As discussed
in Section 4.2.4, the problem of undecidability results from using first-order logic (FOL) as
the specification language, and we can avoid this by restricting the modeling of functional
descriptions such that the conditions for the matchmaking degrees remain in a decidable
subset of FOL. We further have identified the Bernays–Schönfinkel class as a suitable FOL

4.3. Semantic Matchmaking 83

fragment for this, which warrants the decidability if a FOL formula does not contain any
function symbols and has a ∃∗∀∗ quantifier prefix when written in prenex normal form. With
respect to this, we can ensure the decidability of the matchmaking conditions by restricting
the modeling of functional descriptions and the used domain ontologies as follows.

Proposition 4.3. Let DG = (Σ?, Ω?, IN , φDG) be the functional description of a goal tem-
plate G, and let DW = (Σ?, Ω?, IN , φDW) be the functional description of a Web service W

with W |= DW .

The conditions for all matching degrees are decidable if:

(i) Ω? as well as φpre, φeff ∈ DG,DW do not contain any function symbols
(ii) all formulae φ ∈ Ω? have a ∃ ∗ ∀∗ quantifier prefix in prenex normal form
(iii) φDG and φDW do not have any existential quantifier in prenex normal form.

Referring to Appendix A.2 for the proof, this ensures the decidability of our seman-
tic matchmaking techniques while maintaining a high expressivity for modeling functional
descriptions. Clause (i) requires states that no function symbols occur, i.e. that every
symbol with one or more arguments is a predicate that can be evaluated to a truth value
and does not define a relationship between individuals, and clauses (ii) and (iii) ensure that
the condition for every matching degree is always a FOL formula wherein the existential
quantifiers precede the universal quantifiers. If this is given, then the matchmaking condi-
tions are satisfiability problems that remain in the Bernays–Schönfinkel fragment of FOL
and thus are decidable. The complexity class for this is NExpTime-complete [Lewis, 1980;
Papadimitriou, 1994]. Although this means that long processing times might occur for the
discovery task, in most real-world scenarios we can work with relatively simple functional
descriptions so that the matchmaking can be performed efficiently (see Chapter 6).

4.3.2 Goal Instance Level

We now turn towards the semantic matchmaking techniques for detecting suitable Web
services for goal instances at runtime. Recalling from above, a goal instance describes a
concrete client objective by instantiating a goal template with specific input values. Goal
instances are created at runtime, i.e. whenever a client specifies a concrete objective that
shall be solved by using Web services. Our two-phased framework for Web service discovery
requires two matchmaking operations for the goal instance level: the first one needs to ensure
that a goal instance is a valid instantiation of it corresponding goal template, and the second
one is concerned with the detection of functionally suitable Web services for a goal instance
(see Figure 4.1). The following defines the formal conditions for both operations.

84 Chapter 4. Two-Phase Web Service Discovery

Goal Instantiation

We commence with the goal instantiation for determining the validity of a goal instance
defined by a client. We have defined a goal instance GI(G, β) as a pair of the corresponding
goal template G and an input binding β that defines concrete values for the input variables
defined in DG as the functional description of G. As discussed above, we require a goal
instance GI(G, β) to be a valid instantiation of G, which is given if the input binding β

that is defined in GI(G, β) satisfies the functional description DG of its corresponding goal
template at the time of the instantiation. We denote this by GI(G, β) |= G, and we can
only make precise statements about the solutions of GI(G, β) if this is given. The following
defines the goal instantiation condition formally.

Definition 4.7. Let G be a goal template, and let DG = (Σ?,Ω?, IN , φDG) be the functional
description of G. Let GI(G, β) be a goal instance that instantiates G at the time t0 by
defining an input binding β : (?i1, . . . , ?in) → U for DG.

GI(G, β) is a consistent instantiation of G, denoted by GI(G, β) |= G, if, at the time t0

and with respect to Ω?, φDG is satisfiable under the input binding β defined in GI(G, β).

Web Service Discovery

We now turn to the discovery of suitable Web services for a goal instance. In our conceptual
model, the input binding β defined in a goal instance GI(G, β) with GI(G, β) |= G is used
to invoke a Web service W in order to solve the goal instance: only then an execution of W

can denote a solution for GI(G, β). With respect to this, we have defined a match on the
goal instance level to be given if a solution for a goal instance GI(G, β) can be provided by
a Web service W when it is invoked with the input binding β defined in the goal instance
(cf. clause (ii) from Definition 4.3 in Section 4.1.2). The following explains how this can be
evaluated on the basis of the formal descriptions.

An input binding β : (?i1, . . . , ?in) → U is a total function that defines a variable
assignment over the universe U for the input variables IN of a functional description D (cf.
clause (iii) in Definition 4.4). Given an input binding β = (i1|value1, . . . , in|valuen), we can
instantiate D by replacing all occurrences of the IN -variables in φpre and φeff by the concrete
values defined in β. We shall denote such an instantiated functional description by [D]β in
the following. This does not contain any free variables: the IN -variables are instantiated
with the concrete values defined in β, and all other free variables are implicitly universally
quantified (see Section 4.2.2). Given a goal instance GI(G, β) with GI(G, β) |= G, we
can instantiate DG as the functional description of the corresponding goal template G so

4.3. Semantic Matchmaking 85

that [DG]β describes the functionality requested by the goal instance. Analogously, [DW]β
describes the functionality of a Web service W when it is invoked with β defined in GI(G, β).
On this basis, we can evaluate the condition for match(GI(G, β),W) as follows.

Definition 4.8. Let DG = (Σ?, Ω?, IN , φDG) be the functional description of a goal template
G, and let GI(G, β) be a goal instance that defines an input binding β : (?i1, . . . , ?in) → U
for DG such that GI(G, β) |= G. Let DW = (Σ?, Ω?, IN , φDW) be the functional description
of a Web service W with W |= DW , and let [D]β be the β-instantiation of a functional
description D wherein every occurrence of each IN -variable is instantiated with the concrete
value assignment defined in the input binding β.

W is functionally usable to solve GI(G, β) if a Σ?-interpretation I exists such that

I |= Ω? and I |= [φDG]β and I |= [φDW]β.

This states that a match between a goal instance GI(G, β) and a Web service W is given
if – with respect to a consistent and homogenous background ontology – there is a common
model for [DG,FOL]β and for [DW,FOL]β, i.e. for the FOL representations of the functional
descriptions of the corresponding goal template G and of the Web service W that are both
instantiated with the input binding β defined in GI(G, β). Formally, this means that the
union of the formulae Ω? ∪ {[φDG]β, [φDW]β} must be satisfiable, i.e. that under the input
binding β defined in GI(G, β) there must exist a Σ?-interpretation I which satisfies the
extended domain knowledge Ω? and is a model for the instantiated FOL representations of
the functional descriptions of G and W . In accordance to Proposition 4.1, this describes a
T = (s0, sm) that is a solution for GI(G, β) and can also be provided by W when invoked
with β. We therewith obtain a means for evaluating the basic matching condition on the
goal instance level on the basis of the available formal descriptions.

Definition 4.8 also ensures that the input binding β defined in a goal instance provides
concrete values for the inputs that are needed to actually invoke the Web service. For this,
it must hold that (1) there must be a bijection π1 : INDG

→ INDW
such that for every input

variable defined in DW there is a corresponding input variable in DG , and (2) there must
be a bijection π2 : INDW

→ IF such that for every input required by the Web service there
is a corresponding input variable defined in DW ; this is in any case required for W |= DW

(cf. Definition 4.5 in Section 4.2.2). If this is given, then a Web service W can actually
be invoked via a goal instance GI(G, β) with GI(G, β) |= G because there is a concrete
value assignment for every IN -variable of DG, and these values can subsequently be used
to invoke W . If any of the two bijections does not hold, then the matching condition from
Definition 4.8 can not be satisfied because there can not be any Σ?-interpretation that is a

86 Chapter 4. Two-Phase Web Service Discovery

model for [φDG]β and [φDW]β under the input binding defined in GI(G, β). We are aware
of that this is not trivial to realize in practice, because it requires a semantic mapping
between the input variables of the functional descriptions and the inputs expected by the
Web service. Besides, this may require mediation when incompatible ontologies are used in
the functional descriptions of the goal and the Web service [Cimpian et al., 2006]. However,
in order to invoke a Web service there must be concrete values for all required inputs, and
the two bijections define the conditions under which this is given for goal instances.

Another relevant aspect is the handling of incomplete input bindings, i.e. if the β

defined in a goal instance GI(G, β) misses concrete value assignments for some of the input
variables specified for the goal template G. As discussed in Section 3.2.1, this might occur
when concrete values for some input variables are not known at the time of the goal instance
formulation. For this situation, we can maintain the applicability of the matchmaking
techniques specified above by specifying unnamed constants as placeholders for the missing
input values. For example, consider a functional description DG wherein the input variable
?ij ∈ IN is constrained to be of type person in the precondition, and let us assume that
this is the only IN -variable for which an input binding β does not define a value assignment.
We then define a constant p with person(p), and add the value assignment (?ij |p) to the
input binding β. Therewith, we can extend the previously incomplete input binding so that
it eventually defines concrete values all input variables. The actual value for an initially
missing variable assignments can then be determined during the goal resolution process.

Definition 4.8 above defines the basic semantic matchmaking condition for Web service
discovery on the goal instance level. However, within our two-phase discovery framework
we assume that the results of design time discovery runs on the level of goal templates are
known at runtime. This means that we usually know the matching degree under which a
Web service W is usable for solving a goal template G as defined above in Table 4.2, and
we can use this knowledge to simply the necessary matchmaking effort for determining the
suitability of W for solving a goal instance GI(G, β) that instantiates G as follows.

Theorem 4.1. Let G be a goal template that is described by a functional description DG.
Let W be a Web service, and let DW be a functional description such that W |= DW . Let
GI(G, β) be a goal instance such that GI(G, β) |= G.

W is usable for solving GI(G, β) if and only if:

(i) exact(DG,DW) or
(ii) plugin(DG,DW) or
(iii) subsume(DG,DW) and

∧
Ω? ∧ [φDW]β is satisfiable, or

(iv) intersect(DG,DW) and
∧

Ω? ∧ [φDG]β ∧ [φDW]β is satisfiable.

4.3. Semantic Matchmaking 87

Referring to Appendix A.3 for the formal proof, this defines the functional suitability
of Web service W for solving a goal instance GI(G, β) under consideration of the matching
degree between W and the corresponding goal template G. Under both the exact and the
plugin degree W can be used for solving any goal instance GI(G, β) |= G because – due to
the goal instantiation condition and the definition of the matching degrees – it holds that
{T }GI(G,β) ⊂ {T }G ⊆ {T }W and T ∈ {T }GI(G,β) ⇔ T ∈ {T }W (β). Under the subsume
degree it holds that {T }G ⊇ {T }W , i.e. every execution of W can solve G but there can
be solutions of G that cannot be provided by W . Hence, W is only usable for solving
GI(G, β) if the input binding β defined in GI(G, β) can be used to invoke W . This is given
if there is a Σ?-interpretation that is a model for [φDW]β and the conjunction of the axioms
in Ω?. Under intersect as the weakest degree where match(G,W) is given, the complete
matchmaking condition for the goal instance level must hold because there can be solutions
for G that can not be provided by W and vice versa. The disjoint degree denotes that W

is not usable for solving G, and thus is also not usable for any of its instantiations.

We therewith obtain a semantic matchmaking technique for runtime Web service dis-
covery on the goal instance level that requires minimal matchmaking effort. This appears
to be desirable in real-world applications where the computational efficiency of a discovery
engine becomes a critical success factor. The integrated matchmaking conditions also guar-
antee the signature compatibility on the expected and the provided inputs, because we use
the same matchmaking conditions for the goal template and the goal instance level as de-
fined above. When the matchmaking on the goal template level is decidable in accordance to
Proposition 4.3, then also the necessary matchmaking on the goal instance level is decidable
because the goal instantiation condition as well as the additional matchmaking conditions
for Web service discovery are satisfiability problems that remain in the Bernays–Schönfinkel
fragment of FOL and work on the instantiated functional descriptions. Although the gen-
eral complexity for this is still NExpTime, this can usually be evaluated effectively, e.g. by
partial instantiation techniques that reduce the problem to a finite sequence of satisfiability
problems in propositional logic [Gallo and Rago, 1994].

4.3.3 Illustrative Example

In order to demonstrate the above specifications and to show the retrieval accuracy that is
achievable with the semantic matchmaking techniques, the following discusses examples for
Web service discovery within the best-restaurant-search scenario. We commence with an
example for discovery under the intersect matching degree between a goal template and a
Web service, and then discuss the matchmaking techniques under other degrees.

88 Chapter 4. Two-Phase Web Service Discovery

Discovery under the Intersect Degree

The following discusses the matchmaking techniques for the goal of finding the best restau-
rant in a city and a Web service that provides the best French restaurant in a city. This
is an example for the intersect degree and hence requires the full range of the additional
matchmaking on the goal instance level. We shall explain the technical implementation of
the semantic matchmaking techniques for this example below in Section 4.4.

We have already defined the functional descriptions for the goal template G and for the
Web service W above in Table 4.1 (see Section 4.2.3). Therein, the functional description
DG of the goal template defines one input variable ?x which is constrained to be a city in
the precondition φpre, and the effect φeff defines that the best restaurant in that city shall
be obtained as the output. Analogously, the functional description DW of the Web service
defines a city to be provided as an input, and the output is the best French restaurant in the
city. The best restaurant ontology provides the terminology and background knowledge for
DG and DW . It defines that restaurants are located in cities and have exactly one distinct
type, and the predicate better(?r1, ?r2) which states that a restaurant ?r1 is ranked to be
better than ?r2 along with axioms that specify the transitivity of the rankings.

For illustrating the semantic matchmaking techniques, it is sufficient to consider a city A

wherein the best restaurant is French and a city B wherein the best restaurant is not French.
We then define two input bindings β1 = (?x|A) and β2 = (?x|B), and examine the resulting
executions of W as well as the solutions for G and its goal instances under each input
binding. Table 4.3 below provides a concise overview of the relevant information for our
discussion. The first part shows the specifications for the three best restaurants in city A and
in city B as background ontologies Ω1, Ω2 ⊆ Ω. The second part shows the instantiations
of the functional description DG under both input bindings, i.e. [DG]β1 and [DG]β2 which
denote the functional descriptions of goal instances (cf. Definition 4.8). Analogously, the
third part shows [DW]β1 and [DW]β2 as the functional descriptions of W when instantiated
with the input bindings. Finally, the fourth part identifies Σ?-interpretations I which serve
as witnesses for demonstrating the matchmaking techniques.

We commence with discussing the matching degree between the goal template G and
the Web service W . We observe that under the input binding β1 there is a Σ?-interpretation
I1 which is consistent with Ω and satisfies both [φDG]β1 as the instantiated functional de-
scription of G and [φDW]β1 as the instantiated functional description of W . As explained
above, this represents an abstract execution of W that is also a solution for G. Thus,
match(G,W) is given, and also the condition for the intersect degree is satisfied (cf. Ta-
ble 4.2 in Section 4.3.1). Moreover, we observe from the right-hand column that under

4.3. Semantic Matchmaking 89

Table 4.3: Relevant Information for Semantic Matchmaking Illustration
City A: Ω1 ⊆ Ω City B: Ω2 ⊆ Ω

Ω1 = {city(A)
restaurant(r1A)
in(r1A,A), type(r1A, french)

restaurant(r2A)
in(r2A,A), type(r2A, italian)

restaurant(r3A)
in(r3A,A), type(r3A, french)

better(r1A, r2A)
better(r2A, r3A)}

Ω2 = {city(B)
restaurant(r1B)
in(r1B,B), type(r1B, italian)

restaurant(r2B)
in(r2B,B), type(r2B, french)

restaurant(r3B)
in(r3B,B), type(r3B, french)

better(r1B, r2B)
better(r2B, r3B)}

[φDG]β1 with β1 = {?x|A} [φDG]β2 with β2 = {?x|B}
city(A) ⇒ (
∀?y.(out(?y) ⇔ (
restaurant(?y) ∧ in(?y, A)
∧ ¬∃?z.(restaurant(?z)
∧ in(?z, A)
∧ better(?z, ?y))))

city(B) ⇒ (
∀?y.(out(?y) ⇔ (
restaurant(?y) ∧ in(?y, B)
∧ ¬∃?z.(restaurant(?z)
∧ in(?z, B)
∧ better(?z, ?y))))

[φDW]β1 with β1 = {?x|A} [φDW]β2 with β2 = {?x|B}
city(A) ⇒ (
∀?y.(out(?y) ⇔ (
restaurant(?y)
∧ in(?y,A) ∧ type(?y, french)
∧ ¬∃?z.(restaurant(?z)
∧ in(?z, A) ∧ type(?z, french)
∧ better(?z, ?y))))

city(B) ⇒ (
∀?y.(out(?y) ⇔ (
restaurant(?y)
∧ in(?y, B) ∧ type(?y, french)
∧ ¬∃?z.(restaurant(?z)
∧ in(?z,B) ∧ type(?z, french)
∧ better(?z, ?y))))

I1 with
I1 |= Ω ∪ {[φDG]β1 , [φ

DW]β1}
I2 with

I2 |= Ω ∪ {[φDG]β2 , [φ
DW]β2}

Ω1 ∪ Ω2 ∪ {out(r1A),
better(r1A, r3A), better(r1B, r3B)} No such I2 can exist!

the input binding β2 there can not exist such a common model for [φDG]β2 and [φDW]β2 .
The reason is that the goal requests to find the best restaurant while the Web service only
provides the best French restaurant in the input city. Thus, only those Σ?-interpretations
can be a model of [φDG]β2 for which the output object is the best restaurant in city B,
i.e. if ?y = r1B. However, the Σ?-interpretations that can be models of [φDW]β2 must
define ?y = r2B because r2B is the best French restaurant in city B; under all other
Σ?-interpretations [φDW]β2 is not satisfiable. This means that there are input bindings un-
der which the possible executions of W and the solutions for G are different. Because of
this, neither the condition for the subsume nor the one for the plugin matching degree is
satisfied, and thus also not the one for the exact degree. Hence, the matching degree is

90 Chapter 4. Two-Phase Web Service Discovery

intersect(DG,DW). The matchmaking conditions for this example are decidable in accor-
dance to Proposition 4.3: both functional descriptions as well as the background ontology
Ω do no contain function symbols, and we can transform both φDG and φDW to a prenex
normal form ∀x, y, z. in(x)∧φ(x) → (out(y) ↔ φ(y)∧ (φ(z)) that only has universal quan-
tifier. This is possible in this special case because ∀y. out(y) ↔ ¬∃z. φ(z) ⇔ ((∀y. out(y) →
¬∃z. φ(z)) ∧ (∀y. out(y) ← ¬∃u. φ(u))) ⇔ ∀y. out(y) ↔ ¬∃z. φ(z).

We now turn towards discovery on the goal instance level. Because of the intersect
matching degree between the goal template G and the Web service W , clause (iv) of Theo-
rem 4.1 must hold for W to be usable for solving a goal instance GI(G, β) that instantiates
G. This requires that the complete matchmaking condition from Definition 4.8 holds, i.e.
that under consideration of the domain ontology Ω there is a Σ?-interpretation I which is a
common model for [φDG]β and [φDW]β. Let us consider a goal instance GI1 = (G, β1) that
instantiates G with β1 = (?x|A), and another goal instance GI2 = (G, β2) that instantiates
G with β2 = (?x|B). Both goal instances are valid instantiations of the goal template G,
because under both input bindings the precondition and effect of DG are satisfiable. For
GI1, the matchmaking condition for the goal instance level is satisfied. The witnessing Σ?-
interpretation is I1, which is a model of both [φDG]β1 and [φDW]β2 because by coincidence
r1A as the best restaurant is also the best French restaurant in City A. Thus, the Web
service W is functionally suitable to solve the goal instance GI1. For GI2, this is not given
because – as discussed above – a common model for [φDG]β2 and [φDW]β2 can not exist.
Also here the additional matchmaking is decidable because they work on the instantiated
functional descriptions which are in the Bernays–Schönfinkel fragment of FOL.

Discovery under the Other Matching Degrees

To complete the illustration of the Web service discovery techniques, we briefly discuss
examples for the other matching degrees on the goal template level.

Let W2 be a Web service that provides a search functionality for the best restaurants
in Austrian cities. Its functional description is identical to the one of the goal template
G above, with the mere difference that the precondition is defined as φpre := city(?x) ∧
in(?x, austria). The matching degree between G and W2 is subsume(DG,DW2), because
Austrian cities are a subset of all the cities in the world. Let us consider a goal instance
GI3 = (G, β3) that instantiates G with β3 = (?x|innsbruck). This is a valid instantiation of
G and also W2 can be successfully invoked with β3, so that W2 is usable for GI3. However,
for a goal instance GI4 = (G, β4) that properly instantiates G with β4 = (?x|berlin), i.e.
the German capital, we can not make any statement about the usability of W2 because β4

4.4. Implementation in Vampire 91

can not be used to properly invoke the Web service. This is reflected in the matchmaking
condition, which requires that [φDW2]β4 must be satisfiable (cf. clause (iii) of Theorem 4.1).
However, because β4 does not satisfy the precondition of W2 we can not identify a particular
Σ?-interpretation that is a model of [φDW2]β4 and thus would represent a solution for GI4.
Because of this, we consider W2 to be not usable for solving the goal instance GI4.

For the other degrees, let us consider another goal template G2 for finding the best
restaurant in a city in Tyrol, which is the state of Austria that the city of Innsbruck is
located in. Let DG2 define the precondition φpre := city(?x) ∧ in(?x, tyrol), and let the
background ontology Ω specify that Tyrol is located in Austria. Then, the matching degree
between G2 and the Web service W2 from above is plugin(DG2 ,DW2), because every city
that is located in Tyrol is also located in Austria. Any goal instance GI(G2, β) of G2 must
define a Tyrolian city in the input binding β – otherwise the goal instantiation condition
GI(G2, β) |=A G2 is not satisfied. If this is given, then also [φDW2]β is satisfiable under
every possible input binding defined in a goal instance GI(G2, β) with GI(G2, β) |=A G2,
so that W2 is usable for any goal instance of G2. The same holds for a Web service W3 that
provides a search facility for the best restaurant in a Tyrolian city. Its functional description
would be identical to the one of G2, so that exact(DG2 ,DW3). In consequence, the possible
solutions of W3 are exactly the same as the possible solutions for G2, and under every input
binding defined in a goal instance GI(G2, β) with GI(G2, β) |=A G2 the invocation of W3

will trigger an execution that is a solution of the respective goal instance.

To conclude, the examples show that the matchmaking techniques specified above are
suitable for precisely determining the functional usability of Web services for both goal
templates and goal instances. We thus consider the aim of specifying semantic matchmak-
ing techniques with a high retrieval accuracy for our two-phase Web service discovery to
be achieved. The remainder of this chapter explains the technical implementation of the
matchmaking techniques, and positions the approach within related work.

4.4 Implementation in Vampire

This section explains the technical realization of the semantic matchmaking techniques for
Web service discovery. We use vampire as the reasoning engine for the matchmaking,
which is a resolution-based automated theorem prover for classical first-order logic with
equality [Riazanov and Voronkov, 2002]. This allows us to implement the matchmaking
techniques exactly as specified above, i.e. to determine the suitability of Web services for
goal templates as well as for goal instances on the basis of our functional descriptions.

92 Chapter 4. Two-Phase Web Service Discovery

Automated theorem proving (ATP) is a subfield of AI research on automated reasoning
that is concerned with proving mathematical theories by computer programs. This has
been subject to research since more than three decades, and several standard techniques for
automated reasoning have been developed in the context of ATP [Loveland, 1978; Gallier,
1986]. ATP is concerned with solving problems of the following kind: given a proof obli-
gation formula ψ and a logical theory that is represented by a finite set of first-order logic
axioms φ1, . . . , φn, show that ψ is logically implied by the theory. We apply this for Web
service discovery such that the functional descriptions of goals and Web service as well as
the background ontologies are modeled as the theory in first-order logic, and the distinct
conditions for semantic matchmaking are defined as proof obligations.

vampire is a state-of-the-art automated theorem prover developed at the University
of Manchester. It realizes a refutational strategy which performs proof by showing that
the set φ1, . . . , φn,¬ψ is unsatisfiable, i.e. that an interpretation which is a model for
the theory and the proof obligation does not exist. It applies standard resolution ex-
tended with advanced techniques for handling equality and optimizing the computational
efficiency; we refer to [Riazanov, 2003] for a comprehensive presentation. We choose vam-

pire for implementing the semantic matchmaking techniques, which is one of the most
mature and efficient automated theorem provers. It has dominated the international ATP
competitions in the last years (in particular the CADE ATP System Competition CASC,
see www.cs.miami.edu/∼tptp/CASC/), and is also positively evaluated in other benchmark
tests, e.g. [Nieuwenhuis et al., 2003; Denney et al., 2006]; furthermore, vampire has been
successfully applied for instance-level reasoning with ontologies [Tsarkov et al., 2004].

The following explains the modeling of domain ontologies and of functional descriptions
for goals and Web services, and defines the realization of the matchmaking conditions in
terms of proof obligations. We use the best-restaurant-search scenario discussed above for
illustration; in particular, we provide the complete modeling as well as the matchmaking
results for the example discussed in Section 4.3.3.

4.4.1 Modeling in TPTP

The specification language for vampire is TPTP, a first-order syntax that has been devel-
oped to provide a common language for the ATP community [Sutcliffe and Suttner, 1998].
In principle, the mathematical theory as well as proof obligations are specified in terms of
FOL formulae. The formulae that constitute the theory are annotated as an axiom, and
the ones that denote proof obligations are annotated with conjecture. The TPTP syntax
and semantics for logical expressions is analog to classical FOL. Referring to www.tptp.org

www.cs.miami.edu/~tptp/CASC/�
www.tptp.org�

4.4. Implementation in Vampire 93

for details, the most relevant logical symbols in TPTP for our purposes are the following:
(1) lower-case names denote constants, and upper-case names denote variables; (2) the log-
ical connectives between terms t, t1, t2 are represented as follows: t1 & t2 is a conjunction,
t1 | t2 is a disjunction, t1 ⇒ t2 is an implication, t1 ⇔ t2 defines an equivalence, and ∼ t

is a negation; (3) a universally quantified formula ∀x : φ is specified as ! [X] : (φ), and an
existentially quantified formula ∃y : φ is specified as ? [Y] : (φ).

Ontologies

We commence with the modeling of ontologies in TPTP, which define the terminology
and background knowledge used in functional descriptions (cf. Definition 4.4). In general,
ontologies are defined in terms of concepts that denote the entities in the domain which are
characterized by attributes; relations describe the relationships between concepts whereby
the subclass- class membership relations define the taxonomic backbone of the ontology.
Additional domain knowledge can be specified in terms of axioms, and the individuals in
the domain are represented as instances [de Bruijn and Fensel, 2005].

We represent ontologies as an FOL theory as follows. Concepts are defined by a unique
name concept, and their associated attributes are defined as binary predicates of the form
attribute(concept,type) where attribute is a unique name and type defines the at-
tribute value type by referring to another concept. Relations are defined analog as n-ary
predicates, and axioms are defined in terms of FOL formulae. Instances are defined by unary
predicates of the form concept(x) where concept denotes the class membership and x is a
constant which defines the unique name of the instance; the predicate attribute(x,y) de-
fines y as the concrete value of an attribute for the instance x. We define subclass relations
by predicates of the form isA(concept1,concept2) such that concept1 is a sub-concept
of concept2. In order to properly handle the attributes within subclass relations we fur-
ther define that (1) a sub-concept inherits the attributes of its super-concept so that for
each attribute holds ∀ C1, C2 : isA(C1, C2) ∧ attribute(C2, type) ⇒ attribute(C1, type),
and (2) every instance of the sub-concept is also an instance of the super-concept, i.e.
∀ Instance : isA(concept1, concept2) ∧ concept1(Instance) ⇒ concept2(Instance).

In order to enable reasoning on ontology-based descriptions, we represent concepts by so-
called generic instances. For a concept with two associated attributes attr1(concept,type1)

and attr2(concept,type2), the generic instance is defined as a formula of the form ∀ T1, T2 :
∃ C : concept(C) ∧ attr1(C, T1) ∧ attr2(C, T2). Essentially, this defines that an unnamed
instance of the concept along with unnamed values for each of the associated attributes
exists in the knowledge base. Such a generic instance is specified for every concept defined

94 Chapter 4. Two-Phase Web Service Discovery

in an ontology. Given the set of generic instances for all concepts, a theorem prover can
find interpretations that satisfy a proof obligation in case that an actual instance for which
this is given is not defined in the ontology. This is in particular needed for determining an
intersect matching degree whose condition is satisfied if there is at least one common model
for the functional description of a goal and the one of a Web service.

To clarify the above explanations, Listing 4.1 illustrates the modeling of the best restau-
rant ontology that defines the terminology and background knowledge for our running ex-
ample. We here show three input-formulae; the complete ontology modeling is provided
below in Section 4.4.3. The first formula defines cityA as an instance of the concept city.
The second formula defines the generic instance for representing the concept restaurant
with an attribute in that defines the city wherein the restaurant is located, and another
attribute type that defines the type of a restaurant (e.g. French or Italian). The third
formula defines the axiom that specifies the transitivity of the relation better(?r1, ?r2) for
describing the ranking of restaurants. This states that if a restaurant R1 is ranked better
that R2 and R2 is ranked better that R3, then also R1 is ranked better that R3. Note that
in the TPTP representation all these formulae are annotated to be “axioms”, which means
that they constitute the theory upon which proof obligations shall be shown.

input formula(instanceCityA ,axiom,(city (cityA))) .

input formula(restaurantGenericInstance ,axiom,(

! [City ,Type] : (? [Restaurant] : (

restaurant (Restaurant)

& in(Restaurant,City)

& type(Restaurant,Type))))) .

input formula(transitivityBetterRelation ,axiom,(

! [R1,R2,R3] : (

restaurant (R1) & restaurant(R2) & restaurant(R3) & better(R1,R2) & better(R2,R3)

=> better(R1,R3)))).

Listing 4.1: Ontology Representation in TPTP

Functional Descriptions

We now turn towards the specification of functional descriptions for goals and Web services
in TPTP. For this, we use the representation DFOL = (Σ?, Ω?, IN , φD) where the precondi-
tion and the effect are defined in a single formula φD := [φpre]ΣD→Σpre

D
⇒ φeff (cf. Definition

4.6 in Section 4.2.2). To specify this in TPTP, we need to define two minor extensions to
the above definition of DFOL: (1) a universal quantification of the input variables IN =
(i1, . . . , in) because vampire does not support free variables, and (2) the explicit definition
of predicates goal(i1, . . . , in, o1, . . . , on)⇔ φDG , respectively ws(i1, . . . , in, o1, . . . , on)⇔ φDW

4.4. Implementation in Vampire 95

Table 4.4: Example for a Functional Description in TPTP
DFOL of a Goal Template TPTP Representation

“find best restaurant in a city” of φDG

Ω: best restaurant ontology
IN : {?x}
φDG : city(?x) ⇒ (

∀?y. out(?y) ⇔ (
restaurant(?y) ∧ in(?y, ?x)
∧ ¬∃?z.(restaurant(?z)
∧ in(?z, ?x) ∧ better(?z, ?y)))).

input formula(goaltemplate , axiom,(
! [X,Y] : (

goal(X,Y) <=> (
city (X) => (
out(Y) <=> (

restaurant (Y) & in(Y,X)
& ˜ ? [Z] : (

restaurant (Z)
& in(Z,X) & better(Z,Y)))

))))).

which we can refer to within the proof obligations in order to specify the matchmaking con-
ditions (see below). As the information that usually are of interest, we define the argument
of these predicates to be the input variables IN defined in D and the output variables which
are denoted by out(?o1, . . . , ?on) in the effect. For illustration, Table 4.4 shows the TPTP
representation of the goal template for finding the best restaurant in a city that is provided
as input which we have explained above in Section 4.2.3.

4.4.2 Matchmaking as Proof Obligations

On this basis, we can now define the proof obligation for the semantic matchmaking tech-
niques. As mentioned above, a proof obligation in TPTP is defined as a FOL formula ψ

that is annotated with “conjecture”, and the meaning is that ψ shall be proved to hold for
the theory which is defined by the formulae annotated with “axiom”.

Table 4.5 shows the definition of the proof obligations for the matching degrees defined
for Web service discovery on the goal template level in Table 4.2 (see Section 4.3.1). For the
exact degree it is required that the functional description of the goal template is semantically
equivalent to the one of the Web service for all pairs of input and output variables. We define
the proof obligation formula on the basis of the predicates goal(i1, . . . , in, o1, . . . , on)⇔ φDG

and ws(i1, . . . , in, o1, . . . , on)⇔ φDW as explained above; we here denote the set of input
variables by IN, and the set of output variables by OUT. The proof obligations for the other
matching degrees are defined analogously: the plugin and the subsume degree require a
logical implication between the goal and the Web service description, and the intersect
degree requires that at least one input-output pair exists under which there is common
model for φDG and φDW . We do not need to define a proof obligation for the disjoint degree
because it is given if none of the other matching degrees holds (cf. Proposition 4.2).

96 Chapter 4. Two-Phase Web Service Discovery

Table 4.5: Proof Obligations for Matching Degrees in TPTP
Matching Degree Proof Obligation

exact(DG,DW) input formula(exact , conjecture ,(
! [IN,OUT] : (goal(IN,OUT) <=> ws(IN,OUT)))).

plugin(DG,DW) input formula(plugin , conjecture ,(
! [IN,OUT] : (goal(IN,OUT) => ws(IN,OUT)))).

subsume(DG,DW) input formula(subsume, conjecture,(
! [IN,OUT] : (ws(IN,OUT) => goal(IN,OUT)))).

intersect(DG,DW) input formula(intersect , conjecture ,(
? [IN,OUT] : (goal(IN,OUT) & ws(IN,OUT)))).

The proof obligations for the necessary matchmaking operations on the goal instance
level are defined analogously. To evaluate GI(G, β) |= G, i.e. whether a goal instance
GI(G, β) is a consistent instantiation of its corresponding goal template G, we need to
check whether the FOL representation of the functional description DG is satisfiable under
the input binding β defined in the goal instance (cf. Definition 4.7). The proof obligation
for this is defined as ?[OUT] : (goal(β,OUT)), which is provable when there exists a model
φDG under the input binding defined in GI(G, β).

For Web service discovery on the goal instance level we merely need two additional proof
obligations, namely if a Web service W is usable for the corresponding goal template G under
the subsume or the intersect degree (cf. Theorem 4.1). These are also defined as satisfiability
checks: if subsume(DG,DW), then the proof obligation ?[OUT] : (ws(β,OUT)) checks
whether [φDW]β is satisfiable under the input binding defined in the goal instance GI(G, β)
with GI(G, β) |= G. For the additional matchmaking required under the intersect degree,
the proof obligation ?[OUT] : (goal(β,OUT) & ws(β,OUT)) checks whether a common
model for [φDG]β and [φDW]β exists under the input binding defined in GI(G, β).

4.4.3 Illustrative Example

To illustrate the above specifications, the following provides the complete modeling for the
best-restaurant-search example as discussed in Section 4.3.3 along with the results of the
matchmaking techniques obtained from vampire.

At first, Listing 4.2 shows the best restaurant ontology in TPTP. It defines: (1) the
generic instances for the concepts city and restaurant, (2) the better-relation as a transitive,
partial order on the ranking of restaurants, and (3) the knowledge base for City A wherein
the best restaurant is French and City B wherein the best Restaurant in not French.

4.4. Implementation in Vampire 97

% generic instance for concept CITY

input formula(cityGenericInstance ,axiom,(

! [Location] : (? [City] : (city (City) & locatedIn(City ,Location))))) .

% generic instance for concept RESTAURANT

input formula(restaurantGenericInstance ,axiom,(

! [City ,Type] : (? [Restaurant] : (

restaurant (Restaurant)

& in(Restaurant,City)

& type(Restaurant,Type))))) .

% better−relation is a partial order

input formula(betterRelationPartialOrder , axiom,(

! [R1,R2] : (restaurant (R1) & restaurant(R2) & better(R1,R2) => ˜better(R2,R1)))).

% transitivity of better−relation

input formula(transitivityBetterRelation , axiom,(

! [R1,R2,R3] : (

restaurant (R1) & restaurant(R2) & restaurant(R3) & better(R1,R2) & better(R2,R3) => better(R1,R3)))).

% KNOWLEDGE BASE: instances for 3 best restaurants in city A and in city B

input formula(cityA , axiom,(city (cityA))) .

input formula(r1A,axiom,(restaurant (r1A) & in(r1A,cityA) & type(r1A,french))) .

input formula(r2A, axiom,(restaurant (r2A) & in(r2A,cityA) & type(r2A, italian))) .

input formula(r3A, axiom,(restaurant (r3A) & in(r3A,cityA) & type(r3A,french))) .

input formula(betterCityA1, axiom,(better(r1A,r2A))) .

input formula(betterCityA2, axiom,(better(r2A,r3A))) .

input formula(cityB , axiom,(city (cityB))) .

input formula(r1B, axiom,(restaurant (r1B) & in(r1B,cityB) & type(r1B, italian))) .

input formula(r2B, axiom,(restaurant (r2B) & in(r2B,cityB) & type(r2B,french))) .

input formula(r3B, axiom,(restaurant (r3B) & in(r3B,cityB) & type(r3B,french))) .

input formula(betterCityB1, axiom,(better(r1B,r2B))) .

input formula(betterCityB2, axiom,(better(r2B,r3B))) .

Listing 4.2: Best Restaurant Ontology

Listing 4.3 shows the definition of the functional descriptions for the goal template of
finding the best restaurant in a city that is provided as input, and the Web service with
returns the best French restaurant in a given city as defined in Table 4.1 (see Section 4.3.3).

% GOAL: find best restaurant in a city % WEB SERVICE: give best French restaurant in a city

input formula(goaltemplate , axiom,(input formula(webService, axiom,(

! [X,Y] : (! [X,Y] : (

goal(X,Y) <=> (ws(X,Y) <=> (

city (X) => (city (X) => (

out(Y) <=> (out(Y) <=> (

restaurant (Y) & in(Y,X) restaurant (Y) & in(Y,X) & type(Y,french)

& ˜ ? [Z] : (& ˜ ? [Z] : (

restaurant (Z) & in(Z,X) restaurant (Z) & in(Z,X) & type(Z,french)

& better(Z,Y)) & better(Z,Y))

)))))) .)))))) .

Listing 4.3: Functional Descriptions

98 Chapter 4. Two-Phase Web Service Discovery

Finally, Listing 4.4 shows the proof obligations for the necessary matchmaking oper-
ations for Web service discovery on both the goal template and the goal instance level.
Here, the include-statement inserts the domain ontology and the functional descriptions
as defined in the above listings as the background theory upon with the proof obligations
are evaluated. We first show the proof obligations for the matchmaking degrees as de-
fined above in Table 4.5 along with the results obtained from their evaluation in vampire:
proved means that the proof obligation has been proved to hold, and unprovable means
denotes that this is not given. Although these proof obligations are decidable as shown in
Section 4.3.3, vampire requires a remarkably long time for the evaluation. We can enhance
this by defining additional axioms that explicate relevant aspects of the domain knowledge.
Here, we can significantly improve the proof efficiency by explicitly defining the best and
the best French restaurant in City B. At last, we show the goal instantiation test results
and the results for Web Service discovery on the goal instance level.

include (’bestRestaurantOntology.ax’) .

include (’ functionaldescriptions .ax’) .

% discovery for goal template level

% exact(G,W): UNPROVABLE

input formula(po, conjecture ,(! [I ,O] : (goal(I ,O) <=> ws(I,O)))).

% plugin(G,W): UNPROVABLE

input formula(po, conjecture ,(! [I ,O] : (goal(I ,O) => ws(I,O)))).

% subsume(G,W): UNPROVABLE

input formula(po, conjecture ,(! [I ,O] : (ws(I ,O) => goal(I,O)))).

% intersect (G,W): PROVED

input formula(po, conjecture ,(? [I ,O] : (goal(I ,O) & ws(I,O)))) .

% additional axioms to enhance the proof for intersect (G,W)

input formula(bestB, axiom,(˜ ? [R] : (restaurant (R) & in(R,cityB) & better(R,r1B)))) .

input formula(bestFrenchinCityB, axiom,(˜ ? [R] : (

restaurant (R) & in(R,cityB) & type(R,french) & better(R,r2B)))) .

% goal instantiation check

% for GI(G, β1) with β1 = (?x|cityA): PROVED

input formula(po, conjecture ,(? [O] : (goal(cityA ,O)))) .

% for GI(G, β2) with β2 = (?x|cityB): PROVED

input formula(po, conjecture ,(? [O] : (goal(cityB ,O)))) .

% discovery on the goal instance level under intersect (G,W)

% for GI(G, β1): PROVED

input formula(po, conjecture ,(? [O] : (goal(cityA ,O) & ws(cityA,O)))) .

% for GI(G, β2): UNPROVABLE

input formula(po, conjecture ,(? [O] : (goal(cityB ,O) & ws(cityB,O)))) .

Listing 4.4: Proof Obligations and Results

4.4. Implementation in Vampire 99

To conclude, we have defined the modeling of ontologies and functional descriptions of
goals and Web services in terms of FOL theories, as well as the definition of the matchmaking
conditions relevant for Web service discovery in terms of proof obligations which can be
evaluated by automated theorem provers. This allows us to realize the semantically enabled
discovery techniques exactly as specified in the preceding sections, and therewith to provide
a technical infrastructure for automated discovery in our two-phase framework which ensures
a high retrieval accuracy for the discovery task at both design and runtime.

While we here have illustrated the modeling in TPTP for the best-restaurant-search
example, the general modeling structure can be adopted to other scenarios. We however
need to allude to the limitations of this approach for realizing a general purpose matchmaker.
At first, standard TPTP does not support arithmetic operations on natural numbers, which
means that we can not express conditions like price < 100. There are extensions for TPTP
that define generic theories for dealing with natural numbers, e.g. [Schulz and Sutcliffe,
2005; Prevosto and Waldmann, 2006]. However, we usually expect functional descriptions
to deal with concepts rather than with concrete numbers so that conditions of the mentioned
kind are expressed in terms of price categories.

Secondly, there might occur inadequately long processing times for the discovery task.
This results from the high computational complexity as the downside of the high expres-
siveness and retrieval accuracy. In our approach, the complexity for the matchmaking is
NExpTime-complete if the proof obligations are decidable in accordance to Proposition 4.3.
However, OWL-DL has the same complexity, so that the same efficiency problems might
occur when using this as the specification language instead of FOL. As illustrated in the
above example, one can increase the processing efficiency of an automated theorem prover
by adding further axioms that explicate relevant aspects of the domain ontology. Although
not specifying new knowledge, such additional axioms bridge the gap between the generic
domain knowledge defined in the background ontology and the specific aspects which con-
stitute the relevant relationship of the functional descriptions of goals and Web services.
There are semi-automated techniques for identifying such additional axioms (e.g. [Fensel and
Schönegge, 1998; de Nivelle and Piskac, 2005]), which we can consider as complementary
techniques for realizing semantic matchmaking with automated theorem provers.

Finally, it is to remark that within our test scenarios vampire exposes a significantly
better performance than other ATP engines that work on TPTP. For this, we have compared
the time required for evaluating a proof obligation with other automated theorem provers
(namely Otter, SPASS, and Waldmeister). While vampire in average requires between 0.1
and 1 second, the other engines require significantly more time or do not terminate at all
for the same proof obligations.

100 Chapter 4. Two-Phase Web Service Discovery

4.5 Summary and Related Work

This chapter has presented the formal specification of the semantic matchmaking techniques
for a two-phase Web service discovery approach on the basis of rich functional descriptions
for goals and Web services. The following first summarizes the central aspects of our
approach, and then positions it within related works for the different aspects.

Summary

Our Web service discovery framework follows the goal-based approach for Semantic Web
services. A goal formally describes the objective that a client wants to achieve when using a
Web service while abstracting from technical details. The purpose of Web service discovery
is to determine those Web services out of the available ones that are suitable for solving
a goal. This serves as a first filtering step in SWS environments for which we consider
functional aspects as the primary criterion; the usability of the discovered candidates for
solving a given goal is then further inspected in subsequent processing steps which take
other aspects into account. In accordance to the goal model elaborated in Chapter 3, our
Web service discovery approach distinguishes two phases: at design time, suitable Web
services for goal templates as generic and reusable objective descriptions are discovered,
and the actual Web services for goal instances which denote concrete client objectives by
instantiating a goal template with concrete inputs are discovered at runtime.

A central requirement for automated Web service discovery engines is a high retrieval
accuracy, meaning that under functional aspects every discovered Web service is suitable
(= high precision) and every suitable Web service can be discovered (= high recall). This
can most adequately be achieved by semantic matchmaking of sufficiently rich functional
descriptions. For this, we have defined formal functional descriptions that can precisely
describe the overall functionality provided by a Web service with respect to the start- and
end-states of its possible executions, and, analogously, can precisely specify the basic ob-
jective description for a goal by formally defining the start- and end-states of its possible
solutions. Following the standard approach from formal software specification, our func-
tional descriptions are defined in terms of preconditions and effects on the basis of domain
ontologies. We explicitly specify the dependency of the preconditions and effects by free
variables that occur in both conditions, and also explicitly specify the computational in-
and outputs. We use classical first-order logic (FOL) as the specification language which
– although undecidable in general – provides a sufficiently high expressivity and does not
impose possibly unnecessary modeling restrictions. Moreover, this facilitates the adaption
of our model to the specific ontology languages developed for the Semantic Web.

4.5. Summary and Related Work 101

We have defined a representation of functional descriptions as a single first-order logic
formula that allows us to consider the possible executions of Web services and the solutions
of goals as logical models in terms of classical model-theoretic semantics. On this basis,
we have defined the necessary matchmaking techniques for the two-phased Web service
discovery. For the design time discovery task, we have defined four matching degrees (ex-
act,plugin,subsume, and intersect) which differentiate the situations where a Web service
is functionally usable to solve a goal template; the disjoint degree states that this is not
given. The matchmaking conditions are defined as proof obligations, and we have shown
that marginal restrictions on the modeling of functional descriptions are sufficient to ensure
the decidability. This supports the employment of standard FOL reasoning techniques,
and warrants a high retrieval accuracy for the discovery task because the used functional
descriptions precisely describe the requested and provided functionalities.

At runtime, a goal instance is created by defining a concrete variable assignment for
the inputs required by the corresponding goal template. We require a goal instance to be
a valid instantiation so that the functional description of its corresponding goal template
is satisfiable under the defined input values. For a Web service to be functionally suitable
for solving a goal instance, it must be invocable with the defined inputs and the resulting
execution must be a solution for the goal instance. In our two-phase discovery framework,
we can use the design time discovery results in order to minimize the necessary matchmaking
efforts at runtime. For this, we have shown that those Web services that are suitable for a
goal template are potential candidates for its goal instances. Furthermore, if a Web service
is usable for a goal template under the exact or the plugin degree, then it is also usable for all
its goal instances; under the subsume and the intersect degree, additional matchmaking is
necessary at runtime. We have exemplified the modeling of functional descriptions for goals
and Web services within an illustrative example and demonstrated the retrieval accuracy of
the discovery techniques therein, and we have presented the implementation of the semantic
matchmaking techniques within an automated theorem prover.

Related Work

Due to its relevance for SWS technology, automated Web service discovery has been sub-
ject to many research efforts that have provided significant contributions and insights. To
properly position our approach therein, the following discusses related works with respect
to (1) the conceptual model of our two-phase discovery approach and its architectural al-
location in SWS environments, (2) works on functional Web service discovery by semantic
matchmaking, and (3) other techniques that can be considered to be complementary.

102 Chapter 4. Two-Phase Web Service Discovery

Conceptual Model. The first aspect relates to the overall conceptual model of our two-
phase Web service discovery framework. As summarized above, we separate design time
and runtime operations, and provide semantic matchmaking techniques for Web service
discovery under functional aspects for both phases.

In principle, this correlates with the purpose of Web service discovery and its architec-
tural allocation within SWS environments that support the complete process of automated
Web service detection and execution in order to solve a client request (see Section 2.2.2).
Therein, Web service discovery is considered as the first processing step which identifies
possible candidate Web services whose usability is then investigated in subsequent process-
ing steps, and the compatibility on the level of the provided and the requested functionality
is considered the most expedient indicator for this [Preist, 2004]. We find the same concep-
tual model in other application areas wherein requests and offers need to be reconciled, e.g.
within electronic marketplaces (e.g. [Schmid and Lindemann, 1998]), in multi-agent systems
(e.g. [Martin et al., 1999]), or for service detection in mobile environments (e.g. [Avancha
et al., 2002]). Other conceptual models differentiate several filters for Web service detection
whereby each filter treats a different aspect or a different level of abstraction (e.g. [Sycara
et al., 2002; Lara et al., 2006]). Although this does not necessarily contradict our approach,
it appears to be mandatory that the result of a preceding filter does not contradict with
the results of its successors. If this is not given, there might be too much redundancy or –
even more undesirable for real-world applications – actually usable Web services might not
be detectable due to an insufficient retrieval accuracy.

In contrast to most other works, we take a goal-driven approach as proposed by the
WSMO framework [Fensel et al., 2006]. Goals are an explicit modeling element for the
client side of SOA technology, which is commonly neglected in most other SWS technologies.
In consequence, clients are expected to formulate discovery requests as queries on formal
Web service descriptions, and then to consume Web services via hard-wired invocations.
This is overcome by our approach by formally describing the objective to be achieved in
terms of a goal, and the automated invocation of Web services with the concrete inputs
that are defined in goal instances (see Chapter 3). Moreover, our two-phase discovery
approach co-aligns with the heuristic classification methodology [Clancey, 1985] which has
been identified to be suitable for developing workable and efficient Web service discovery
techniques [Keller et al., 2005]: a goal instance represents the concrete problem to be
solved, and the valid instantiation of its corresponding goal template defines the abstraction
to the level of generic objective descriptions; the design time discovery on the goal template
realizes the most relevant aspects of the matchmaking, and the runtime discovery denotes
the refinement of the findings from the abstract to the concrete level of goal instances.

4.5. Summary and Related Work 103

Web Service Discovery by Semantic Matchmaking. We now turn towards
works on semantically enabled Web service discovery by the matchmaking of formal func-
tional descriptions, which relate to the semantic matchmaking techniques specified in this
chapter. The general approach relies on matchmaking techniques developed in the area of
formal software specification and reuse (e.g. [Zaremski and Wing, 1997; Meyer, 2000]) as
well as in multi-agent systems (e.g. [Kuokka and Harada, 1996; Sycara et al., 1999]). Two
aspects seem to be relevant in order to position our approach within existing works: the
definition of a match and the matchmaking conditions for this, and the suitability of the
used functional descriptions in order to warrant a high retrieval accuracy.

In accordance to [Noia et al., 2003], a suitable basis for discussing the meaning of a
match in the context of Web service discovery is the distinction of (1) a guaranteed match
where the execution of the Web service will always solve the given request or goal, (2) a
possible match where the Web service might be usable, and (3) non-match where the Web
service is not suitable. Commonly, the first category is defined as the plugin match – which
however is defined differently in different works. For example, [Zaremski and Wing, 1997]
defines the plugin match as (Qpre ⇒ Spre) ∧ (Seff ⇒ Qeff), i.e. the service S is considered
to be suitable for the request Q if it can be properly invoked and the execution result of S

is a specialization of the result expected by Q. Other works define the plugin match exactly
the opposite way, in particular such that the effect of S must be a generalization of the one
expected by Q in order to guarantee that every execution of S will solve Q (e.g. [Paolucci
et al., 2002; Keller et al., 2006a]). Our plugin match follows the latter conception, because
this defines the situation where the suitability of a Web service is guaranteed for solving
every goal instance that properly instantiates the respective goal template.

Regarding the formal functional descriptions, [Paolucci et al., 2002] defines semantic
matchmaking for in- and outputs in OWL-S, and [Li and Horrocks, 2003] extends this to
requested and advertised service profiles that are described by DL formulae. Both define
the matching degrees that we use to denote the usability of Web services for goal templates
with the ordering disjoint > intersect > subsume > plugin > exact. However, a match is
defined on the basis of subsumption relations subsumption among the individual concepts
in the functional descriptions. This results from the insufficiency of OWL-S wherein the
IOPE-elements are separated logical statements whose dependency can not be explicated
(see Section 4.2.1). In consequence, the matchmaking algorithms can merely detect ontolog-
ical relationships between corresponding description elements, but determine whether the
execution of a Web services will satisfy a client request. Naturally, keyword-based match-
makers that merely consider keywords without a suitable description model have the same
deficits in the achievable retrieval accuracy (e.g. [Oundhakar et al., 2005]).

104 Chapter 4. Two-Phase Web Service Discovery

An approach that aims at overcoming the limitations of keyword- and concept-based
matchmaking is presented in [Kifer et al., 2004]. Therein, a match is considered to be
given if the concrete inputs provided by the client satisfy the precondition of a Web service
description and then, for the given inputs, the effect of the Web service logically entails
the goal description. In principle, this corresponds to our definition of a match on the
goal instance level. As a follow-up work, [Lara, 2006] presents a two-phased Web service
discovery approach: the first phase detects potential candidates by matchmaking of the
effect descriptions of the goal and the Web service, and in the second phase the inputs that
the client needs to provide to invoke one of the candidates are determined. However, this
does not distinguish goal templates and goal instances and thus does not separate design-
and runtime operations. Our matchmaking criteria appear to be more precise because we
already consider the start- and the end-state constraints for Web service discovery on the
goal template level. Also, the creation of goal instances by merely defining input bindings
minimizes the necessary effort for goal formulation by clients.

Another approach that explicitly defines the dependency of the distinct elements of
functional descriptions is presented in [Hull et al., 2006]. Therein, a functional description
is defined as 〈~x : ~X; ~y : ~Y ; φ(~x, ~y)〉 where ~x denotes the input variables with the type
definition, ~y are the out variables, and the formula φ(~x, ~y) describes the functionality as
a relationship of the in- and outputs. This corresponds to our approach of defining free
variables that occur in both the precondition and the effect. However, we only consider
the input variables to usually correspond to these free variables while the outputs are only
constrained within the effect description. Besides, this is restricted to stateless Web services
and hence only covers a subset of the functionalities supported by our approach.

Works that have served as starting points for the definition of functional descriptions
and the semantic matchmaking techniques are [Keller and Lausen, 2006] which discusses
the formal meaning of WSMO capabilities on the basis of the Abstract State Space model,
and [Keller et al., 2006a] which defines the matchmaking degrees between goals and Web
services in terms of generic set-theoretic criteria but without specifying the necessary func-
tional descriptions. We have refined this approach and provided a comprehensive formal-
ization. We further have extended the discovery framework to also cover the level of goal
instances. We use classical first-order logic (FOL) as the specification language for func-
tional descriptions. However, the structure and formal meaning of functional descriptions as
well as the definition of the matchmaking conditions are applicable to all ontology languages
with model theoretic semantics, in particular to Descriptions Logics via the translation de-
fined in [Borgida, 1996] in order to be compatible to OWL as the currently recommended
standard ontology language for the Semantic Web.

4.5. Summary and Related Work 105

Complementing Techniques. We complete the discussion with related works that
address other aspects which are also relevant for automated Web service discovery.

The first group of works is concerned with the handling situations where the match-
maker determines a disjoint match but only a subset of the conditions defined in a goal
conflict with the Web service description. This has been identified as an interesting sit-
uation in [Noia et al., 2003], with the aim of providing techniques for revising goals that
are not solvable. An example for this is that a goal requests a flight ticket from Innsbruck
to Vienna for e 100, but there is no offer which satisfies this. To make the goal solvable,
one can weaken the conditions by defining a higher price limit or defining a different means
of transportation. [Colucci et al., 2005] presents a technique for identifying the conflicting
conditions by determining the logical difference between the formal descriptions. Similar
techniques have been developed for establishing the usability of a problem-solving method
for a concrete task if this is not given a priori [Fensel and Straatman, 1998], and [Stollberg
et al., 2005a] adopts this for WSMO capabilities. As a different approach, [Klusch et al.,
2006] presents a hybrid matchmaker for OWL-S which applies heuristic retrieval techniques
in addition to logical matchmaking in order to identify “nearest-neighbor matches”. These
techniques can be considered as possible extensions to the basic semantic matchmaking in
order to determine suitable candidate Web services when a proper match is not given.

Another group of works addresses Web service discovery with respect to non-functional
and quality-of-service criteria, e.g. [Vu et al., 2005; Lu, 2005; Wang et al., 2006]). We
consider such techniques to be applied within the subsequent processing steps after func-
tional discovery: the discovery result is an unordered set of potential candidates which then
is refined and ordered by respective selection and ranking techniques (cf. Section 2.2.2).
We further consider ontology-based data mediation (e.g. [Noy, 2004; Mocan and Cimpian,
2007]) as complementary techniques, which can be applied to ensure that the goal and Web
service descriptions use homogeneous background ontologies.

Finally, we consider techniques for the creation and validation of goal and Web service
descriptions to complement the techniques specified in this work. This covers techniques for
validating the correctness and consistency of the formal functional descriptions as discussed
in [Keller et al., 2006b], as well as advanced techniques for supporting the identification of
concrete input values to complement the basic conditions for the goal instance formulation
as defined in our approach (e.g. [Born et al., 2007; Vitvar et al., 2007b]).

Chapter 5

Semantic Discovery Caching

This chapter presents a technique for enhancing the efficiency and scalability of automated
Web service discovery. This appears to be essential for the applicability of discovery engines
in real-world SOA scenarios, and becomes in particular important for their employment as a
heavily used component in Semantic Web service environments. We address this challenge
by extending the two-phase Web service discovery approach presented in Chapter 4 with a
mechanism that captures relevant knowledge of design time discovery results and effectively
uses this for enhancing the computational performance of runtime discovery operations.
This adopts the concept of caching to the context of Web service discovery, and thus we
refer to the technique as Semantic Discovery Caching (short: SDC).

As discussed in Section 2.2.2, the need for efficient and scalable Web service discovery
techniques arises because SOA technologies must be able to deal with the large and steadily
growing number of available Web services that can be expected in real-world settings. This
becomes in particular relevant for Semantic Web service (SWS) environments wherein Web
service discovery is a central and expectably often performed operation: it detects the
suitable candidates out of the available Web services, and is usually performed as the first
processing step for solving a given goal that needs to be performed for each new request. In
order to ensure the operational reliability of the Web service discovery component in such
architectures, it is necessary to reduce both the average time for individual discovery tasks
as well as the time variance among several invocations. To provide a sophisticated extension
to semantically enabled Web service discovery, the optimization technique should maintain
the achievable retrieval accuracy and not require additional annotations of Web services or
of goals. This challenge has received only little attention in the SWS community so far, in
particular in comparison to semantic matchmaking techniques for Web service discovery.

106

107

Figure 5.1: Overview of SDC-Optimized Web Service Discovery

Figure 5.1 provides an overview of our approach for the performance optimization.
This extends the two-phased Web service discovery model from Chapter 4 with a caching
mechanism for enhancing the efficiency of runtime discovery. We consider three central
entities: Web services that have a formal description, goal templates as generic objective
descriptions that are stored in the system, and goal instances that describe concrete requests
by instantiating a goal template with concrete inputs. At design time, the Web services
for goal templates are discovered by matchmaking of their formal functional descriptions.
The result is stored in the SDC graph, a special knowledge structure which organizes goal
templates in a subsumption hierarchy and captures the minimal knowledge on the suitability
of the available Web services. This provides an unambiguous index for the efficient search
of goals and Web services that can be generated automatically on the basis of semantic
matchmaking. At runtime, a concrete client request is formulated as a goal instance for
which the actual Web services need to be discovered. We consider this as the expectably
most frequent operation in SOA applications because – in our model – goal instances denote
the primary element for clients to detect and consume Web services. We thus optimize the
Web service discovery at runtime by exploiting the SDC graph in order to reduce the search
space and minimize the number of necessary matchmaking operations.

The aim of this chapter is to define the necessary concepts, data structures, and the
basic operations of the SDC technique. In particular, we formally define the SDC graph and
specify the algorithms for its creation and maintenance as well as its usage for optimizing
the runtime Web service discovery. We here define the SDC technique on the basis of the
functional descriptions for goals and Web services and the semantic matchmaking techniques
specified in Chapter 4 that warrant a high retrieval accuracy for both design- and runtime
discovery. However, the general approach can be adapted to frameworks that follow the

108 Chapter 5. Semantic Discovery Caching

goal-based approach for Semantic Web services discussed in Chapter 3 but apply other
specification languages. We use the shipment scenario from the SWS Challenge as the
running example throughout this chapter, a widely recognized initiative for demonstration
and comparison of semantically enabled Web service discovery techniques ([Petrie et al.,
2008], see: www.sws-challenge.org). The scenario defines several Web services for package
shipment between different destination countries on the basis of existing real-world services,
along with several examples of client requests. We shall use the original data set of this
scenario for the quantitative evaluation of the SDC technique in Chapter 6.

This chapter is structured as follows. At first, Section 5.1 explains the aim and approach
of the SDC technique in more detail and recalls the foundations from the previous chapters.
Then, Section 5.2 formally defines the SDC graph and discusses its relevant properties, and
Section 5.3 specifies the algorithms for its automated creation and maintenance. Section 5.4
explains how the SDC graph is used to optimize the Web service discovery at runtime,
and Section 5.5 presents the prototype implementation of the SDC-enabled Web service
discovery engine. Finally, Section 5.6 concludes the chapter and discusses related work.

5.1 Motivation and Overview

The aim of the SDC technique is to enhance the computational performance of automated
Web service discovery, in particular for runtime discovery which is concerned with the detec-
tion of suitable Web services for goal instances and thus denotes the time critical operation
in our approach. The following discusses the need for scalable discovery techniques, recalls
the underlying conceptual model and the Web service discovery techniques from the preced-
ing chapters, and provides an informal overview of the SDC technique that we shall specify
in detail in the subsequent sections.

5.1.1 The Need for Scalable Web Service Discovery

The need for efficient and scalable technologies arises in application areas with a larger
and continuously changing number of available resources, and commonly performance opti-
mization techniques are employed in order to ensure the operational reliability of software
systems that operate in such environments [Crawford et al., 2000]. This naturally becomes
important in SOA applications where numerous Web services shall be used as the basic
building blocks of an IT system. For this, the fast and reliable execution of Web services
by information exchange over the Internet as well as the management of larger number of
available Web services are considered as critical success factors [Cohen, 2006].

www.sws-challenge.org�

5.1. Motivation and Overview 109

In the context of semantically enabled SOA technologies, we consider Web service dis-
covery as the first processing step in SWS environments for solving goals by the automated
detection and execution of Web services. It determines the candidates out of the available
Web services under functional aspects; their actual usability is then further investigated in
subsequent processing steps that take other aspects into consideration (see Section 2.2.2).
Hence, discovery denotes the bottleneck for the scalability of such environments because it
requires a 1 : n search on all available Web services while the subsequent processing steps
only need to deal with the discovered candidates. Thus, under consideration of larger search
spaces that can be expected in real-world applications, the computational performance of
automated discovery engines is a critical success factor for the scalability of the whole sys-
tem. This becomes in particular important for advanced SWS techniques that envision to
employ automated discovery engines as heavily used components, e.g. in recent approaches
for dynamic Web service composition where the candidates shall be detected at each iter-
ation step of the composition algorithm [Bertoli et al., 2007], or for semantically enabled
business process management where the actual Web services for specific process activities
shall be determined at runtime [Hepp et al., 2005; Wetzstein et al., 2007].

We take a goal-based approach for Semantic Web services. A goal formally describes
the objective that a client wants to solve by using Web services, which provides an abstrac-
tion layer for enabling problem-oriented Web service usage by clients (see Chapter 3). We
explicitly distinguish goal templates as generic and reusable objective descriptions that are
kept in the system, and goal instances that describe concrete client objectives by instanti-
ating a goal template with concrete inputs. On this basis, we have defined a Web service
discovery framework that separates two phases: at design time, the suitable Web services
for goal templates are discovered by matchmaking of formal functional descriptions, and
at runtime the actual Web services for goal instances are discovered with respect to the
concrete input values. We have defined semantic matchmaking techniques for both design-
and runtime discovery which expose a high retrieval accuracy (see Chapter 4).

In this two-phase approach, the runtime discovery on the level of goal instances is the
time critical operation. We consider goal instances as the primary element for clients to de-
mand Web services and automatically consume them. Each new client request is formulated
in terms of a goal instance for which the actual Web services need to be discovered and au-
tomatically executed. This facilitates dynamic Web service usage in order to overcome the
limitations of hard-wired invocations out of a client application (see Section 3.2.1). Thus,
the runtime discovery should be performed in an efficient manner in order to provide an
operationally reliable filter for the subsequent processing steps, also for larger search spaces
of available Web services. The Web service discovery on the level of goal templates appears

110 Chapter 5. Semantic Discovery Caching

to be not time critical because it can be performed at design time, i.e. whenever a goal
template or a Web service is added, removed, or changed in the system. Besides, we expect
that in real-world settings the runtime discovery is a much more frequent operation than
the design time discovery: the former is required for every single client request, while the
latter is only needed when the existing goal templates or the available Web services change.
In accordance to the standard quality measurements for software performance [Ebert et al.,
2004], we consider the following characteristics for judging the computational performance
of an automated discovery engine: efficiency as the time required for finding a suitable Web
service, scalability as the ability to deal with larger search spaces of available Web services,
and stability as a low variance of the execution time among several invocations.

5.1.2 The SDC Approach

The approach for enhancing the computational performance of Web service discovery that
underlies the SDC technique is to reduce the search space and minimize the necessary
matchmaking operations for individual discovery operations. We choose this optimization
strategy with respect to the known performance deficiencies of reasoning techniques: the
fewer matchmaking operations are needed for obtaining a valid discovery result, the faster
the discovery process can be completed (see Section 2.2.2).

To realize this, we exploit the relationships between goal templates, goal instances,
and Web services that result from the formal functional descriptions. The central element
for this is the SDC graph that organizes goal templates in a subsumption hierarchy and
keeps the relevant knowledge on the suitability of the available Web services for each goal
template by capturing the results of design time discovery runs. This provides an efficient
search index for goals and Web services, extending the property of goal templates as a cache
for the candidate services that are functionally suitable for solving goal instances.

The SDC graph is defined such that there is only one unambiguous graph structure that
properly represents the relevant relationships for a given set of goals and Web services. The
basic idea is to organize goal templates with respect to their semantic similarity. Two goal
templates Gi and Gj are considered to be similar if they have at least one common solution:
then, mostly the same Web services are usable for them. We express this in terms of
similarity degrees as the matching degree between the functional descriptions DGi and DGj ,
which are defined analog to the matching degrees for denoting the functional usability of a
Web service for a goal template (see Section 4.3.1). To illustrate this, Table 5.1 shows the
functional descriptions of two goal templates from the shipment scenario: G1 for shipping
packages within Europe, and G2 for shipping packages in Germany with a maximal weight

5.1. Motivation and Overview 111

Table 5.1: Example for Semantically Similar Goal Templates
Goal Template G1 Goal Template G2

“ship a package of any weight in Europe” “ship a package in Germany, max 50 kg”
Ω: location & shipment ontology
IN : {?s,?r,?p,?w}
φpre: address(?s) ∧ in(?s, europe)

∧ address(?r) ∧ in(?r, europe)
∧ package(?p) ∧ weight(?p, ?w)
∧maxWeight(?w, heavy).

φeff : ∀?o, ?price. out(?o) ⇔ (
shipmentOrder(?o, ?p)
∧ sender(?p, ?s) ∧ receiver(?p, ?r)
∧ costs(?o, ?price)).

Ω: location & shipment ontology
IN : {?s,?r,?p,?w}
φpre: address(?s) ∧ in(?s, germany)

∧ address(?r) ∧ in(?r, germany)
∧ package(?p) ∧ weight(?p, ?w)
∧maxWeight(?w, 50).

φeff : ∀?o, ?price. out(?o) ⇔ (
shipmentOrder(?o, ?p)
∧ sender(?p, ?s) ∧ receiver(?p, ?r)
∧ costs(?o, ?price)).

of 50 kg. As defined in Section 4.2, a functional description D = (Σ?, Ω, IN , φpre, φeff)
formally describes the possible solutions for a goal in terms of a precondition φpre that
constrains the possible start-states and an effect φeff that describes the final desired state
and explicitly defines the expected computational outputs in the predicate out(?o1, . . . , ?on).
The dependency between the start- and the end-state is defined via free variables that occur
in both φpre and φeff , which usually are the same as the required inputs IN = (?i1, . . . , ?in).
The relevant terminology and background knowledge is defined in a domain ontology Ω.

The similarity degree of the goal templates in Table 5.1 is subsume(G1, G2) because
every shipment order whose sender and receiver are located in Germany is also a shipment
order whose the sender and receiver are located in Europe, but not vice versa. In conse-
quence, only those Web services that are usable to solve G1 can possibly be usable for G2,
because a Web service that does not provide package shipment within Europe can also not
ship packages within Germany. We use this relation as the constituting principle for the
SDC graph: it organizes the existing goal templates with respect to the requested func-
tionalities such that the only occurring similarity degree is subsume(Gi, Gj). This enables
efficient search, because under this similarity degree the solutions for the child Gj are a
subset of those for the parent Gi, and thus the Web services that are usable for Gj are a
subset of those usable for Gi. We explicate the subsumption relation between goal templates
by directed arcs (Gi, Gj), which define the so-called goal graph as the basic index structure
of the SDC graph. We can properly allocate every goal template in the goal graph under
every possible similarity degree. To ensure the proper subsumption hierarchy, we introduce
so-called intersection goal templates as additional nodes in the goal graph that describe

112 Chapter 5. Semantic Discovery Caching

Figure 5.2: Example of a SDC Graph

the common solutions of two goal templates when their similarity degree is intersect. In
addition to this, the SDC graph explicates the functional usability of the available Web
services for each goal template by capturing the result of design time discovery runs. This
is defined by directed arcs (G, W) between a goal template G and a Web service W , which
are annotated with the matching degree d(G,W) as the relevant knowledge for optimizing
the discovery operations. We refer to this as the discovery cache.

Figure 5.2 illustrates the structure of the SDC graph for our running example. We here
consider three goal templates: G1 for package shipment in Europe, G2 for Germany, and
G3 for Switzerland. Their similarity degrees are subsume(G1, G2) and subsume(G1, G3) as
discussed above; this is explicated in the goal graph. It also holds that disjoint(G2, G3)
because the solutions for G2 and for G3 are disjoint subsets of those for G1. Let the following
Web services be among the available ones: W1 for package shipment in Europe, W2 in the
whole world, W3 in the European Union, and W4 in the Commonwealth. The usability
degree of every Web service for each goal template is explicated in the discovery cache. The
figure shows the actual design time discovery results that are obtained from matchmaking
of the functional descriptions (see Section 4.3.1). To keep the SDC graph minimal, we omit
redundant discovery cache arcs whose usability degree can be directly inferred as we shall
explain below. We observe that a SDC graph is a directed acyclic graph whose inner nodes
are the goal templates and whose leaf nodes are the usable Web services.

The basis for exploiting the SDC graph are inference rules of the form d(Gi, Gj) ∧
d(Gi,W) ⇒ d(Gj , W), i.e. between the similarity degrees of goal templates and the usability
degrees of Web services which result from the formal model. These provide the logical
foundation for effectively reducing the search space for Web service discovery operations,
and also for maintaining the SDC graph. Regarding the omittance of redundant arcs, in the
above example it holds that subsume(G1, G3)∧ plugin(G1,W2) ⇒ plugin(G3, W2) because

5.1. Motivation and Overview 113

{T }W2 ⊂ {T }G1 ⊂ {T }G3 . In this case we omit the discovery cache arc (G3,W2) because
the usability degree can be directly inferred from (G1,W2). Analogously, we can also omit
the arc (G3,W1) because its usability degree can be directly inferred by subsume(G1, G3)∧
exact(G1,W1) ⇒ plugin(G3, W1); the same holds for the arcs (G2,W1) and (G2,W2). The
omittance of such redundant arcs allows us to keep the discovery cache minimal while we
still know the particular usability degree of every Web service for each goal template.

To optimize the Web service discovery for goal instances at runtime, we can use the SDC
graph as follows. Consider a goal instance GI for shipping a package from Bern to Zürich,
i.e. within Switzerland. Let G1 be defined as the initial corresponding goal template. As
the first step, we can revise the corresponding goal template to be G3 in order to obtain
a more precise goal description. This results in a reduction of the search space of possible
candidates from the 4 Web services that are usable for G1 to the 2 Web services that are
usable for G3; we recall that only those Web services can be usable for a goal instance
which are usable for its corresponding goal template (cf. Definition 4.3 in Section 4.1.2).
Moreover, we know that both W1 and W2 are usable for G3 under the plugin degree as
explained above. Under this degree, the Web service is also usable for every goal instance
that properly instantiates the goal template without the need of additional matchmaking
(cf. Theorem 4.1 in Section 4.3.2). We thus will detect W1 and W2 as the only Web services
that are usable to solve GI under functional aspects. This shows that the runtime discovery
task can be performed with a minimal number of necessary matchmaking operations.

This is a novel approach for enhancing the computational performance of automated
Web service discovery by adopting the concept of caching as a well-established optimization
technique. In comparison to existing approaches that mostly apply clustering techniques,
the main benefits are that (1) it maintains the high retrieval accuracy that is achievable
by our semantic matchmaking techniques, (2) it can, in certain cases, perform Web service
discovery at runtime without invoking a matchmaker, and (3) the SDC graph as the under-
lying data structure can be generated automatically on the basis of semantic matchmaking
without the need of additional annotations.

While we shall discuss related works in detail in Section 5.6, the following sections pro-
vide the detailed specification of the SDC technique. In particular, we define the necessary
techniques and algorithms to ensure that the SDC graph properly captures the relevant
knowledge and that its structure and properties are maintained at all times, and we define
the optimized algorithms for Web service discovery at runtime. While we here focus on
the theoretic foundations and the technical realization, we shall show that the SDC tech-
nique can achieve significant improvements for runtime Web service discovery in terms of
efficiency, scalability, and stability, on the basis of a detailed evaluation in Chapter 6.

114 Chapter 5. Semantic Discovery Caching

5.2 Concepts and Definitions

This section defines the central concepts and data structures of the SDC technique. We
commence with defining the similarity measurement of goals, and the inference rules between
similar goal templates and their usable Web services. Then, we formally define the SDC
graph and explain how it can be created and maintained automatically. Finally, we discuss
the computational complexity for managing a SDC graph as well as its properties as a
search index for goal templates and Web services.

5.2.1 Goal Similarity and Inference Rules

The following defines the measurement notion for the semantic similarity of goals as the
basic notion of the SDC technique. On this basis, we also define all relevant inference rules
between similar goal templates and the usability of Web service for them, which provides
the logical foundation for defining and exploiting SDC graphs.

Goal Similarity

The constituting principle of the SDC graph is to organize goal templates in a subsumption
hierarchy with respect to the requested functionalities. This defines the goal graph as the
skeletal indexing structure of the SDC graph. As the basis for this, we need to define a
formal measurement for the semantic similarity of goal templates.

As outlined above, we consider two goal templates G1 and G2 to be similar if they have
at least one common solution because then mostly the same Web services are usable for
them. To explain and formally substantiate this, we briefly recall the understanding of
goals and the meaning of their descriptions from Section 4.1. A goal expresses the desire
to get from the current state of the world into a state wherein the objective is achieved,
and the basic objective description of a goal template G formally describes this in terms of
conditions on the possible start-states and conditions on the final desired state. We consider
T = (s0, . . . , sm) as the abstraction of an execution of a Web service that is observable in
the world as a sequence of states from a start-state s0 to an end-state sm (cf. Definition 4.2
in Section 4.1). This is a solution for G if s0 satisfies the conditions on the start-state
and sm satisfies those on the final desired state; we denote the set of all possible abstract
solutions for G by {T }G. With respect to this, we define two goal templates G1 and G2 to
be semantically similar if there is a sequence of states T = (s0, . . . , sm) which is a solution
for G1 and for G2. A Web service that can provide such a T is then usable for both goal
templates. The following defines this notion of goal similarity formally.

5.2. Concepts and Definitions 115

Definition 5.1. Let G1 be goal template with {T }G1 as the set of its possible abstract
solutions, and let G2 be goal template with {T }G2 as the set of its possible abstract solutions.

G1 and G2 are semantically similar if and only if

∃T . T ∈ ({T }G1 ∩ {T }G2).

This is the basic condition for the similarity of goal templates, which is defined analog
to the meaning of a match between a goal template and a Web service (cf. Definition 4.3
in Section 4.1.2). We choose this goal similarity measurement with respect to the primary
focus of our Web service discovery approach on the compatibility of the requested and
provided functionalities. One could also consider other aspects for this, e.g. that goals are
described on the basis of the same domain ontology or that they are defined in the same
application area. However, the goal similarity as defined here appears to be appropriate for
the context of the SDC technique because it allows us to organize goal templates in a way
such that we can effectively determine the functionally suitable Web services for them.

The semantic matchmaking techniques in our discovery framework are defined over
functional descriptions. These formally describe the possible executions of Web services
as well as the possible solutions of goals with respect to the start- and end-states, which
provides an abstract but sufficiently rich description of the overall provided and requested
functionalities (see Section 4.2). Because the SDC technique shall provide an optimization
for this, it is sufficient to evaluate the similarity of goal templates on the basis of their
functional descriptions. In order to precisely differentiate the grade of similarity between
goal templates, we define similarity degrees which denote the matching degree between their
functional descriptions – analog to the matching degrees between a goal template and a Web
service (see Section 4.3.1). The four similarity degrees exact, plugin, subsume and intersect
distinguish different situations wherein the basic similarity condition from Definition 5.1 is
satisfied, and the disjoint degree denotes that this is not given.

Table 5.2 provides the definitions of the goal similarity degrees in a concise manner.
Their meaning is as follows: exact(G1, G2) denotes that the solutions for G1 and G2 are
exactly the same, plugin(G1, G2) denotes that every solution of G1 is also a solution for
G2 and subsume(G1, G2) denotes the opposite relationship; intersect(G1, G2) states that
there is at least one common solution, and disjoint(G1, G2) denotes that a common solution
for G1 and G2 does not exist. In order to support reasoning in terms of model-theoretic
semantics, we define the conditions for the similarity degrees over the representation of
functional descriptions by the first-order logic structure DFOL = (Σ?,Ω?, IN , φD) from Def-
inition 4.6. Here, the FOL formula φD := [φpre]ΣD→Σpre

D
⇒ φeff defines a logical implication

116 Chapter 5. Semantic Discovery Caching

Table 5.2: Definition and Meaning of Goal Similarity Degrees

Denotation Definition Meaning

exact(DG1 ,DG2) Ω? |= ∀β. φDG1 ⇔ φDG2
T ∈ {T }G1 if and only if

T ∈ {T }G2

plugin(DG1 ,DG2) Ω? |= ∀β. φDG1 ⇒ φDG2 if T ∈ {T }G1 then T ∈ {T }G2

subsume(DG1 ,DG2) Ω? |= ∀β. φDG1 ⇐ φDG2 if T ∈ {T }G2 then T ∈ {T }G1

intersect(DG1 ,DG2)
∃β.

∧
Ω? ∧ φDG ∧ φDW

is satisfiable
∃T . T ∈ {T }G1 ∩ {T }G2

disjoint(DG1 ,DG2)
∃β.

∧
Ω? ∧ φDG ∧ φDW

is unsatisfiable
{T }G1 ∩ {T }G2 = ∅

between the precondition φpre and the effect φeff , and the renaming function [φ]ΣD→Σpre
D

along with the extended background ontology Ω? ensures the proper handling of dynamic
symbols (see Section 4.2.2). The matchmaking conditions are defined over input bindings
β : (?i1, . . . , ?in) → U , i.e. concrete value assignments for each input variable ?i ∈ IN . This
ensures that two similar goal templates define the same or at least semantically equivalent
input variables. We further assume that the functional descriptions of goals are consistent
so that at least one solution exists, and thus the following formal relations holds between
the similarity degrees: (1) exact ⇔ plugin ∧ subsume, (2) plugin ⇒ intersect, (3) subsume
⇒ intersect, and (4) ¬ intersect ⇔ disjoint (cf. Proposition 4.2 in Section 4.3.1).

Inference Rules

We now turn towards the inference rules between similar goal templates and their usable
Web services. As outlined above, we can define rules of the form d(Gi, Gj) ∧ d(Gi,W) ⇒
d(Gj ,W) in order to infer knowledge about the usability degree of a Web service W for
a goal template Gj when the similarity degree between Gj and another goal template Gi

as well as the usability degree of W for Gi is known. These rules result from the formal
definitions of the matching degrees, and provide the logical basis for the SDC technique.

Theorem 5.1 below defines all inference rules for every possible similarity degree between
two goal templates. Referring to Appendix B.1 for the formal proof, this essentially states
that (1) under exact(Gi, Gj) all Web services that are usable for Gi are also usable Gj

under the same usability degree, (2) under plugin(Gi, Gj) all Web services usable for Gi

are also usable for Gj but not vice versa, (3) under subsume(Gi, Gj) the set of usable Web
services for Gj is a subset of those usable for Gi, (4) under intersect(Gi, Gj) there can be
Web services that are usable for both Gi and Gj , and (5) under disjoint(Gi, Gj) we can
mostly not make any statement between the usable Web services for Gi and for Gj .

5.2. Concepts and Definitions 117

Theorem 5.1. Let G1 and G2 be goal templates, and let d(G1, G2) denote their similarity
degree. Let d(G,W) denote the usability degree of a Web service W for a goal template G.

Given d(G1, G2) and d(G1,W), all the following holds for d(G2,W):

(1) exact(G1, G2) ∧
(1.1) exact(G1,W) ⇒ exact(G2,W).

(1.2) plugin(G1,W) ⇒ plugin(G2,W).

(1.3) subsume(G1,W) ⇒ subsume(G2,W).

(1.4) intersect(G1,W) ⇒ intersect(G1, W).

(1.5) disjoint(G1, W) ⇒ disjoint(G2,W).

(2) plugin(G1, G2) ∧
(2.1) exact(G1,W) ⇒ subsume(G2,W).

(2.2) plugin(G1,W) ⇒ exact(G2,W) ∨ plugin(G2,W)

∨ subsume(G2,W) ∨ intersect(G2,W).

(2.3) subsume(G1,W) ⇒ subsume(G2,W).

(2.4) intersect(G1,W) ⇒ subsume(G2,W) ∨ intersect(G2,W).

(2.5) disjoint(G1, W) ⇒ d(G2,W) = any degree.

(3) subsume(G1, G2) ∧
(3.1) exact(G1,W) ⇒ plugin(G2,W).

(3.2) plugin(G1,W) ⇒ plugin(G2,W).

(3.3) subsume(G1,W) ⇒ d(G2,W) = any degree.

(3.4) intersect(G1,W) ⇒ plugin(G2,W) ∨ intersect(G2, W) ∨ disjoint(G2,W).

(3.5) disjoint(G1, W) ⇒ disjoint(G2,W).

(4) intersect(G1, G2) ∧
(4.1) exact(G1,W) ⇒ intersect(G2, W).

(4.2) plugin(G1,W) ⇒ plugin(G2,W) ∨ intersect(G2, W).

(4.3) subsume(G1,W) ⇒ subsume(G2,W) ∨ intersect(G2, W) ∨ disjoint(G2,W).

(4.4) intersect(G1,W) ⇒ d(G2,W) = any degree.

(4.5) disjoint(G1, W) ⇒ d(G2,W) = any degree.

(5) disjoint(G1, G2) ∧
(1) exact(G1,W) ⇒ disjoint(G2,W).

(2) plugin(G1,W) ⇒ d(G2,W) = any degree.

(3) subsume(G1,W) ⇒ disjoint(G2,W).

(4) intersect(G1,W) ⇒ d(G2,W) = any degree.

(5) disjoint(G1,W) ⇒ d(G2,W) = any degree.

118 Chapter 5. Semantic Discovery Caching

5.2.2 The SDC Graph

The following defines the SDC graph, which serves as the data structure for optimizing Web
service discovery operations and thus denotes the heart of the SDC technique. We commence
with the overall definition, and then explain the necessary constructs and refinements for
obtaining the desirable structure from a given set of goal templates and Web services.

The SDC graph organizes the existing goal templates in a subsumption hierarchy and
captures the relevant knowledge on the functional suitable of the available Web services from
design time discovery results. As outlined above, we distinguish two layers of a SDC graph:
the upper layer is the goal graph which organizes the goal templates such that subsume is the
only occurring similarity degree, and the lower layer is the discovery cache which explicates
the usability degree of every available Web service for each goal template. All edges in the
SDC graph are defined as binary directed arcs, i.e. each arc has exactly one source and one
target element. In the goal graph, (Gi, Gj) is a directed arc from the goal template Gi to
the goal template Gj such that subsume(Gi, Gj). In order to properly handle all possible
situations we introduce so-called intersection goal templates as virtual goal descriptions in
the goal graph; we shall explain this below in more detail. The discovery cache consists of
directed arcs (G,W) between a goal template G and a Web service W which are annotated
with the usability degree d(G,W). The following defines this formally.

Definition 5.2. Let G be a set of goal templates, and let W be a set of Web services. Let
d(Gi, Gj) denote the similarity degree of goal templates Gi, Gj ∈ G, and let d(G,W) denote
the usability degree of a Web service W ∈ W for a goal template G ∈ G.

The SDC graph for G,W is a directed acyclic graph (VG ∪ VW , Esim ∪ Euse) such that:

(i) VG := G ∪ GI is the set of inner vertices where
- G = {G1, . . . , Gn} are the goal templates and
- GI := {GI(Gi, Gj) | Gi, Gj ∈ G, d(Gi, Gj) = intersect, φDGI = φDGi ∧ φ

DGj }
is the set of intersection goal templates for G

(ii) VW := {W1, . . . , Wm} is the set of leaf vertices representing Web services
(iii) Esim := {(Gi, Gj) | Gi, Gj ∈ VG} is the set of directed arcs where

- d(Gi, Gj) = subsume and
- not exists G ∈ VG such that d(Gi, G) = subsume, d(G,Gj) = subsume

(iv) Euse := {(G,W) | G ∈ VG ,W ∈ VW} is set of directed arcs where
- d(G,W) ∈ {exact, subsume, intersect} or
- d(G,W) = plugin and not exists Gi ∈ VG such that d(Gi, G) = subsume

and d(Gi,W) ∈ {exact, plugin}.

5.2. Concepts and Definitions 119

This defines a SDC graph as outlined above. The goal graph defines the skeletal struc-
ture by organizing the existing goal templates as well as their intersection goal templates
in a proper subsumption hierarchy so that the only occurring goal similarity degree is sub-
sume and redundant arcs do not exist (cf. clauses (i) and (iii)). The discovery cache defines
the minimal set of arcs that is necessary to determine the precise usability degree of each
available Web service for every existing goal template (cf. clauses (ii) and (iv)).

For any set of goal templates and Web services, there is only one possible SDC graph
that properly describes the relevant relationships because its actual structure is determined
by the formally described requested and provided functionalities. This graph defines an in-
dexing structure where the more general goal templates are allocated at the top. The lower
levels contain the more specialized goal templates, for which successively fewer Web services
are usable. This can be effectively used for optimizing Web service discovery operations.
In particular, for the runtime discovery task we can first determine the most appropriate
goal template for the given goal instance by traversing the SDC graph, and then detect the
suitable Web services for solving the goal instance with minimal time and reasoning effort.
The following explains the techniques and the constructs for the creation and maintenance
of SDC graphs. While we here focus on the theoretic foundations, we shall specify the algo-
rithms for the automated creation and maintenance of SDC graphs as well as for optimizing
Web service discovery operations in the subsequent sections in detail.

Automated Creation and Maintenance

A central feature of the SDC technique is that the SDC graph as the underlying knowledge
structure can be created and maintained automatically. To ensure that the SDC graph
exposes the structure defined above at all times, it must (1) correctly represent the relevant
relations between the goal templates and the Web services in all possible situations, and
(2) properly reflect the changes that can occur in dynamically evolving environments.

This can be ensured by algorithms that automatically create a correct SDC graph for
a given set of goal templates and Web services, and also update this correctly whenever a
goal template or a Web service is added, removed, or changed. The basis for this are two
principles for correctly handling the possibly occurring situations: the first one is concerned
with establishing the goal graph such that every goal template is allocated properly without
any redundancy, and the second one is concerned with defining the discovery cache such that
redundant arcs are omitted in order to enhance its manageability. The following explains
both principles and defines their theoretic basis, upon which we shall specify the algorithms
for the creation and maintenance of SDC graphs in detail below in Section 5.3.

120 Chapter 5. Semantic Discovery Caching

Establishing the Goal Graph. The goal graph is the skeletal structure of the SDC
graph. To enable efficient search of goal templates and Web services, we have defined the
goal graph to represent a subsumption hierarchy of the existing goal templates with respect
to the semantic similarity of the requested functionalities.

In particular, the goal graph is defined such that (1) the only occurring similarity degree
is subsume(Gi, Gj) because then the solutions for the child Gj are a subset of those for the
parent Gi and thus the usable Web services for Gj are a subset of those usable for Gi,
and (2) the subsumption hierarchy is defined by the minimal number of necessary arcs (cf.
clause (iii) in Definition 5.2). To properly handle all possible situations that can occur with
respect to the semantic similarity of goal templates, we create the goal graph for two goal
templates Gi, Gj under the other similarity degrees defined in Table 5.2 as follows:

• if exact(Gi, Gj), then only one of the goal templates is kept in the SDC graph while
the other one is considered to be redundant in the context of Web service discovery:
the requested functionalities are semantically equivalent, and the same Web services
are usable for both under the same usability degree (cf. rules 1.1 – 1.5 of Theorem 5.1)

• if plugin(Gi, Gj), then we store the arc (Gj , Gi) in the SDC graph so that Gi becomes
a child of Gj ; this is possible because plugin(Gi, Gj) ⇔ subsume(Gj , Gi) given that
the functional descriptions φDGi and φ

DGj are consistent (cf. Proposition 4.2)

• if intersect(Gi, Gj), then we define an intersection goal template GI(Gi, Gj) that
describes the common solutions of Gi and Gj and becomes an additional child node
of both goal templates in the goal graph; we shall explain this below in more detail

• if disjoint(Gi, Gj), then both goal templates are kept as disconnected nodes in the
goal graph; in consequence, the SDC graph can have separated subgraphs where each
consists of semantically similar goal templates along with their usable Web services.

The SDC graph is created by the subsequent insertion of goal templates. In each
insertion operation we add the necessary goal graph arcs and remove the redundant ones.
For example, consider two goal templates G1 and G3 with subsume(G1, G3) to be given, and
a new goal template G2 with subsume(G1, G2) and subsume(G2, G3) is added. Here, we
add the new goal graph arcs (G1, G2) and (G2, G3), and remove the previously existing arc
(G1, G3). This is done analogously for inserting a goal template under the other similarity
degrees and also when a goal template is removed or modified. Therewith, every goal
template will be allocated at the only possible position in the SDC graph, and the goal
graph always defines a proper and non-redundant subsumption hierarchy.

5.2. Concepts and Definitions 121

The similarity degree intersect(Gi, Gj) denotes that Gi and Gj have at least one com-
mon solution but there are also exclusive solutions for each. This is problematic because
the direction of goal graph arcs for representing this is ambiguous, and – much more criti-
cal – the connection of multiple goal templates under the intersect similarity degree might
cause cycles which disable the search properties of a SDC graph. To avoid this, we in-
troduce an intersection goal template GI(Gi, Gj) that is defined as the logical conjunction
of the functional descriptions of Gi and Gj (cf. clause (i) in Definition 5.2). The solu-
tions for GI(Gi, Gj) are exactly those that are common for Gi and Gj , and thus it holds
that subsume(Gi, G

I(Gi, Gj)) and subsume(Gj , G
I(Gi, Gj)). In consequence, the intersec-

tion goal template becomes a common child of Gi and Gj in the goal graph. We extend
the subsumption hierarchy by defining two new arcs (Gi, G

I(Gi, Gj)) and (Gj , G
I(Gi, Gj)),

which precisely reflects the semantic relationship of the requested functionalities. This is
applied for every occurrence of an intersect similarity degree, so that eventually all similar
goal templates are organized in a subsumption hierarchy. The existence of intersection goal
templates determines the SDC graph to be a directed acyclic graph (short: dag), because
an intersection goal template by definition has two parent nodes and the goal graph can not
contain any cycles [Bang-Jønsen and Gutin, 2000]. We shall formally define intersection
goal templates and discuss their use within a SDC graph in more detail below.

Moreover, the SDC graph can contain subgraphs which are disconnected from each other.
This results from the handling of goal templates with the similarity degree disjoint(Gi, Gj)
where we keep both Gi and Gj in the SDC graph, because each one is a potentially relevant
objective description. Each of such disconnected goal templates might be associated with a
set of similar goal templates, and so there can be several separate subgraphs as illustrated in
Figure 5.3. In an application context, we can understand each subgraph to cover a specific
problem domain, e.g. one for the shipment scenario and another one for flight ticketing.
This does not contradict with the definition of the SDC graph, because a dag does not
need to be completely connected and also can have several root nodes.

Figure 5.3: Disconnected Sub-Graphs in the SDC graph

122 Chapter 5. Semantic Discovery Caching

Creation of the Discovery Cache. We now explain the discovery cache in more
detail. This captures the knowledge on the usability of the available Web services, and is
defined by the minimal set of arcs that are necessary to determine the usability degree of
each Web service for every existing goal template (cf. clause (iv) in Definition 5.2).

For the optimization of Web service discovery operations, we must know the precise
usability degree of every Web service W for each goal template G. This is explicated in the
discovery cache by directed arcs of the form (G,W) which are annotated with the matching
degree between G and W . However, in order to avoid redundancy, we omit discovery cache
arcs for which the usability degree can be inferred from the SDC graph. Following from
the inference rules 3.1 and 3.2 in Theorem 5.1, it holds that if subsume(Gi, Gj), then the
usability degree of a Web service W for the child Gj is always plugin if W is usable for
the parent Gi under the degrees exact or plugin because the relationship of the possible
executions of W and the solutions for Gi, Gj is {T }W ⊇ {T }Gi ⊃ {T }Gj . Thus, the arc
(Gj ,W) is not defined in the SDC graph, and so the discovery cache is kept minimal.

This relationship also holds for subsequent occurrences of the subsume similarity, which
constitute the goal graph as explained above. If there are three goal templates such that
subsume(G1, G2) and subsume(G2, G3) and a Web service W with plugin(G1,W), then
the only possible usability degree of W for G2 as well as for G3 is also plugin and thus the
arcs (G2,W) and (G3,W) are both omitted. In consequence, we can omit every discovery
cache arc that connects a child of a goal template G in the goal graph with a Web service
W whose usability degree for G is either exact or plugin. Figure 5.4 illustrates this for the
example scenario discussed above in Section 5.1.2. The minimality of the discovery cache
is not mandatory with respect to the formal properties of the SDC graph, but greatly eases
its manageability in dynamically changing environments.

Figure 5.4: Minimality of Discovery Cache

5.2. Concepts and Definitions 123

Intersection Goal Templates

The following explains the concept of intersection goal templates in more detail. As outlined
above, an intersection goal template describes the solutions which are common for two
goal templates under the intersect similarity degree, and it is added as a child node of
both original goal templates in the goal graph. This is necessary in order to organize all
non-disjoint goal templates in a proper subsumption hierarchy, and therewith warrant the
desirable search properties of the SDC graph. We commence with the formal definition of
intersection goal templates, and then explain how these allow us to avoid cycles as well as
other undesirable situations in the SDC graph.

Definition 5.3. Let Gi and Gj be goal templates, and let their semantic similarity degree
be intersect(Gi, Gj). Let DGi = (Σ?, Ω?, IN Gi , φ

DGi) be the functional description of Gi,
and let DGj = (Σ?,Ω?, IN Gj , φ

DGj) be the functional description of Gj.

We define GI(Gi, Gj) as the intersection goal template of Gi and Gj such that

DGI(Gi,Gj) = (Σ?,Ω?, IN Gi ∪ IN Gj , φ
DGi ∧ φ

DGj).

This defines an intersection goal template GI(Gi, Gj) as the logical conjunction of the
functional descriptions of the original goal templates Gi and Gj . Defined over the FOL
structure for representing functional descriptions where φD := [φpre]ΣD→Σpre

D
⇒ φeff , the

Σ?-interpretations that are a model of DGI(Gi,Gj) are exactly the common models for DGi

and DGj . In accordance to Proposition 4.1 in Section 4.2.2, this means that the abstract
solutions for GI(Gi, Gj) that are described by the logical models of DGI(Gi,Gj) are exactly
those solutions that are common for Gi and Gj , i.e. {T }GI(Gi,Gj) = {T }Gi ∩ {T }Gj .

In fact, the abstract solutions for GI(Gi, Gj) are the solution of Gi and Gj that con-
stitute the similarity degree intersect(Gi, Gj). It thus holds that subsume(Gi, G

I(Gi, Gj))
and subsume(Gj , G

I(Gi, Gj)). In consequence, the Web services that are usable to solve
GI(Gi, Gj) are exactly those that are usable for both Gi and Gj . Recalling from Defi-
nition 4.3, a match between a goal template G and a Web service W is given if ∃T . T ∈
({T }G∩{T }W). Thus, it holds that match(GI(Gi, Gj),W) ⇔ match(Gi,W)∧match(Gj ,W)
(see Section 4.1.2). Note that GI(Gi, Gj) considers the union of the input variables defined
for Gi and for Gj : these must be semantically equivalent because otherwise the condition
for intersect(Gi, Gj) can not be satisfied. Intersection goal templates are only meaningful
under the intersect similarity degree. Under subsume(Gi, Gj) it holds that {T }Gi ⊃ {T }Gj

and in consequence {T }GI(Gi,Gj) = {T }Gj . The same holds analogously for the plugin and
the exact similarity degrees, and if disjoint(Gi, Gj) then {T }GI(Gi,Gj) = ∅.

124 Chapter 5. Semantic Discovery Caching

Figure 5.5: Example for an Intersection Goal Template

On this basis, we represent the situation where intersect(G1, G2) in the goal graph as
illustrated in Figure 5.5: we add the intersection goal template GI(G1, G2) along with two
arcs (G1, G

I(G1, G2)) and (G2, G
I(G1, G2)) which denote the subsumption hierarchy. In

our running example, consider a goal template G1 for shipment in Germany for packages of
any weight, and a goal template G2 for shipment in Europe for packages with a maximal
weight of 50 kg. Their similarity degree is intersect because shipping a package of 62.5 kg
from Munich to Berlin is a solution for G1 but not for G2. The intersection goal template
GI(G1, G2) describes the objective of shipping packages in Germany with a maximal weight
of 50 kg. We then can treat GI(G1, G2) as a conventional goal template for search and
discovery in the SDC graph. Its functional description does not have to be materialized
because we can reason on it via the functional descriptions of the original goal templates.

Avoidance of Cycles. The major merit of intersection goal templates as defined above
is that they allow us to properly handle problematic situations that might occur among
semantically similar goal templates, in particular to avoid potential cycles in the SDC
graph. The following explains this on the basis of several situations, and shows how they
can be properly handled by adding intersection goal templates to the goal graph. We here
content ourselves with informal discussions that appear to be sufficient for this purpose.

We consider situations where the similarity of goal templates does not denote a proper
subsumption relationship to be undesirable, because this can not be represented straight-
forward in the SDC graph without hampering its desirable search properties. This can only
occur under the intersect(Gi, Gj) similarity degree which denotes that Gi and Gj have at
least one common solution but there are also exclusive solutions for each; under all other
similarity degrees we can unambiguously represent the subsumption relationship of the re-
quested functionalities in the SDC graph. Figure 5.6 illustrates such situations, and shows
their representation in the goal graph on the basis of intersection goal templates.

5.2. Concepts and Definitions 125

Figure 5.6: Intersection Goal Templates in the Goal Graph

The first situation considers three goal templates G1, G2, G3 whose similarity degrees
are intersect(G1, G2) and intersect(G2, G3). Here, it is not possible to unambiguously
define directed arcs in the goal graph. For representing intersect(G1, G2), we could define
the arc (G1, G2) but also the arc (G2, G1). The same problem occurs for representing
intersect(G2, G3). To avoid the risk of unambiguity, we represent the relationships between
the three goal templates by the intersection goal templates GI(G1, G2) and GI(G2, G3).
In the second situation shown in the figure, we analogously represent the relation between
two non-disjunct children G2, G3 of a goal template G1 by defining their intersection goal
template GI(G2, G3). This allows us to better reduce the search space for runtime Web
service discovery. A goal instance that satisfies the goal instantiation condition for all three
goal templates is also a consistent instantiation of the intersection goal template GI(G2, G3).
In consequence, we only need to investigate the usable Web services for GI(G2, G3), which
by definition are those that are commonly usable for G2 and G3.

We now turn towards the avoidance of cycles in the goal graph. In contrast to the sit-
uations discussed above, a cycle effectively disables the search properties because a search
algorithm can run into infinite loops. Figure 5.7 below illustrates three examples for situ-
ations that would cause cycles in the goal graph: (1) if three or more goal templates are
concatenated via intersect similarity degrees and there is no common solution for them, (2)
if three goal templates ore more are concatenated via intersect similarity degrees and there
is at least common solution for them, and (3) if there are three goal templates with one
subsume- and two intersect similarity degrees. We can avoid each of these as well as all
other potential cycles in the goal graph by adding the respective intersection goal templates
with a similar effect as discussed above. The figure shows the patterns for avoiding the
cycles by intersection goal templates; although this does not cover all possible situations,

126 Chapter 5. Semantic Discovery Caching

Figure 5.7: Avoidance of Cycles in the Goal Graph

the resulting patterns for resolving other potential cycles are analog. In situations (2) and
(3), the intersection goal template that describes the common solutions of all involved goal
templates becomes a child node at the lowest level of the goal graph. To obtain this goal
graph structure, we need to iteratively check for new occurrences of the intersect similarity
degree and resolve them accordingly. We explain this for an illustrative example.

Illustrative Example. The following exemplifies the avoidance of a cycle on the basis
of intersection goal templates and the iterative refinement of the goal graph. This illustrates
the basic principles of the algorithms for the creation and maintenance of the SDC graphs
that we shall specify in detail below in Section 5.3.

In order to show that the SDC technique is also applicable for other scenarios, we
here consider an example from the best-restaurant-search scenario that we have discussed
in detail in Chapter 4. Let us consider three goal templates: G1 for finding the best
restaurant in an Austrian city, G2 for finding the best French restaurant in any city of the
world, and G3 for finding the best restaurant in a European city. Their similarity degrees
are intersect(G1, G2), intersect(G2, G3), and subsume(G3, G1). This situation corresponds
to the third type of cycles in Figure 5.7. To reach the representation pattern, we iteratively
resolve the occurrences of intersect similarity degrees in a top down-top manner.

5.2. Concepts and Definitions 127

Figure 5.8: Example for Avoiding Cycles in the Goal Graph

Figure 5.8 shows the relevant steps. We commence with intersect(G2, G3) as the top-
most occurrence of the intersect similarity degree. The resulting intersection goal template
GI(G2, G3) describes the objective of finding the best French restaurant in a European city,
and becomes a child node of G2 and of G3 (cf. Step 1). This results in a new occurrence
of the intersect similarity degree because now intersect(G1, G

I(G2, G3)), i.e. G1 and the
new node GI(G2, G3) are non-disjoint child nodes of G3 (cf. Step 2). Before handling this,
we first resolve intersect(G1, G2) as the top-most occurrence at this stage. The resulting
intersection goal template GI(G1, G2) describes the objective of finding the best French
restaurant in an Austrian city, and becomes a child node of both G1 and G2 (cf. Step 3).

We now address the new occurrence, i.e. intersect(G1, G
I(G2, G3)). The resulting in-

tersection goal template would describe the objective of finding the best French restaurant
in an Austrian city. We observe that this is semantically equivalent with the already exist-
ing intersection goal template GI(G1, G2): both describe the solutions which are common
to all three original goal templates, and there similarity degree is exact (cf. Step 4). Under
this similarity degree, we only keep one goal template while the other one is redundant for
the purpose of the SDC technique (see Section 5.2.2). Here, we keep the already existing
intersection goal template GI(G1, G2) while the newly created, third intersection goal tem-
plate is not kept (cf. Step 5). We therewith finally obtain the representation pattern for
the cyclic situation in the goal graph as outlined above in Figure 5.7.

128 Chapter 5. Semantic Discovery Caching

5.2.3 Properties of the SDC Graph

After having defined the SDC graph along with the constructs and principles for obtaining
this for a given set of goal templates and Web services, we now discuss its relevant properties
as a search index for optimizing Web service discovery. In particular, we show that the SDC
graph holds all relevant knowledge that is relevant for optimizing discovery operations in a
concise manner, and we analyze the computational complexity for creating a SDC graph as
well as its search properties for optimizing runtime discovery operations.

Inferential Completeness and Minimality

The first aspect is concerned with the correctness and conciseness of the SDC graph, i.e.
that it keeps all relevant knowledge in an unambiguous and non-redundant manner. Re-
calling from Definition 5.2, the goal graph organizes all existing goal templates in a proper
subsumption hierarchy such that the only occurring similarity degree is subsume and re-
dundant arcs do not exist, and the discovery cache captures the minimal knowledge on the
functional suitability of every available Web service for each existing goal template.

This structure ensures that the SDC graph satisfies two properties that appear to be
relevant for its application purpose. The first one is that from the SDC graph when can
infer (a) the precise semantic similarity between every pair of goal templates, and (b) the
precise usability degree of each Web service for every existing goal template. This is a
pre-requisite for optimizing Web service discovery operations: the knowledge about the
semantic similarity of goal templates in necessary to effectively reduce the search space,
and the knowledge of the precise usability degrees of Web service is required for optimizing
the discovery operations, in particular at runtime. We thus refer to this as the inferential
completeness of the SDC graph for the context of Web service discovery. The second
property is that the SDC graph only keeps the minimal necessary knowledge: every arc in
the SDC graph is necessary to establish the inferential completeness, and every additional
arc that describes a correct relationship between the goal template and Web services is
redundant because it can be inferred from the existing arcs. We call this the inferential
minimality of the SDC graph, which greatly eases its maintainability.

The following defines this formally. We here consider d(Gi, Gj) and d(G,W) as atoms
that can be either true or false and denote the similarity degree of goal templates, respec-
tively the usability degree of a Web service for a goal template where the possible matching
degree d is either exact,plugin,subsume,intersect, or disjoint. ASDC is the set of such atoms
that is explicitly defined in the SDC graph, and cl?(ASDC) is its deductive closure that
encompasses all atoms can be deduced by the inference rules IR defined in Theorem 5.1.

5.2. Concepts and Definitions 129

Theorem 5.2. Let G be a set of goal templates, let W be a set of Web services, and let
SDC = (VG ∪ VW , Esim ∪ Euse) be the SDC graph over G,W. Let ASDC = {d(x, y)|d ∈
{exact,plugin,subsume,intersect}, x ∈ G, y ∈ (G,W), (x, y) ∈ (Esim, Euse)} be all the atoms
defined in SDC, let IR be the set of all inference rules that hold between d(x, y), and let
cl?(ASDC) = {d(x, y)|ASDC ∧ IR |= d(x, y)} be the deductive closure of ASDC over IR.

The SDC graph is inferentially complete and minimal such that:

(i) d(x, y) ∈ cl?(ASDC) if and only if d(x, y) is true for G ×W, and
(ii) for all d(x, y) ∈ ASDC : cl?(ASDC \ d(x, y)) ⊂ cl?(ASDC).

Referring to Appendix B.2 for the proof, this states that the SDC graph defines all
relevant knowledge on the semantic similarity of goal templates and the usability of the
available Web services in a concise and redundance-free manner. Clause (i) states that the
inferential completeness is given because the SDC graph arcs together with the knowledge
that can be inferred by the rules defined in Theorem 5.1 correctly describe all relevant
relations between the goal templates and the Web services, and clause (ii) states that this
completeness would be disabled when a single arc is removed from the SDC graph.

Complexity and Search Properties

We now turn towards the computational complexity of the SDC graph. We commence
with analyzing the complexity for the automated creation and maintenance of the SDC
graph, which covers the operations carried out at design time in our two-phased discovery
framework. Then, we discuss the general properties of the SDC graph as a search index for
optimizing the Web service discovery task at runtime.

SDC Graph Management. The SDC graph is created and maintained at design time,
i.e. whenever a goal template or a Web service is added, removed, or modified. As explained
above, the SDC graph is created by the subsequent insertion of goal templates. This denotes
the central operation for which we need to insert the new goal template into the goal graph
and perform the necessary design time discovery runs to create the discovery cache. We
thus focus on the insertion of single goal templates for the complexity analysis; all other
management operations on SDC graphs require significantly less computational effort.

A new goal template Gnew is inserted into the SDC graph by first allocating it at the
only possible position in the goal graph, and then update the discovery cache so it properly
captures the knowledge on the usability of the available Web services for Gnew as well as for
all previously existing goal templates. The base operation for this is semantic matchmaking
on the goal template level, for determining both the semantic similarity of goal templates as

130 Chapter 5. Semantic Discovery Caching

well as the usability degree of a Web service. If this is decidable, then the complexity of a
single matchmaking operation is NExpTime-complete (cf. Proposition 4.3 in Section 4.3.1).
We can distinguish two situations with respect to the number of necessary matchmaking
operations: (1) when Gnew becomes a new root node of the SDC graph we have to inspect
the usability of all available Web services, while (2) in all other situations we only need to
inspect the Web services which are usable for the previously existing goal templates.

For the first situation, we need to first ensure that there does not exist any root node
Groot in the SDC graph where subsume(Groot, Gnew), because otherwise Gnew would become
a child node of Groot. Then, we need to inspect the usability of all existing Web services for
Gnew, because under the disjoint similarity degree we can not infer relevant knowledge on
this from the SDC graph (cf. rules 5.1 - 5.5 in Theorem 5.1). In all other situations, we first
need to allocate Gnew at the appropriate position within the subsumption hierarchy of the
already existing goal templates. For this, we need to first find the existing root node where
subsume(Groot, Gnew) which indicates the root of the SDC subgraph wherein Gnew shall
be inserted. Then, we need to stepwise traverse the goal graph by checking the semantic
similarity with the already existing goal templates until reaching the appropriate position
for inserting Gnew. Note that by definition there can only be one of the possibly separated
subgraphs where subsume(Groot, Gnew), and there also is only one possible position for
every goal template in the SDC graph. Finally, we need to determine the usability of only
those Web services that are usable under the subsume or the intersect degree for the goal
templates Gp that now are parents of Gnew (cf. clauses 3.1 - 3.5 in Theorem 5.1).

The following defines this formally. We use the following standard notions from graph
theory: the diameter of the goal graph diam(SDCGG) is the maximal distance between a
root and a leaf node, and the branching factor b(SDCGG) denotes the maximal number of
children of a goal template in the goal graph [Diestel, 2005].

Proposition 5.1. Let SDC = (VG ∪ VW , Esim ∪Euse) be the SDC graph for a set G of goal
templates and a set W of Web services. Let SDCGG = (VG , Esim) be the goal graph with
the diameter diam(SDCGG) and the branching factor b(SDCGG). Let Groot ⊆ VG be the set
of root nodes of SDC , and let WG ⊆ W be the usable Web services for a goal template G.

The computational costs for inserting a new goal template Gnew to SDC are

(i) O(|Groot|+ |W|) when Gnew becomes a new root node of SDC, otherwise
(ii) O(|Groot|+ (diam(SDCGG) ∗ b(SDCGG)) + |WGp |) with

(Gp, Gnew) ∈ Esim and d(Gp,W) ∈ {subsume, intersect}
where the complexity of a single matchmaking operation is NExpTime-complete if the proof
obligation remains in the Bernays–Schönfinkel fragment, undecidable otherwise.

5.2. Concepts and Definitions 131

The complexity for the creation of SDC graphs is relatively high. This corresponds to
our two-phased approach wherein expectably expensive operation are performed at design
time, i.e. orthogonal to the time critical discovery of suitable Web services for a goal instance
at runtime. Besides, we expect than in most application scenarios there are only a few root
nodes of the SDC graph so that the expensive goal template insertion operation is rather
rare, and also that both diam(SDCGG), b(SDCGG) ¿ |G| and usually |WG| ¿ |W| so that
the insertion operation for new child nodes is significantly less expensive.

Search Properties. We now discuss the properties of the SDC graph as a search index
for goal templates and Web services. This mainly relates to its primary usage purpose for
optimizing the discovery of suitable Web services for a goal instance at runtime.

As outlined above, the approach for enhancing the computational performance of the
runtime discovery task is to minimize the necessary matchmaking operations. For a given
goal instance GI(G, β), we first reduce the relevant search space by determining the most
appropriate goal template G′ that is a (possibly indirect) child of the originally defined
corresponding goal template G, and of which the goal instance is a valid instantiation. For
this, we subsequently traverse the SDC graph by checking the goal instantiation condition,
and then inspect the suitability of those Web services that are usable for G′ on the basis of
the integrated matchmaking conditions defined in Theorem 4.1 (see Section 4.3.2).

The following defines the computational costs for this formally, while we shall specify
the algorithms for the optimized runtime discovery below in Section 5.4. Note that by
definition there can only be one most appropriate goal template G′ for a goal instance,
and there always is at least one path G → . . . → G′ in the SDC graph where GI(G, β)
is a valid instantiation of every goal template. The base operation for this search are the
matchmaking techniques on the goal instance level as defined in Section 4.3.2.

Proposition 5.2. Let SDC = (VG ∪ VW , Esim ∪Euse) be the SDC graph for a set G of goal
templates and a set W of Web services. Let SDCGG = (VG , Esim) be the goal graph with
the diameter diam(SDCGG) and the branching factor b(SDCGG). Let GI(G, β) |= G be a
goal instance where G,G′ ∈ VG with subsume(G,G′) and GI(G, β) |= G′, and let WG ⊆ W
be the usable Web services for a goal template G.

The costs for finding a suitable Web service W for a goal instance GI(G, β) in SDC are

O((diam(SDCGG) ∗ b(SDCGG)) + |WG′ | where d(G′,W) ∈ {subsume, intersect})

and the complexity of the necessary matchmaking operations is NExpTime if the functional
descriptions [DG]β, [DW]β instantiated with the β defined in GI(G, β) do not contain func-
tion symbols and have a ∃?∀? quantifier prefix when written in prenex normal form.

132 Chapter 5. Semantic Discovery Caching

5.3 Management and Maintenance

This section specifies the techniques for managing and maintaining SDC graphs, which
covers the automated creation as well as the handling of changes in evolving environments.
In order to warrant the operational correctness of the SDC graph at all times, we need to
ensure that its structure and properties are maintained in all possible situations when a
goal template or a Web services is added, removed, or modified.

The following defines the necessary algorithms for this, which follow the principles ex-
plained above. We commence with the creation of the SDC graph. This is realized by the
subsequent insertion of new goal templates such that after each insertion the SDC exposes
the structure and properties as defined above. We explain this central operation in detail,
and illustrate the algorithm for a comprehensive example from the shipment scenario. We
then define the algorithms for managing changes on the existing goal templates and the
available Web services, which provide the basic evolution support for the SDC technique.
We here focus on the design and the functional correctness of the algorithms, while we shall
explain the technical realization below in Section 5.5.

The creation and maintenance algorithms provide the basic management facilities for
the SDC graph. We amend this with discussing extensions and complementing techniques,
in particular the automated generation of additional goal templates and the integration
with other SWS techniques. All management and maintenance operations are performed
at design time, i.e. orthogonal to the discovery of suitable Web services for goal instances
at runtime, and thus are considered to be not time critical in our two-phased framework.

5.3.1 SDC Graph Creation

As outlined above, we realize the automated creation of the SDC graph via the subsequent
insertion of goal templates. Each new goal template is first inserted into the goal graph,
and then the necessary arcs are added to the discovery cache. We assume that in real-world
scenarios the goal templates are specified in a stepwise manner so that the SDC graph grows
successively. However, we can also generate the SDC graph for a given set of goal templates
and Web services by subsequently inserting the individual goal templates.

Figure 5.9 provides an overview of the algorithm for this in terms of a flow chart,
which follows the principles and constructs for creating SDC graphs as explained above in
Section 5.2.2. The first part is concerned inserting a new goal template Gnew at the proper
position in the goal graph. We commence with inspecting the semantic similarity of Gnew

and already existing goal templates which are root nodes in the SDC graph. If there is a

5.3. Management and Maintenance 133

Figure 5.9: Overview of SDC Graph Creation Algorithm

root node Groot for which the similarity degree is not disjoint, then Gnew will be allocated
in the subgraph of Groot. There can only be one potential target subgraph because by
definition the goal templates in disconnected subgraphs are not semantically similar. We
then insert Gnew under the possible similarity degrees as follows:

• if exact(Gnew, Groot) then Gnew is not added to the SDC graph because a semantically
equivalent goal template already exists

• if plugin(Gnew, Groot) then Gnew becomes a new root node of the subgraph of Groot;
the goal graph update is handled by the rootNodeInsertion sub-procedure

• if subsume(Gnew, Groot) then Gnew becomes a new child node in the subgraph of
Groot; this is handled by the iterative sub-procedure childNodeInsertion

• if intersect(Gnew, Groot) then we represent this by the respective intersection goal
template in the goal graph (cf. Definition 5.3); all occurrences of the intersect simi-
larity degree are handled by the sub-procedure intersectGTInsertion

• if a semantically similar Groot does not exists, then Gnew is inserted as a disconnected
node so that it constitutes a new separated subgraph.

134 Chapter 5. Semantic Discovery Caching

The second part of the algorithm is concerned with the creation of the discovery cache,
i.e. with adding the arcs which are necessary to deduce the precise usability degree of every
available Web service for Gnew by capturing design time discovery results. Every newly
inserted goal template is either a root or a child node in the goal graph: a disconnected goal
template can be consider to be a root node without children, and intersection goal templates
are child nodes by definition. We thus merely need to distinguish two sub-procedures for the
discovery cache creation: rootNodeDiscovery detects the suitable Web services and updates
the discovery cache when Gnew is a root node, and childNodeDiscovery handles the case
when Gnew has been inserted as a child node. For this, we can make use of the inference
rules defined in Theorem 5.1 in order to reduce the necessary matchmaking effort.

After each run of the algorithm, the resulting SDC graph must expose the structure
and properties from Definition 5.2, i.e. (1) Gnew is allocated at the correct position and
there are no redundant arcs in the goal graph, and (2) the extended discovery cache defines
the minimal set of arcs that is necessary to determine the precise usability degree of every
available Web service for Gnew and for all other goal templates. This is ensured by the
sub-procedures which we shall specify in detail in the following.

Listing 5.1 shows the overall control procedure of the goal template insertion algorithm
in Java-style pseudo code. Initially, the SDC graph is empty and Gnew becomes the first
goal template; the subsequent insertions are performed as explained above. We use the
following elements: sdcgraph is the complete SDC graph, and goalgraph is its goal graph.
The function position(G) denotes the position of a goal template G in the goal graph which
can have two values: root if G does not have any incoming arcs, and child otherwise.
Besides, disjointFlag is a local boolean constant for the internal status management.

insert (Gn){
if (goalgraph = empty) then { goalgraph = + Gn; discoveryCacheCreation(Gn); }
else { forall (G2 and position(G2) = root) {

if (exact(Gn,G2)) then { disjointFlag = false , return sdcgraph};
else if (plugin(Gn,G2)) then { rootNodeInsertion(Gn,G2); discoveryCacheCreation(Gn);

disjointFlag = false}
else if (subsume(Gn,G2)) then { childNodeInsertion{Gn,G2}; discoveryCacheCreation(Gn);

disjointFlag = false}
else if (intersect (Gn,G2)) then { goalgraph =+ Gn; intersectGTInsertion{Gn,G2};

discoveryCacheCreation(Gn); disjointFlag = false}
else { disjointFlag = true; } }

if (disjointFlag = true) then { goalgraph = + Gn; discoveryCacheCreation(Gn); }
}
return sdcgraph;

}

Listing 5.1: Algorithm for Goal Template Insertion

5.3. Management and Maintenance 135

Sub-Procedures for Goal Graph Creation

We now define the sub-procedures for inserting Gnew into the goal graph. To warrant the
required structure and properties of the resulting goal graph, these procedures need to ensure
that (1) in all possible situation Gnew is properly inserted at the only possible position in
the goal graph, (2) all occurrences of the intersect similarity degree are properly resolved,
and (3) all redundant goal graph arcs that may result from the insertion are removed.

The following specifies the three sub-procedures defined in Listing 5.1, and shows that
they satisfy the requirements. These operations require semantic matchmaking in order to
determine the similarity degree of goal templates as defined in Table 5.2 (see Section 5.2.1).
This can technically be realized analogously to the matchmaking techniques for Web service
discovery as explained in Section 4.4. We only perform matching operations when necessary
in order to minimize the computational costs of the SDC graph creation algorithm.

Insertion of a New Root Node. We commence with the sub-procedure rootNodeIn-
sertion, which inserts Gnew as a new root node of a previously existing subgraph. This is
invoked from the main control procedure when the similarity degree of Gnew and an existing
root node Groot is plugin. In this case, essentially Gnew becomes a new root node of the
respective subgraph with Groot as a direct child. Listing 5.2 shows the algorithm for this:
we add Gnew to the goal graph, and a new arc (Gnew, Groot) that defines the subsumption
relationship. Although this algorithm is relatively simple, it can properly handle all possibly
occurring situations as we shall discuss below.

rootNodeInsertion{Gn,Gr} {
goalgraph = + Gn + (Gn,Gr);

return goalGraph;

}

Listing 5.2: Root Node Insertion Algorithm

Table 5.3 shows four possible situations for the insertion of Gnew if the similarity de-
gree is plugin(Gnew, Groot). In case (a), Gnew becomes the new root node of a subgraph
that had only one root node beforehand. Here, the above algorithm obviously generates
the correct structure of the goal graph; this also covers the case when Gnew becomes the
parent of a previously disconnected goal template. In case (b), Gnew becomes the common
root node of two previously disconnected subgraphs. This situation is also covered by the
above algorithm because it is invoked for each existing root node whose similarity degree
with Gnew is plugin (see Listing 5.1). The other two cases show the insertion of Gnew as
a new root node of a subgraph that previously had two or more root nodes. This can

136 Chapter 5. Semantic Discovery Caching

Table 5.3: Situations for New Root Node Insertion

only occur if the similarity degree of the previous root nodes G1, G2 is intersect, which is
represented in the goal graph by their intersection goal template GI(G1, G2). In case (c),
Gnew becomes the new parent of either G1 or of G2. In the figure, the similarity degrees are
plugin(Gnew, G1) and intersect(Gnew, G2). The resolution of the latter situation does not
result in an additional intersection goal template because the common solutions of G1, G2,
and Gnew are already described by GI(G1, G2). In case (d), Gnew becomes the common
root node of the subgraph. This is supported by the algorithm analogously to case (b).

The lower levels of existing subgraphs are not changed if Gnew becomes a new root node.
Thus, we do not need to investigate them. Moreover, every separated subgraph with more
than one root node must contain at least one intersection goal template. In consequence,
all its root nodes are non-disjoint, and cases (c) and (d) are the only possible situations for
inserting Gnew as a new root node of such a subgraph. Thus, Table 5.3 covers all possible
situations for inserting a new root node, and the algorithm specified above in Listing 5.2
handles all of them properly.

Insertion of a New Child Node. We now turn towards the insertion of Gnew as a
new child node into the goal graph. The sub-procedure childNodeInsertion is invoked if
there exists a root node where subsume(Groot, Gnew), so that it will be inserted as child
node in respective subgraph. Listing 5.3 below specifies the algorithm for this, and Table 5.4
illustrates the relevant situations that must be handled.

The algorithm commences with adding Gnew and the arc (Gnew, Gp) to the goal graph.
Here, Gp is the root node for which the similarity degree subsume(Gnew, Gp) has triggered
the invocation from the main procedure in Listing 5.1. This is sufficient to handle case (a) as
the basic situation where Gnew becomes a new child node of a goal graph whose subsumption
hierarchy only has two levels, and it also covers the situation when Gnew becomes a child
node of a previously disconnected goal template. In more complex goal graphs, we then
have to inspect the relationship of Gnew and the already existing direct child nodes Gc of

5.3. Management and Maintenance 137

Table 5.4: Situations for Insertion of a New Child Node

Gp. If the similarity degree is exact(Gnew, Gc), then Gnew is not kept in the goal graph
because it is redundant; we thus remove the previously added elements. If the similarity
degree is plugin, then Gnew becomes an intermediate node between Gp and Gc. We here
need to remove the arc (Gp, Gc) because it would be redundant in the goal graph. This
relates to the cases (b) and (c), which are successively handled by iterations of the forall -
loop. Case (d) is the situation where Gnew becomes a child node of Gc, which occurs if
subsume(Gnew, Gc). Here, we can inspect the next lower level of the subsumption hierarchy
in a depth-first manner by iteratively invoking the childNodeInsertion algorithm. In each
iteration, we remove the previously added arc (Gnew, Gp). The last possible situation is
case (e) where intersect(Gnew, Gc). This is handled by the intersectGTInsertion procedure
which we shall define below. This algorithm ensures that eventually Gnew is inserted at the
only possible position without any redundant arcs in the goal graph, and also that all direct
children of every goal template are disjoint.

childNodeInsertion (Gn,Gp) {
goalgraph = + Gn + (Gp,Gn);

forall (Gc and (Gp,Gc) in goalgraph) {
if (exact(Gc,Gn)) then {

goalgraph =− Gn − (Gp,Gn);

return goalgraph; }
else if (plugin(Gc,Gn)) then {

goalgraph = + (Gn,Gc);

goalgraph = − (Gp,Gc); }
else if (subsume(Gc,Gn)) then {

goalgraph = − (Gp,Gn);

childNodeInsertion{G,Gc}; }
else if (intersect (Gc,Gn)) then {

intersectGTInsertion{Gn ,Gc}; }
}
return goalGraph;

}

Listing 5.3: Child Node Insertion Algorithm

138 Chapter 5. Semantic Discovery Caching

Handling the Intersect Similarity Degree. The last sub-procedure for creating
the goal graph is concerned with handling the occurrences of the intersect similarity degree.
We represent these situations by intersection goal templates in order to avoid the ambiguity
as well as potential cycles in the goal graph. Given two goal templates G1, G2 such that
intersect(G1, G2), the intersection goal template GI(G1, G2) describes exactly the common
solutions and thus becomes a child node of both G1 and G2 (cf. Definition 5.3).

Listing 5.4 below shows the algorithm for adding intersection goal templates into the
goal graph, which is invoked by the previous sub-procedures whenever an intersect similarity
degree occurs. Similar to the other algorithms, after adding GI(G1, G2) we must inspect
and maybe further resolve the relationship between the intersection goal template and the
other direct children of G1 and G2. Table 5.5 illustrates the relevant situations, and we
explain how these are properly handled by the algorithm.

The algorithm commences with adding the intersection goal template to the goal graph
as explained in Section 5.2.2. This allows us to handle case (a) as the situation where
GI(G1, G2) becomes a child of G1 and G2 and is disjoint from the already existing children.
The other cases distinguish situations where this is not given. These can occur if two goal
templates already exist (e.g. G1, G3 with subsume(G1, G3)), and then another one is added
where an intersect similarity degree occurs (e.g. G2 with intersect(G1, G2)). If then the
similarity degree between G3 and GI(G1, G2) is exact, we do not keep the intersection goal
template because it is redundant (case (b)). However, we need to add the arc (G2, G3)
because then G3 describes the common solutions for G1 and G2. If plugin(G3, G

I(G1, G2)),
then G3 becomes a child of the intersection goal template (case (c)). We here need to remove
the previously existing incoming arcs of G3. In case (d) where subsume(G3, G

I(G1, G2)), the
intersection goal template becomes a child of G3. For this, we invoke the childNodeInsertion
algorithm in order to properly handle the relationship to other existing children of G3.
Before that, we must remove the previously added arc (G1, G

I(G1, G2)) because it would
be redundant in the resulting goal graph. For case (e) where intersect(G3, G

I(G1, G2)), we
again invoke the intersectGTInsertion procedure.

Table 5.5: Situations for Insertion of an Intersection Goal Template

5.3. Management and Maintenance 139

intersectGTInsertion (G1,G2) {
goalgraph = + iGT;

goalgraph = + (G1,iGT) + (G2,iGT);

forall (G3 != iGT and ((G1,G3) or (G2,G3)) in goalgraph) {
if (exact(G3,iGT)) then {

goalgraph = − iGT − (G1,iGT) − (G2,iGT);

if (! (G1,G3) in goalgraph) then goalgraph = + (G1,G3);

if (! (G2,G3) in goalgraph) then goalgraph = + (G2,G3); }
else if (plugin(G3,iGT)) then {

goalgraph = + (G3,iGT);

if ((G1,G3) in goalgraph) then goalgraph = − (G1,G3);

if ((G2,G3) in goalgraph) then goalgraph = − (G2,G3); }
else if (subsume(G3,iGT)) then {

if ((G1,G3) in goalgraph) then goalgraph = − (G1,iGT);

if ((G2,G3) in goalgraph) then goalgraph = − (G2,iGT);

childNodeInsertion (iGT,G3); }
else if (intersect (G3,iGT)) then iArcResolution (G3,iGT);

}
discoveryCacheCreation(iGT);

return sdcgraph;

}

Listing 5.4: Intersection Goal Template Insertion Algorithm

This can handle all possible occurrences of the intersect similarity degree so that re-
sulting goal graph organizes the existing goal templates in a proper subsumption hierarchy
without redundant arcs. Also, potential cycles as well as all other undesirable situations
are avoided as explained in Section 5.2.2. As the last step, we need to create the discovery
cache for the newly inserted intersection goal template, which is not covered by the overall
procedure because intersection goal templates are additional elements in the goal graph.

Sub-Procedures for Discovery Cache Creation

We now turn towards the second part of the SDC graph creation algorithm, which is con-
cerned with creating the discovery cache. For this, we perform design time Web service
discovery by semantic matchmaking of the functional descriptions of goal templates and
Web services as defined in Section 4.3.1, and then capture the relevant knowledge in the
SDC graph by the minimal set of discovery cache arcs which are necessary to deduce the
precise usability degree of each available Web service for each goal template that exists in
the goal graph. The following defines the necessary algorithms for this.

For optimizing discovery operations, it is necessary to know the precise usability degree
of a Web service W for a goal template G. Listing 5.5 defines the basic algorithm for
this. Initially, the usability degree is set to disjoint, which denotes that W is not usable

140 Chapter 5. Semantic Discovery Caching

for G. Then, we check the conditions for the plugin and for the subsume degree as defined
in Table 4.2, which can technically be realized as described in Section 4.4. The boolean
constants pluginFlag and subsumeFlag keep the results, and on this basis we can decide
whether the actual usability degree is exact because plugin(G,W) ∧ subsume(G,W) ⇔
exact(G,W), cf. Proposition 4.2. If this is not given, we finally check the condition for the
intersect usability degree and update the resulting degree accordingly.

matchmaking(G,W){
pluginFlag = false ;

subsumeFlag = false;

degree = disjoint ;

if (plugin(G,W)) then { pluginFlag = true; degree = plugin; }
if (subsume(G,W)) then { subsumeFlag = true; degree = subsume; }
if (pluginFlag and subsumeFlag) then degree = exact;

else if (intersect (G,W)) then degree = intersect ;

return degree;

}

Listing 5.5: Matchmaking Algorithm

We now specify the algorithm for creating the discovery cache for a newly inserted goal
template. This is invoked by the overall insertion algorithm after inserting Gnew into the
goal graph (see Listing 5.1), and also for a newly added intersection goal template (see
Listing 5.4). According to Definition 5.2, the discoverycache consists of directed arcs
between a goal template and a Web service that is annotated with the respective usability
degree. To ensure the inferential completeness and minimality of the resulting SDC graph in
accordance to Theorem 5.2, we need to extend and refine the previously existing discovery
cache such that it contains the minimal set of arcs which are necessary to deduce the precise
usability degree of every Web service for the new as well as for all other goal templates that
exist in the goal graph. Listing 5.6 shows the control algorithm for this, which consists of
three sub-procedures that we shall specify below in detail: childNodeDiscovery is used if
Gnew has been inserted as a child node in the goal graph and also when a new intersection
goal template has been added, and rootNodeDiscovery is used otherwise; the third sub-
procedure re-establishes the minimality of the extended discovery cache.

discoveryCacheCreation(G) {
if (position (G) = child) then childNodeDiscovery(G);

if (position (G) = root) then rootNodeDiscovery(G);

minimizeDiscoveryCache(G);

return discoverycache ;

}

Listing 5.6: Discovery Cache Creation Algorithm

5.3. Management and Maintenance 141

childNodeDiscovery(G){
forall (Gp and (Gp,G) in goalgraph) {

forall (W and subsume(Gp,W)) {
degree = matchmaking(G,W);

if (! degree = disjoint) then discoverycache = + (G,W); }
forall (W and intersect(Gp,W)) {

if (plugin(G,W)) then degree = plugin;

if (intersect (G,W)) then degree = intersect ;

if (! degree = disjoint) then discoverycache = + (G,W); } }
return discoverycache ;

}

Listing 5.7: Child Node Discovery Algorithm

Listing 5.7 defines the algorithm for extending the discovery cache when a new child
node or an intersection goal template has been inserted into the goal graph. We here merely
need to inspect those Web services that are usable for Gp as a direct parent of G under
the degrees subsume or intersect, because with to the inference rules from Theorem 5.1 it
holds that (1) every Web service that is not usable for Gp is also not usable for G (cf. rule
3.5), and (2) if exact(Gp,W) or plugin(Gp,W) then we can directly infer plugin(G,W)
from rules 3.1 and 3.2; moreover, in these cases the arc (G,W) is in anyway omitted in the
SDC graph (cf. clause (iv) in Definition 5.2). Furthermore, also the necessary discovery
operations are based on the inference rules: if subsume(Gp,W), then any usability degree
of W for G is possible (cf. rule 3.3), and if intersect(Gp,W) then the possible usability
degrees are plugin, intersect or disjoint (cf. rule 3.4). We determine the actual degree by
matchmaking, and add the discovery cache arc (G, W) only if W is actually usable for G.

Listing 5.8 below defines the algorithm for extending the discovery cache when G has
been inserted as a new root node in the goal graph. We here can make use of the captured
knowledge on usable Web services for the direct children of G, which is facilitated by the
inference rules under the plugin similarity degree (cf. rules 2.1 - 2.5 in Theorem 5.1).
However, there can also be Web services which are usable for G but not for any of its
children; we thus need to investigate all other available Web services as well. If G is a new
disconnected node in the goal graph, we need to inspect the usability of each available Web
service. Both algorithms for extending the discovery cache may create redundant arcs – in
particular the rootNodeInsertion algorithm but also if a new child node has been inserted
at an intermediate level in the subsumption hierarchy. We recall that the arc (Gc,W) is
redundant if there is a G which is a parent of Gc and the usability degree of W for G is exact
or plugin (cf. clause (iv) in Definition 5.2). Listing 5.9 shows the algorithm for removing
all redundant arcs and therewith maintain the minimality of the discovery cache.

142 Chapter 5. Semantic Discovery Caching

rootNodeDiscovery(G){
forall (G2 and (G,G2) in goalgraph) {

forall (W and exact(G2,W)) { degree = subsume; discoverycache = + (G,W); }
forall (W and plugin(G2,W)) {

degree = intersect ;

if (plugin(G,W)) then { pluginFlag = true; degree = plugin; }
if (subsume(G,W)) then { subsumeFlag = true; degree = subsume; }
if (pluginFlag and subsumeFlag) then degree = exact;

discoverycache = + (G,W); }
forall (W and subsume(G2,W)) { degree = subsume; discoverycache = + (G,W); }
forall (W and intersect(G2,W)) {

if (subsume(G,W)) then degree = subsume; else degree = intersect;

discoverycache = + (G,W); }
}
forall (W and ! (W in sdcgraph)) {

degree = matchmaking(G,W);

if (! degree = disjoint) then discoverycache = + (G,W);

}
return discoverycache ;

}

Listing 5.8: Root Node Discovery Algorithm

minimizeDiscoveryCache(G) {
forall (Gc and (G,Gc) in goalgraph) {

forall (W and (G,W) in discoverycache) {
if (degree(G,W) = exact or degree(G,W) = plugin) then {

discoverycache = − (Gc,W); } } }
return discoverycache ;

}

Listing 5.9: Algorithm for Minimizing the Discovery Cache

5.3.2 Illustrative Example

The insertion of individual goal templates is the central operation for creating SDC graphs.
In order to demonstrate the algorithms defined above, the following illustrates the creation
of the SDC graph for a non-trivial example from the shipment scenario defined in the
Semantic Web service Challenge (see www.sws-challenge.org).

We here follow the original scenario description which is concerned with shipping pack-
ages from the USA. We consider three goal templates: gtUS2world for shipping packages
of any weight from the USA to anywhere in the world, gtUS2NA for package shipment from
the USA to North America, and gtNA2NAlight for shipping light packages within North
America. We further consider the following three Web services from the original scenario

www.sws-challenge.org�

5.3. Management and Maintenance 143

description: wsMuller which offers shipment from the USA to almost anywhere in the world
for packages with a maximal weight of 50 kg, wsRunner for shipping packages of any weight
from the USA to all continents apart from North America and Africa, and wsWeasel which
offers shipment within the USA for packages of any weight.

Figure 5.10 provides a concise overview of the relevant information for our discussion.
The upper part shows the semantic similarity of the goal templates as well as the usability
degrees of the Web services which have been determined by actual matchmaking. The lower
part shows the steps for creating the SDC graph which we shall explain below.

Figure 5.10: Illustrative Example for SDC Graph Creation

144 Chapter 5. Semantic Discovery Caching

We commence the SDC graph creation with inserting the goal template gtUS2world.
This becomes the first node in goal graph (see Listing 5.1), and then the discovery cache
is created by the rootNodeDiscovery algorithm from Listing 5.8; the resulting SDC graph
is shown as step (1) in the figure. We then continue with inserting gtUS2NA into the
SDC graph. Because subsume(gtUS2world, gtUS2NA), the main procedure will invoke the
childNodeInsertion algorithm from Listing 5.3 which will insert gtUS2NA as a child node of
gtUS2world. Then, the childNodeDiscovery algorithm from Listing 5.7 is invoked to update
the discovery cache, which results in the SDC graph shown as step (2).

We then add gtNA2NAlight to the SDC graph, see step (3). The current root node
is gtUS2world, and because of intersect(gtUS2world, gtNA2NAlight) the main procedure
will invoke the intersectGTInsertion algorithm from Listing 5.4. This adds the intersection
goal template iGT, which describes the objective of shipping light packages from the USA
to North America. Then, the algorithm will detect that subsume(gtUS2NA, iGT): both are
concerned with shipment from the USA to North America, but gtUS2NA allows the package
to be of any weight while iGT is restricted to light packages (see step (4)). This is an example
for case (d) in Table 5.5, which is handled by the algorithm such that iGT becomes a child
of gtUS2NA; the resulting goal graph is shown as step (5). Finally, the insertion operation
for gtNA2NAlight is completed by extending the discovery cache. Because of the nested
algorithm, first the discovery cache for iGT will be created via the childNodeDiscovery algo-
rithm, and then the one for gtNA2NAlight is created via the rootNodeDiscovery algorithm.
In this example, the discovery cache creation algorithms do not create redundant arcs. The
finally resulting SDC graph is shown as step (6) in the figure.

5.3.3 Evolution Support

We now turn towards the maintenance of the SDC graph. This becomes necessary with
respect to the dynamic nature of SOA applications wherein usually the available Web ser-
vices as well as goal descriptions are changing over time. In order to provide a serviceable
index structure for optimizing Web service discovery operations in such environments, we
need to ensure that the SDC graph exposes its structure and properties at all times. For
this, the following specifies the algorithms for maintaining the SDC graph when changes
on the existing goal templates or the available Web services occur. We consider this as
the basic evolution support for the SDC technique which, in combination with the SDC
graph creation by the subsequent insertion of goal templates, provides a set of algorithms
for retaining the desirable structure of the SDC graph whenever a goal template or a Web
service is added, removed, or modified.

5.3. Management and Maintenance 145

Change Management of Existing Goal Templates

We commence with the maintenance of the SDC graph on the level of goal templates.
We consider the subsequent addition of new goal templates as the default operation for
extending the SDC graph, which is supported by the SDC graph creation algorithm defined
above in Section 5.3.1. However, there might occur changes on the already existing goal
templates during the life-time of an application, e.g. when goal templates are outdated
or if their descriptions are updated in order to reflect changes in the application context.
The following defines the necessary algorithms for maintaining the structure of the SDC
graph when a goal template is removed or modified. We consider these to be performed in
the course of manual maintenance activities on the existing goal templates, which can be
expected to only occur rarely in real-world applications. They should be carried out carefully
because the existing goal templates constitute the goal graph as the skeletal structure of
SDC graph, and thus changes on them can significantly degrade its quality as an efficient
search index for the existing goal templates and the available Web services.

Goal Template Removal. The first algorithm is concerned with maintaining the SDC
graph when an existing goal template is removed. In order to warrant the operational
reliability of the SDC graph, this must ensure that the SDC graph will still be inferentially
complete and minimal after removing the goal template (cf. Theorem 5.2). For this, we
must adjust the goal graph such that it organizes the remaining goal templates in a proper
subsumption hierarchy, and we also need to refine the discovery cache such that it defines
the minimal set of arcs which are necessary to deduce the precise usability degree of every
available Web service for each remaining goal template.

Listing 5.10 defines the algorithm for removing a goal template G from the SDC graph.
When G has been a root or a disconnected node in the goal graph, we remove G and all its
outgoing arcs so that no reduncancy remains in the goal graph nor in the discovey cache.
We also need to materialize the previously omitted discovery cache arcs for each Gc which
is direct child of G. If a Web service W is usable for G under the exact or the plugin
degree, then the arc (Gc,W) has been omitted in the SDC graph because plugin(Gc,W)
can be directly inferred (cf. Definition 5.2): we now need to explicate it in order to keep the
relevant knowledge in the SDC graph. When G has been a child node, we adjust the goal
graph such that every direct child node of G becomes a direct child of the former parents
of G, and we refine the discovery cache analogously to the first situation. We also need to
adjust possibly existing intersection goal templates of which G has been a direct parent.
This is performed at first in the algorithm as we shall explain below in more detail.

146 Chapter 5. Semantic Discovery Caching

remove(G) {
forall (iGT and (G,iGT) in goalgraph) { removeIntersectGT(G,iGT); }
if (position (G) = root) then {

forall (G2 and (G,G2) in goalgraph) {
goalgraph = − (G,G2);

forall (W and (G,W) in discoverycache) {
addOmittedDiscoveryCache(G,G2,W);

discoverycache = − (G,W); } }
goalgraph = − G; }

else if (position (G) = child) then {
forall (Gp and (Gp,G) in goalgraph) {

forall (G2 and (G,G2) in goalgraph) {
goalgraph = − (G,G2);

goalgraph = + (Gp,G2);

forall (W and (G,W) in discoverycache) {
addOmittedDiscoveryCache(G,G2,W);

discoverycache = − (G,W); } } }
goalgraph = − G; }

return sdcraph;

}
addOmittedDiscoveryCache(G1,G2,W) {
if (degree(G1,W) = (exact,plugin)) then {

degree(G2,W) = plugin;

discoverycache = + (G2,W); }
return discoverycache ; }

Listing 5.10: Goal Template Removal Algorithm

The above algorithm handles the removal of original goal templates, i.e. which have
an explicitly specified functional description. An intersection goal template is a logical
construct in the SDC graph whose functional description is not explicitly specified. To
perform matchmaking on an intersection goal template, we need to know the original goal
templates for which it has been created. Thus, when removing an original goal template G

from the SDC graph we also need to adjust its dependent intersection goal templates.

Listing 5.11 shows the algorithm for this, and Table 5.6 illustrates the adjustment of the
goal graph for the relevant situations. In case (a), G has been a root node, and the dependent
intersection goal template has G2 as its other direct parent. Here, we remove GI(G,G2)
and its incoming goal graph arcs, and the possibly existing child nodes of GI(G,G2) become
direct child nodes of G2. If in this case G2 has a parent Gr it must hold that intersect(G,Gr)
– otherwise the goal graph would have a different structure. Here G2 can be an intersection
goal template itself: this is handled by the forall -loop in Listing 5.10 for iteratively adjusting
all intersection goal templates whereof G is a direct parent. The other cases differentiate
two situations when G has been a child node in the goal graph. We always need to remove

5.3. Management and Maintenance 147

Table 5.6: Situations for Removal of Intersection Goal Templates

GI(G,G2) because one of its original parents will no longer exist. In case (b), there is a Gp

which is a parent of G but not of G2. Here, it must hold that intersect(Gp, G2); thus, if not
existing before, we need to add a new intersection goal template and the previous children
of GI(G,G2) become child nodes of this. In case (c), Gp is a common parent of both G and
G2 as the parents of the relevant intersection goal template. Here, the resulting goal graph
has the same structure as in case (a). We hence can define one algorithm for adjusting
the SDC graph which covers all cases, and also refines the discovery cache by materializing
previously omitted arcs. This is invoked from the overall algorithm in Listing 5.10 before
removing the original goal template.

removeIntersectGTofChild(G,iGT) {
if (Gr and (Gr,G) in goalgraph and ! ((Gr,G2) in goal graph)) then {

iGTnew = intersectionGoalTemplate(Gr,G2);

goalgraph = + iGTnew + (Gr,iGTnew) + (G2,iGTnew);

discoveryCacheCreation(iGTnew);

forall (Gc and (iGT,Gc) in goal graph) {
goalgraph = + (iGTnew,Gc);

forall (W and (iGT,W) in discoverycache) {
addOmittedDiscoveryCache(iGT,Gc,W);

discoverycache = − (iGT,W); } }
goalgraph = − iGT − (G,iGT) − (G2,iGT);

} else {
forall (Gc and (iGT,Gc) in goal graph) {

goalgraph = + (G2,Gc);

forall (W and (iGT,W) in discoverycache) {
addOmittedDiscoveryCache(iGT,Gc,W);

discoverycache = − (iGT,W); } }
goalgraph = − iGT − (iGT,G) − (iGT,G2); }

return sdcgraph; }

Listing 5.11: Adjustment of Intersection Goal Templates

148 Chapter 5. Semantic Discovery Caching

Goal Template Update. The second algorithm handles the update of a goal template,
i.e. if its description is changed. We define the necessary adjustment of the SDC graph
as an update operation which replaces the old version Go of the goal template by its new
version Gn. The basic way to handle this is to first remove Go and then re-insert Gn.

Listing 5.12 shows the algorithm for this. We therein distinguish some situations where
we can reduce the necessary computational effort. The first one is if the similarity degree
between the new and the old version is exact, which can occur if the changes in the goal
template description to not affect the meaning of the functional description. We here can
simply replace Go by Gn while the rest of the SDC graph remains the same. Other situations
where we can simplify the update management of the SDC graph are (1) when Go has been
a disconnected node and Gn denotes a semantic specialization, (2) when Go has been the
single root node of an SDC subgraph and Gn denotes a semantic generalization, and (3)
when Go has been a child node without any outgoing goal graph arcs and Gn denotes a
semantic specialization. In all other situations we perform the default operation.

update(Go,Gn) {
if (exact(Go,Gn)) then {

goalgraph = + Gn;

forall ((Go,G) in goalgraph) { goalgraph = + (Gn,G) − (Go,G); }
forall ((G,Go) in goalgraph) { goalgraph = + (G,Gn) − (G,Go); }
forall ((Go,W) in discoverycache) { discoverycache = + (Gn,W) − (Go,W); }
goalgraph = − Go; }

else if (disconnected(Go) and subsume(Go,Gn)) then {
goalgraph = + Gn + (Go,Gn);

childNodeDiscovery(Gn);

goalgraph = − Go − (Go,Gn); }
else if (singleRoot(Go) and plugin(Go,Gn) then {

goalgraph = + Gn + (Gn,Go);

rootNodeDiscovery(Gn);

forall (W and (Go,W) in discoverycache) { discoverycache = − (Go,W); }
forall (Gc and (Go,Gc) in goal graph) { goalgraph = + (Gn,Gc) − (Go,Gc); }
goalgraph = − Go − (Gn,Go); }

else if (lowestChild (Go) and subsume(Go,Gn) then {
goalgraph = + Gn + (Go,Gn);

childNodeDiscovery(Gn);

forall (W and (Go,W) in discoverycache) { discoverycache = − (Go,W); }
forall (Gp and (Gp,Go) in goalgraph) { goalgraph = + (Gp,Gn) − (Gp,Go); }
goalgraph = − Go − (Go,Gn); }

else {
remove(Go);

insert (Gn); }
return sdcgraph;

}

Listing 5.12: Goal Template Update Algorithm

5.3. Management and Maintenance 149

Change Management of Available Web Services

The second compulsory aspect for maintaining the SDC graph is the handling of changes on
the available Web services. This refers to the addition of new Web services to the system,
as well as the removal or modification of existing ones. Such changes can be expected to
repeatedly occur in real-world scenarios, and they should be properly reflected in the SDC
graph in order to warrant its operational reliability. The following defines the necessary
algorithms for this, which are simpler than handling changes of goal templates because we
merely need to adjust the discovery cache. These algorithms can be automatically triggered
by changes in the Web service registry that is associated with the overall SWS system.

Web Service Insertion. The first algorithm is concerned with adding a new Web
service Wnew into the SDC graph. Essentially, we need to add the arcs to the discovery
cache which are necessary to deduce the usability degree of Wnew for every existing goal
template. Listing 5.13 shows the algorithm for this. We start with inspecting the usability of
Wnew for all root nodes in the goal graph, and then successively proceed with the child nodes
in a depth first-manner via the iterative sub-procedure childNodeWSInsertion that takes
the inference rules from Theorem 5.1 into account. This keeps the necessary matchmaking
effort minimal, and also ensures the minimality of the updated discovery cache.

insert (W) {
forall (G and position(G) = root) {
matchmaking(G,W);

if (! d = disjoint) then {
discoverycache = + d(G,W);

childNodeWSInsertion(G,W); } }
return sdcgraph;

}
childNodeWSInsertion(G,W) {

if (degree(G,W) = (exact,plugin)) then return sdcgraph;

else { forall (G2 and (G,G2) in goalGraph) {
if (degree(G,W) = subsume) then {

matchmaking(G2,W);

if (! degree = disjoint) then discoverycache = + (G2,W); }
if (degree(G,W) = intersect) then {

if (plugin(G2,W)) then { degree = plugin; discoverycache = + (G2,W); }
if (intersect (G2,W)) then { degree = intersect ; discoverycache = + (G2,W); }

}
childNodeWSInsertion(G2,W); }

return sdcgraph; }
}

Listing 5.13: Web Service Insertion Algorithm

150 Chapter 5. Semantic Discovery Caching

Web Service Removal. When a Web service is no longer available, we need to remove
it from the SDC graph. The algorithm for this as shown in Listing 5.14 is straightforward:
we delete all discovery cache arcs for the removed Web serivce. While this does not affect
the formal properties of the SDC graph, a result of this operation can be that for some
goal templates no a usable Web service exists any longer – i.e. if the removed Web service
has been the only one. To ensure that every existing goal template can be solved, one
could remove the respective goal templates from the SDC graph. However, we assume that
usually there is more than one usable Web service for a goal template and thus do not
further handle this situation.

remove(W) {
forall ((G,W) in discoverycache) { discoverycahe = − (G,W); }
return sdcgraph; }

Listing 5.14: Web Service Deletion Algorithm

Web Service Update. The third algorithm handles modifications on the description
of a Web service W which already exists in the SDC graph. Similar to updates of goal
templates, we define the necessary adjustment of the discovery cache as a replacement of
the old version Wo of the Web serivce by the new version Wn. Listing 5.15 shows the
algorithm for this, which merely performs the default handling of first removing Wo and
then inserting Wn. We here resign from handling situations where the necessary adjustment
could be achieved with less computational effort, because the computational costs of the
above algorithms for the removal and insertion of Web services are acceptably low.

update(Wo,Wn) {
remove(Wo);

insert (Wn);

return sdcgraph; }

Listing 5.15: Algorithms for Deletion and Update of a Web Service Description

To conclude, the set of algorithms for creating and maintaining the SDC graph ensure that it
exposes the desirable structure and properties whenever a goal template or a Web service is
added, removed, or modified. Therewith, the SDC graph provides a correct index structure
of the existing goal templates and the available Web services with respect to their actual
functional descriptions at all times, which is necessary to warrant the operation reliability
of the SDC technique in dynamic environments where goal templates and Web services
steadily change and evolve.

5.3. Management and Maintenance 151

5.3.4 Complementing Techniques

After specifying the necessary management techniques for the SDC graph, we now discuss
possible extensions for increasing the effectiveness for its intended usage. In particular, we
present an approach for automatically generating additional goal templates as a central ele-
ment of our approach, and we outline possibilities for the integration of the SDC graph with
other SWS techniques. We consider these as optional extensions which are not necessary to
warrant the operational reliability of the SDC technique, and thus content ourselves with
explaining the basic ideas and the expectable benefits.

Automated Goal Template Generation

Goal templates are a central element in our approach. They are needed to support the
formulation of concrete client objectives in terms of goal instances. Furthermore, they are
the constituting element of the SDC graph: the more goal templates exist, the more fine-
grained becomes the goal graph, and the more effective can be the search space reduction
for optimizing Web service discovery operations. With respect to this, techniques for au-
tomatically creating goal templates appear to be desirable in order to enhance the support
for potential client requests as well as the operational effectiveness of the SDC technique.

One possibility for this is to generate additional goal templates from a given one on the
basis of the underlying domain ontologies. We explain this for our running example from
the shipment scenario. Let the goal template G1 for shipping packages of any weight in Eu-
rope be given. Its functional description is based on the location & shipment ontology.
Table 5.7 provides the relevant information for the following discussion.

Table 5.7: Basis for Automated Goal Template Generation
Goal Template G1 Domain Ontology Ω

“ship a package of any weight in Europe” excerpt of location & shipment ontology
Ω: location & shipment ontology
IN : {?s,?r,?p,?w}
φpre: address(?s) ∧ in(?s, europe)

∧ address(?r) ∧ in(?r, europe)
∧ package(?p) ∧ weight(?p, ?w)
∧maxWeight(?w, heavy).

φeff : ∀?o, ?price. out(?o) ⇔ (
shipmentOrder(?o, ?p)
∧ sender(?p, ?s) ∧ receiver(?p, ?r)
∧ costs(?o, ?price)).

∀?x. continent(?x) ⇒ in(?x,world).
continent(europe).
country(germany).
in(germany, europe).
continent(northAmerica).
country(usa).
in(usa, northAmerica).
weightClass(heavy).
weightClass(light).
∀?x. weight(?x, light) ⇒ weight(?x, heavy).

152 Chapter 5. Semantic Discovery Caching

The precondition of G1 is defined by three logical atoms that refer to instances defined
in the domain ontology: the sender and the receiver must be located in europe, and the
weight class heavy defines that the package can have any weight. From this, we can generate
new goal templates by changing these atoms with respect to the taxonomic structure and
the instances defined in the ontology. For example, we can define G2 for shipping a heavy
package from anywhere in the world to Europe by changing the atom for the sender location
from europe to world; this is facilitated by the axiom ∀?x. continent(?x) ⇒ in(?x,world)
in the ontology. Then, the similarity degree is plugin(G1, G2), so that G2 will become
a parent of G1 in the SDC graph. We can analogously generate a goal template G3 for
package shipment in Germany by changing the atoms for the sender and receiver location
from europe to germany. Then, G3 will become a child of G1 in the SDC graph because it
denotes a semantic specialization, i.e. the similarity degree is subsume(G1, G3).

This allows us to generate further goal templates from a given one by exploiting back-
ground knowledge that is defined in the underlying domain ontology. Eventually, we can
generate all goal templates that can be expressed on the basis of the ontology, and therewith
provide a sophisticated basis for the formulation of specific goal instances in the problem
domain. Moreover, all the generated goal templates will be semantically similar: the logical
structure of their functional descriptions is identical, and they only differ within the con-
straining atoms that refer to semantically related concepts of instances in the underlying
domain ontology. We thus will obtain a fine-grained subsumption hierarchy in the SDC
graph, which improves its effectiveness for optimizing Web service discovery. The gener-
ation of additional goal templates can be automated. Although the algorithms for is will
dependent on the specific goal template descriptions and the underlying domain ontology,
the outlined technique appears to be generally applicable for all kinds of goal templates.

Another challenge is the definition of the goal descriptions that are relevant for an
application scenario, i.e. to identify the client objectives that should be described by goal
templates. A supportive technique for this is presented in [Lambert et al., 2007]: the
domain experts – i.e. the prospective clients – formulate desirable goals in natural language
descriptions, which then is transformed into formal goal descriptions by trained knowledge
engineers via several iterations and on the basis of Wikis for decentralized collaboration.

Integration with Other SWS Techniques

We here have defined the SDC graph with respect to the functional compatibility of goal
templates and Web services, which appears to be sufficient for the purpose of optimizing the
Web service discovery task. This could be extended with further knowledge that is relevant

5.4. Optimized Web Service Discovery 153

for other SWS techniques, e.g. quality-of-service or other non-functional aspects that are
considered within the selection and ranking components of SWS systems (see Section 2.2.2).
The relevant information could be kept in the SDC graph in addition to the discovery cache
arcs that explicate the functional suitability of a Web service for solving a goal template,
and could then be used to support the selection of the actual Web services at runtime.

Apart from extending the SDC graph with additional knowledge, it is also possible
to use it within other SWS techniques that appear to be relevant for solving goals by the
automated detection and execution of Web services. For example, we can use the SDC graph
for visualizing the search space of available Web services. This allows clients to browse
and investigate the Web services on the level of goals that can be solved by them while
abstracting from technical details. For this, we can display the SDC graph in a graphical
user interface and provide respective browsing facilities; we shall present a prototypical
solution for this below in Section 5.5. Another possibility is use the knowledge kept in
the SDC graph to generate the necessary infrastructure for the automated invocation and
consumption of Web services as explained in Section 3.2.2. For this, we can generate the
mediators between every goal template and its usable Web services. The relevant knowledge
for this is kept in the discovery cache of the SDC graph. Then, the respective client interfaces
need to be defined in order to support the automated execution of the Web services.

5.4 Optimized Web Service Discovery

After having specified the necessary management techniques for SDC graphs, we now turn
towards the optimization of Web service discovery as the primary aim of the SDC tech-
nique. We in particular focus on runtime discovery, which is concerned with detecting the
actual Web services for a given goal instance and denotes the time critical operation in our
framework. The following briefly recalls the relevant aspects.

In our approach, goal instances are the central element for clients to request and consume
Web services. Every concrete objective that a client wants to achieve is described in terms
of a goal instance, and for each goal instance the suitable Web services need to be detected
and executed dynamically at runtime. Thus, the runtime discovery task is the time critical
operation in our approach. It further is the expectably most frequent operation in real-
world scenarios, and it should be performed in an efficient and reliable manner in order to
adequately accomplish the first processing step in SWS environments. With respect to this,
the aim is to provide an efficient and reliable runtime discovery component and, therewith,
overcome the bottleneck for the scalability of SWS systems (see Section 2.2.3).

154 Chapter 5. Semantic Discovery Caching

A goal instance GI(G, β) is defined as a tuple of G as the corresponding goal template,
and the input binding β that defines a value assignment for the input variables specified
in the functional description of G (see Section 4.3.2). We require goal a instance GI(G, β)
to be a consistent instantiation of its corresponding goal template G. The goal instantia-
tion condition GI(G, β) |= G is given if the functional description of G is satisfiable when
instantiated with the input binding β, i.e. if both the precondition and the effect are satis-
fiable for the defined input values (cf. Definition 4.7). This is a pre-requite for automated
Web service discovery: only if GI(G, β) |= G we can precisely identify the logical models
which represent the solutions for GI(G, β), and on this basis determine the suitable Web
services by semantic matchmaking. We can reduce the necessary matchmaking effort for
this by considering the design time discovery results: if a Web service is usable for G under
the exact or the plugin degree then it is also usable for GI(G, β), while under the degrees
subsume and intersect additional matchmaking is needed; all other Web service are not
usable to solve GI(G, β) (cf. Theorem 4.1).

The approach for enhancing the computational performance of runtime discovery oper-
ations is to exploit the knowledge kept in the SDC graph in order to effectively reduce the
search space and minimize the number or necessary matchmaking operations. In particular,
we optimize the discovery of suitable Web services for a given goal instance GI(G, β) as
follows. At first, we reduce the relevant search space by determining G′ as the most spe-
cialized goal template whereof GI(G, β) is a valid instantiation. This G′ is allocated as a
(possibly indirect) child of the originally defined corresponding goal template G in the SDC
graph. By definition, there can only be one most appropriate goal template G′ for every
goal instance, and we can detect this by subsequently traversing the SDC graph on the
basis of the goal instantiation condition. Because G′ is the most specialized goal template,
its set of usable Web services is minimal, and these are the only potential candidates for
solving the given goal instance. We then can determine their actual suitability on the basis
of the integrated matchmaking techniques for the goal instance level summarized above.

The primary purpose of this optimization strategy is to minimize the number of nec-
essary matchmaking operations for completing a discovery task. We therewith aim at
enhancing the computational performance in two ways: (1) a significant decrease of the
average time can be achieved by reducing the usually expensive matchmaking operations to
a minimum, and (2) the efficiency of Web service discovery in larger search spaces can be
increased because only a subset of the available Web services needs to be inspected. The
following specifies the optimized algorithms for runtime Web service discovery, illustrates
them within our running example, and finally discusses the achievable performance increase
that can be expected in real-world application scenarios.

5.4. Optimized Web Service Discovery 155

5.4.1 Runtime Discovery Algorithms

The following specifies the algorithms for the optimized runtime discovery in detail. As the
two flavors of Web service discovery that appear to be relevant in SWS systems, we define
one algorithm for detecting a single Web service and another one for finding all usable Web
services for a given goal instance.

Discovery of a Single Web Service

Listing 5.16 defines the algorithm for the discovery of one Web service that is usable for
solving a given goal instance under functional aspects. Although in general there can be
several usable Web services for a goal instance, for certain application purposes the detection
of one of these appears to be sufficient, e.g. if the SWS system performs the discovery task
in an interleaved manner with the subsequent processing steps.

discoverSingleWS(GI(G,b)) {
if (instantiationCheck (GI(G,b)) = false) then return ” invalid goal instantiation ”;

if (lookup(G) = W) then return W;

while ((G,Gc) in goalgraph and instantiationCheck (GI(Gc,b))) do {
G = Gc;

forall ((G,W) in discoverycache) {
if (degree(G,W) = (exact,plugin)) then return result = W; } }

if (checkOtherWS(G,b) = W) then return W;

else { return ”no Web service found”; }
}

Listing 5.16: SDC-enabled Runtime Discovery Algorithm – Single Web Service

The input of the algorithm is a goal instance GI(G, β) for which a suitable Web services
shall be discovered. As the first step, the function instantiationCheck(GI(G, β)) checks
whether the goal instantiation condition GI(G, β) |= G is satisfied; this is a pre-requisite for
Web service discovery by semantic matchmaking as explained above. Then, the algorithm
consists of three methods which require increasing matchmaking efforts for the discovery
task, and thus are invoked successively if the preceding one has not been successful.

At first, the lookup-method searches for a Web service W that is usable for the corre-
sponding goal template G under the exact or the plugin degree: we know that this W is also
usable for solving GI(G, β) without the need of matchmaking at runtime (cf. Theorem 4.1).
Listing 5.17 below shows the algorithm for finding such a W in the SDC graph. We first
inspect the existing discovery cache arcs for the corresponding goal template G. As soon
as an arc that is annotated with the exact or plugin degree is detected, the respective Web
service is returned at the discovery result for GI(G, β). If this is not successful, we search

156 Chapter 5. Semantic Discovery Caching

lookup(G) {
result = empty;

forall ((G,W) in discoverycache) {
if (degree(G,W) = (exact,plugin)) then return result = W;

else { forall (Gp and (Gp,G) in goalgraph) { lookup(Gp); } } }
if (result = empty) return result ;

}
checkOtherWS(G,b) {

result = empty;

forall ((G,W) in discoverycache and degree(G,W) = subsume) {
if (satisfiable (W,b)) then return result = W; }

forall ((G,W) in discoverycache and degree(G,W) = intersect) {
if (satisfiable (G,W,b)) then return result = W; }

if (result = empty) then return result ;

}

Listing 5.17: Sub-Procedures for Single Web Service Discovery

for a W that is usable for G but for which the discovery cache arc is omitted in the SDC
graph. If there is a goal template Gp which is a direct parent of G and there is a W whose
usability degree for Gp is either exact or plugin, then the arc (G,W) is omitted in the SDC
graph (cf. clause (iv) in Definition 5.2). We can directly infer that plugin(G,W), and
under this usability degree we know that W is usable for GI(G, β). The algorithm detects
such Web services by an an inverse depth-first search in the SDC graph, which is realized
by the iterative invocation of the lookup sub-procedure. This is the most efficient method
for runtime Web service discovery because it does not require any matchmaking at all.

If the discovery by lookup is not successful, we continue with the refinement-method.
This reduces the relevant search space by replacing the initially defined corresponding goal
template G with a goal template Gc which is a child node of G in the SDC graph and
for which GI(G, β) |= Gc is satisfied. We then need to consider fewer candidates for the
runtime discovery because the usable Web services for Gc are a subset of those usable for
G. The structure of the SDC graph facilitates the effective search for such goal templates.
For Gchild(G) = (G1, . . . , Gn) as the set of direct children of G in the goal graph it holds that
each pair (Gi, Gj) ∈ Gchild(G) is disjoint if there is no intersection goal template for them (cf.
clause (iii) in Definition 5.2). Hence, there can only be one possible Gc for the refinement:
for G1, G2 ∈ Gchild(G) and disjoint(G1, G2) it holds that if GI(G, β) |= G1 then GI(G, β) 6|=
G2 because if GI(G, β) |= G then {T }GI(G,β) ⊂ {T }G (cf. Definition 4.7). If there is an
intersection goal template GI(G1, G2) for G1, G2 ∈ Gchild(G), then GI(G, β) |= GI(G1, G2)
only if GI(G, β) |= G1 and GI(G, β) |= G2; this can be determined by traversing either the
path G → G1 → GI(G1, G2) or the path G → G2 → GI(G1, G2).

5.4. Optimized Web Service Discovery 157

We thus can effectively search the SDC graph in a depth-first manner in order to find G′

as the lowest goal template in the goal graph for which GI(G, β) |= G′ is satisfied. This is
the most suitable goal template for efficient runtime discovery because the set of usable Web
services for G′ is minimal in comparison to the initially defined corresponding goal template
G and all other ones on every path G → . . . → G′ in the SDC graph. The algorithm performs
this refinement in an iterative manner. To further optimize the detection of a single suitable
Web service, in each refinement step we invoke the lookup-method explained above in order
to find a Web service that is usable for the current Gc under the exact or plugin degree.

If neither the lookup- nor the refinement-method has been successful in finding a suitable
Web service for GI(G, β), we finally inspect the Web services which are usable for the
(possible refined) corresponding goal template under the subsume or the intersect degree.
This requires additional matchmaking for each Web service; Listing 5.17 shows the algorithm
which performs the necessary satisfiability tests as in defined in Theorem 4.1. A Web service
for which this holds is immediately returned as the discovery result. If this is not given for
any of the candidates, then a Web service for solving GI(G, β) does not exist.

This algorithm effectively realizes the optimization aim performing runtime discovery
with the minimal number of necessary matchmaking operations. At first, we try to find a
suitable Web service by the lookup-method which does not require any matchmaking; if not
successful, the refinement-method is used to reduce the search space. As the last option,
matchmaking is performed for only the minimal number of potential candidates.

Discovery of All Usable Web Services

The second algorithm detects all usable Web services for solving a given goal instance under
functional aspects. This can be applied in SWS environments that perform discovery and
the subsequent operations for the usability analysis in a stepwise manner.

Listing 5.18 shows the algorithm for this, which essentially applies the same methods for
enhancing the computational performance for runtime discovery tasks as explained above.
We first check the goal instantiation condition GI(G, β) |= G in order to ensure the validity
of the provided goal instance. To minimize the relevant search space, we then refine the
goal instance by replacing the initially defined corresponding goal template G by G′ as the
lowest goal template in the goal graph with GI(G, β) |= G′ as explained above. Then, we
determine the discovery result by adding all Web services which are usable for the (possibly
refined) corresponding goal template G under the exact or the plugin degree by applying
the lookup-method. Finally, we add those Web services that usable for G under the subsume
or the intersect degree and for which the additional matching conditions are satisfied.

158 Chapter 5. Semantic Discovery Caching

discoverAllWS(GI(G,b)) {
if (instantiationCheck (GI(G,b)) = false) then return ” invalid goal instantiation ”;

result = empty;

while ((G,Gc) in goalgraph and instantiationCheck (GI(Gc,b))) do { GI(G,b) = GI(Gc,b); }
result = + lookupAllWS(G);

forall ((G,W) in discoverycache and degree(G,W) = subsume) {
if (satisfiable (W,b)) then result = + W; }

forall ((G,W) in discoverycache and degree(G,W) = intersect) {
if (satisfiable (G,W,b)) then result = + W; }

if (result = empty) then return ”no Web service found”;

else return result ;

}
lookupAllWS(G) {

result = empty;

forall ((G,W) in discoverycache) {
if (degree(G,W) = (exact,plugin)) then result = + W;

forall (Gp and (Gp,G) in goalgraph) { lookupAllWS(Gp); } }
return result ;

}

Listing 5.18: SDC-enabled Runtime Discovery Algorithm – All Web Services

This algorithm also realizes our optimization aim: it first cuts down the relevant search
space to a minimum, and matchmaking is only performed for the minimal set of candidate
Web services. As discussed in Section 2.2.2, it seems to be reasonable to perform functional
Web service discovery as the first processing step in integrated SWS environments. After-
wards, the actual usability of the discovered Web services can be further inspected with
respect to non-functional and behavioral aspects. Under this assumption, the optimized
runtime discovery algorithms as defined here are sufficient to warrant the efficiency and the
scalability of the whole system: the bottleneck is the number of the available Web services,
which is only relevant for discovery as the first processing step.

5.4.2 Illustrative Example

The optimization of the runtime discovery operations is the primary purpose of the SDC
technique, in particular with respect to the overall aim of this work of developing efficient
and scalable Web service discovery techniques. In order to illustrate the algorithms defined
above, the following discusses the discovery of Web services for a goal instance within the
shipment use case. For this, we recall the scenario setting for which we have exemplified the
creation of the SDC graph above in Section 5.3.2. We here focus on the operating principles
of the runtime discovery algorithms, while we shall discuss the performance increase that
can be achieved with the SDC technique in more detail below.

5.4. Optimized Web Service Discovery 159

Figure 5.11 provides the relevant information for our discussion. Following the original
scenario description as defined in the SWS Challenge, we consider three goal templates and
three Web services which are concerned with package shipment from the USA. The goal
templates are (1) gtUS2world for shipping packages of any weight from the USA to anywhere
in the world, (2) gtUS2NA for package shipment from the USA to North America, and (3)
gtNA2NAlight for shipping light packages within North America. The Web services are (1)
wsMuller which offers shipment from the USA to almost anywhere in the world for packages
with a maximal weight of 50 kg, (2) wsRunner for shipping packages of any weight from the
USA to all continents apart from North America and Africa, and (3) wsWeasel which offers
shipment within the USA for packages of any weight. As discussed in Section 5.3.2, the
SDC graph for this scenario has, in addition to the original goal templates, an intersection
goal template iGT which describes the objective of shipping light packages from the USA
to North America and is allocated as a common child of gtUS2NA and gtNA2NAlight.

Figure 5.11: Illustrative Example for Optimized Runtime Discovery

For illustrating the runtime discovery algorithms, let us consider the client objective of
shipping a package of 5.16 kg from San Francisco to New York City. Let this be described
as a goal instance GI(gtUS2world, β) with gtUS2world as the corresponding goal template
and the input binding β = (?s|sanFrancisco, ?r|newY orkCity, ?w|5.16 kg). Note that
the chosen goal template is suitable for describing the objective but it is not the most
appropriate one among the existing goal templates. We assume this to be a typical situations
in real-world applications: clients choose an existing goal template or define a new one

160 Chapter 5. Semantic Discovery Caching

which is sufficient to express the concrete objective to be solved, while there might exist
more appropriate goal templates which the client is not aware of. Besides, the input binding
merely covers the inputs related to functional aspects of the objective description. There
might be further requirements on non-functional aspects, e.g. to find the cheapest offer or
to only use Web services that support a certain payment method. However, we consider
such constraints to be evaluated by selection and ranking mechanisms which are performed
after Web service discovery, and thus do not consider them here any further.

We first discuss the discovery of a single Web service for GI(gtUS2world, β) by the
algorithm defined in Listing 5.16. We commence with checking the goal instantiation con-
dition: GI(gtUS2world, β) |= gtUS2world is given because San Francisco is located in the
USA, New York City is located in the world, and the package weight of 5.16 kg is included
in the weight class heavy. Then, we try to find a suitable Web service via the lookup-
method. This is not successful because there are only Web services whose usability degree
for gtUS2world is subsume. Hence, we continue with the refinement-method. In the first
iteration, this will define gtUS2NA as the new corresponding goal template, because this
is a direct child of gtUS2world in the SDC graph, and the goal instantiation condition
GI(gtUS2world, β) |= gtUS2NA is satisfied. We therewith have reduced the relevant search
space to wsMuller and wsWeasel as the only Web services which are usable for gtUS2NA.
We then invoke the lookup-method for gtUS2NA in order to find a suitable Web service
for the goal instance. This is also not successful because neither of the Web service is
usable for gtUS2NA under the exact or the plugin degree. Thus, we continue with the sec-
ond iteration of the refinement-method. This defines the intersection goal template iGT

as the new corresponding goal template, because it is a direct child of gtUS2NA and also
GI(gtUS2world, β) |= iGT is satisfied. When we then invoke the lookup-method for iGT,
we will detect wsMuller to be usable for solving the goal instance because it is usable for
iGT under the plugin degree.

The algorithm from Listing 5.18 for discovering all usable Web services for the goal
instance works analog. At first, the goal instantiation for gtUS2world will be evaluated
positively. Then, we refine the corresponding goal template to be the intersection goal
template iGT, which is the most appropriate one for the goal instance. We then only need
to investigate the two Web services which are usable for iGT as the minimal relevant search
space. We will detect wsMuller to be usable for GI(gtUS2world, β) via the lookup-method
as explained above, and we will also detect wsWeasel to be usable because it offers shipment
within the USA for packages of any weight. The Web service wsRunner is not usable for
iGT because it does not support shipment to the USA. In consequence, it is also not usable
for our goal instance.

5.4. Optimized Web Service Discovery 161

5.4.3 Expectable Performance Improvements

We complete the specification of the SDC-enabled runtime Web service discovery with
discussing the performance increase that can be achieved with this optimization. This is
dependent on the specific application scenario, in particular on the structure of the SDC
graph that can be created for the existing goal templates and the available Web services.

We already defined the general computational costs for the optimized runtime discovery
as O((diam(SDCGG) ∗ b(SDCGG)) + |WG′ | where d(G′,W) ∈ {subsume, intersect}): the
former part refers to the number of goal instantiation checks for the refinement-method,
and the latter denotes the additional matchmaking that is necessary under the subsume
and intersect degree (cf. Proposition 5.2 in Section 5.2.3). This means that in the worst
case we need to inspect all existing goal templates and perform additional matchmaking for
all available Web services, so that no performance increase is gained. However, we assume
that in typical application scenarios it is possible to construct the SDC graph such that its
structure facilitates efficient runtime Web service discovery. In particular, we can expect
significant performance increases when the following is given:

• the goal templates can be organized so that diam(SDCGG) ¿ |G| and b(SDCGG) ¿
|G|, because then O(diam(SDCGG) ∗ b(SDCGG)) should be a significant saving over
O(|G|); the ideal case is when the goal graph is a tree where every non-leaf node has
at least two sons: then diam(SDCGG) ≤ log2(|G|) so that the savings are exponential

• the most frequently occurring usability degree of Web services for the goal templates
at the lower levels of the goal graph is plugin: these can be detected by the lookup-
method, and then the refinement-method saves a significant amount of unnecessary
matchmaking operations because O(diam(SDCGG) ∗ b(SDCGG)) ¿ O(|WG|)

• the necessary matchmaking operations are satisfiability tests of a low complexity that
can be performed in an efficient manner.

We shall discuss this in more detail in the course of evaluating the developed techniques
below in Chapter 6. In particular, we will quantify the actual performance increase on
the basis of an exhaustive use case analysis (see Section 6.1). This shall show that the
SDC technique can achieve significant performance improvements for the runtime discovery
task and thus can be considered as a sophisticated optimization technique. Nevertheless,
there are also application scenarios where no or only marginal enhancements are achievable.
We shall discuss examples for this, and provide a model for estimating the expectable
performance enhancements in concrete application scenarios (see Section 6.2).

162 Chapter 5. Semantic Discovery Caching

5.5 Prototype Implementation

This section presents the prototype implementation of the SDC technique, which includes
the management techniques for SDC graphs and the optimized runtime Web service dis-
covery as specified in the preceding elaborations. The aim is to show that the above spec-
ifications can be implemented as an extension of existing SWS technologies, and also to
provide the necessary infrastructure for demonstrating and evaluating the SDC technique.
The prototype is implemented as a discovery component of the WSMX system, which is
the reference implementation of the WSMO framework. The following explains the tech-
nical design and architecture of the SDC prototype; information on the availability of the
software along with further technical details are provided in Appendix B.3. We also present
a graphical visualization of the SDC graph which allows clients to browse and inspect the
available Web services on the level of goals which can be solved by them.

5.5.1 Design and Architecture

Although the SDC technique is specified independently of a particular Semantic Web service
framework, it appears to be reasonable to realize the prototype implementation within such
a framework in order to integrate it with existing SWS technologies. We thus validate
our approach within a WSMO-based implementation, because – in contrast to the other
prominent SWS frameworks – this defines goals as a top-level element and supports the
goal-driven approach that underlies the SDC technique [Fensel et al., 2006]. Moreover,
WSMO provides a reference implementation of along with further tooling support that can
be used as the basic infrastructure for our prototype implementation.

The Web Service Execution Environment WSMX (www.wsmx.org) provides a goal-based
execution environment for Semantic Web services as the reference implementation of the
WSMO framework [Haller et al., 2005; Haselwanter et al., 2006]. Essentially, it realizes
the procedure for solving goals as formally described client objectives by the automated
discovery, composition, and execution of Web services as discussed in Section 2.2.2. For this,
the WSMX system provides the programmatic interfaces and defines execution semantics
for the necessary software components [Zaremba et al., 2005]. It uses the Web Service
Modeling Language WSML [de Bruijn et al., 2005b] as the specification language, and
supports the programmatic handling of WSMO elements via WSMO4J as a Java API
(wsmo4j.sourceforge.net). The interface for Web service discovery component requires
a goal as input and the functionally suitable Web services for this as the output; we thus
realize the SDC prototype as an implementation of a WSMX discovery component.

www.wsmx.org�
wsmo4j.sourceforge.net�

5.5. Prototype Implementation 163

Figure 5.12: SDC Prototype Architecture

Figure 5.12 shows the technical architecture of the SDC prototype. The SDC Runtime

Discoverer implements the optimized runtime discovery algorithms specified in Section 5.4.
This provides the Web service discovery facilities required by the WSMX architecture for
goal instances, i.e. for concrete client objectives. Although the distinction of goal templates
and goal instances is not defined WSMO and hence not explicitly supported in WSMX,
existing solutions for specific use cases realize the Web service discovery component in a
similar manner (e.g. [Zaremba et al., 2006]). The other components of the SDC prototype
are concerned with the management of the SDC graph: the SDC Graph Creator implements
the algorithm for creating the SDC graph as specified in Section 5.3.1, and the Evolution

Manager implements the maintenance algorithms defined in Section 5.3.3. The SDC graph
is kept in form of a WSML knowledge base as we shall explain below.

The Matchmaker provides the technical implementation of all matchmaking operations
that are needed for the SDC technique. This covers the matchmaking of functional de-
scriptions for Web service discovery on the goal template level as well as for determining
the semantic similarity degree of goal templates, and the matchmaking operations required
for runtime discovery on the goal instance level. We use the automated theorem prover
vampire that performs the matchmaking as explained in Section 4.4. Technically, vam-

pire is invoked via a Web service with a currently manual translation from WSML to

164 Chapter 5. Semantic Discovery Caching

TPTP (see below). We handle goals, Web services, ontologies, as well as the SDC graph
as WSMO entities. For this, we use the WSMO4J API for the programmatic handling and
the WSMX Resource Manager for storage and retrieval of the resources. While referring to
Appendix B.3 for the detailed technical documentation, the following explains the usage of
WSML as the specification language for the prototype and defines the ontology schema for
the internal management of SDC graphs as a WSML knowledge base.

WSML as Specification Language

In the preceding elaborations, we have used classical first-order logic (FOL) as the specifi-
cation language for describing goals and Web services as well as for the underlying domain
ontologies. The WSMX system uses WSML as the specification language for all WSMO
elements. Furthermore, the functional descriptions of goals and Web services are expected
to be defined as WSMO capabilities, which slightly differ from the functional descriptions
defined in our framework. However, we can handle this by translating the WSML definitions
to the syntax and structure that is required for matchmaking in the SDC prototype.

WSML has been defined as the specification language for the WSMO framework. It
consists of a conceptual part for specifying WSMO elements and their description models,
and five logical variants which cover the different ontology languages which are considered
for the Semantic Web [de Bruijn et al., 2005b]: (1) WSML Core relates to Description
Logic Programs, (2) WSML DL as a Description Logic that is compatible with OWL-DL,
(3) WSML Flight which is based on F-Logic, (4) WSML Rule as fully qualified rule language,
and (5) WSML Full as first-order logic with auto-epistemic extensions which defines a logical
umbrella for all variants. Although not defined as an explicit variant, WSML also defines
a first-order logic language with classical model-theoretic semantics. This is referred to as
WSML FOL, which has the same semantics as classical FOL and is defined as WSML Full
without the symbols naf as negotiation by failure, !- for defining constraints, ofType for
constraining attribute values, and without cardinality constraints [de Bruijn and Heymans,
2006]. We use this as the specification language for the SDC prototype. However, it is not
possible to use any other WSML variant when we want to maintain the structure and formal
semantics of functional descriptions as defined in Section 4.2 because (1) WSML Core does
not support variables that are needed for specifying functional descriptions, (2) WSML DL
is not expressive enough because it does not support nominals that would be needed to
define input bindings for our functional descriptions, and (3) WSML Flight and WSML
Rule have minimal model semantics (in contrast to the classical model-theoretic semantics
of FOL), and the available reasoners do not provide the necessary reasoning facilities.

5.5. Prototype Implementation 165

Table 5.8: Example for Translation from WSML FOL to TPTP
WSMO Capability Functional Description DFOL

in WSML FOL TPTP Representation

goal gtRoot
importsOntology { ”http ://... shipment.wsml#”,

”http ://... location .wsml#”}
capability gtRootCapability
sharedVariables {?SendLoc,?RecLoc,?Package,?Weight}
precondition definedBy

SendLoc[locatedIn hasValue loc#world]
memberOf loc#Location and

?RecLoc[locatedIn hasValue loc#world]
memberOf loc#Location and

?Package[weight hasValue ?Weight]
memberOf sho#Package and

?Weight[includedIn hasValue sho#heavy].
postcondition definedBy

forall (?O). ?O [from hasValue ?SendLoc,
to hasValue ?RecLoc,
item hasValue ?Package ,
price hasValue thePrice]

memberOf sho#shipmentOrder.

include (’ shipment.ax ’).
include (’ location .ax ’).
input formula(gtRoot,axiom,(
! [SendLoc,RecLoc,Package,Weight,O] : (
gt(SendLoc,RecLoc,Package,Weight,O) <=> (
% PRECONDITION

(locatedIn (SendLoc, world) &
locatedIn (RecLoc, world) &
package(Package) & weight(Package,Weight) &
includedIn (Weight,heavy))

=>
% EFFECT

(shipmentOrder(O) &
from(SendLoc) &
to(RecLoc) &
item(O,Package) &
price (O,price))

)))).

We need to translate the WSMO capabilities of goals and Web services to the TPTP rep-
resentation of functional descriptions required for matchmaking with vampire. Table 5.8
illustrates this for the goal template gtRoot which describes the objective of shipping a
package of any weight from anywhere to anywhere in the world. The left column shows the
WSMO capability description in WSML FOL. We define the correspondence to a functional
description D = (Σ?, Ω, IN , φpre, φeff) from Definition 4.4 as follows: the importsOntol-
ogy keyword defines the used domain ontologies Ω, the sharedVariables correspond to
the input variables IN , the precondition defines φpre as the conditions on possible start-
states, and the postcondition relates to φeff which defines the desired end-state and the
expected computational outputs. The logical symbols and connectives defined in WSML
FOL have exactly the same meaning as the classical FOL, so that logical expressions can
be translated by syntactic transformation. In order to obtain the TPTP representation of
a functional description as a single FOL formula in accordance to Definition 4.6, we define
a TPTP input-formula of the form ∀IN , gt(IN) ⇔ ([φpre]ΣD→Σpre

D
⇒ φeff). The result

is shown in the right column of the above table, which serves as the input for performing
matchmaking via proof obligations with vampire as explained in Section 4.4.

This translation is straightforward without loss of information. In the SDC prototype,
this is implemented by mapping the WSML descriptions to pre-defined TPTP descriptions.
While this defines the rules for the translation, an automated translation from WSML FOL
to TPTP that is planned in WSMX can be used in the future.

166 Chapter 5. Semantic Discovery Caching

SDC Graph Ontology

As mentioned above, the prototype implementation provides and maintains the SDC graph
in form of a knowledge base. For this, we specify an ontology whose schema defines the
constructs of the SDC graph while the actual elements of a SDC graph for a particular
application are represented as instances of this ontology. This follows the common approach
for handling meaningful data in WSMX, which supports the meaning-preserving exchange
of information and the reasoning upon the knowledge captured in SDC graphs.

Listing 5.19 shows the ontology schema of the SDC Graph. We define this in WSML
Core as the least expressive variant of WSML. Essentially, the ontology defines concepts for
the elements of SDC graphs, namely: goal templates, intersection goal templates, goal graph
arcs, and discovery cache arcs (cf. Definition 5.2). The instances of these concepts form the
knowledge base which is kept in the system. The goal and Web services descriptions are
stored separately, and are referenced in the SDC graph ontology via their unique identifiers.
We also define concepts for goal instances and for the matching degrees defined in our
approach in order to avoid confusion with similar terminology definitions in other works.

wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−core”

namespace { ”http://members.deri.at/˜michaels/ontologies/SDContology.wsml#”,

wsml ”http://www.wsmo.org/wsml/wsml−syntax#” }
ontology ”http://members.deri.at/˜michaels/ontologies/SDContology.wsml”

concept goalTemplate

description impliesType wsml#goal

concept intersectionGoalTemplate subConceptOf goalTemplate

parent1 impliesType goalTemplate

parent2 impliesType goalTemplate

concept goalInstance

correspondingGoalTemplate impliesType goalTemplate

inputbinding impliesType {wsml#instance,wsml#datatype}
concept goalGraphArc

sourceGT impliesType goalTemplate

targetGT impliesType goalTemplate

concept discoveryCacheArc

sourceGT impliesType goalTemplate

targetWS impliesType wsml#webService

usability impliesType matchingDegree

concept matchingDegree

instance exact memberOf matchingDegree

instance plugin memberOf matchingDegree

instance subsume memberOf matchingDegree

instance intersect memberOf matchingDegree

instance disjoint memberOf matchingDegree

Listing 5.19: Ontology Schema for the SDC Graph in WSML Core

5.5. Prototype Implementation 167

From the perspective of conceptual modeling, it would be more appropriate to represent
the SDC graph arcs as tenary relations of the form arc(source, target, degree). However,
such constructs can not be represented in OWL. Thus, we decided to define the SDC graph
ontology in terms of concepts and instances because this can be represented in any ontology
language, even as RDF triples. This allows users to easily transfer the captured knowledge
to other applications, which is supported by the translation facilities provided by existing
WSMO tools, e.g. the owl2wsml tool in WSMO Studio [Dimitrov et al., 2007].

5.5.2 A Goal-based Web Service Browser

The SDC graph provides an index structure of the available Web services with respect to
the goals that can be solved by them. Apart from its primary usage as the search index
for optimizing Web service discovery, this knowledge structure can also be used within
other SWS techniques for supporting the Web service usage process. As one of the most
beneficial techniques, the following presents a prototypical realization of a goal-based Web
service browser. Based on the graphical visualization of the SDC graph, this allows clients
to browse and inspect Web services on the level of goals that can be solved by them.

Search and browsing facilities for Web services are an important feature for support-
ing application developers in the detection and inspection of potential candidate services
for a specific problem. In conventional Web service technologies, browsing facilities for
Web service registries are intended to support the discovery task by manual search and
inspection. This is already supported by UDDI on the basis of keyword-based classification
schemes [Clement et al., 2004]. In the context of Semantic Web services, the detection and
detailed usability analysis of Web services for a given request is automated by respective
semantic techniques. However, browsing facilities are also desirable in SWS environments
in order to better support the planning and design of client applications.

These should provide an overview of the available Web services on an abstract level,
while the technical details are left to the respective SWS techniques. Most existing tools
follow the UDDI approach, i.e. they work on keyword-based categorizations of Web service
registries and the browsing support resides on a technical level [Bachlechner et al., 2006].
To overcome these deficiencies, we can use the SDC graph in order to provide browsing fa-
cilities on the level of requested and provided functionalities, abstracting from the technical
details. A main merit for this is that the SDC graph organizes the existing goal templates
and the available Web services in a tree-like subsumption hierarchy. This eases the under-
standability for humans, so that clients can better comprehend the available resources and
their relationships on an abstract level which neglects the technical details.

168 Chapter 5. Semantic Discovery Caching

Figure 5.13: SDC Graph Visualization in WSMT

The goal-based Web service browser is implemented as a new plugin for the Web Service
Modelling Toolkit WSMT, which is the Integrated Development Environment for the SWS
technologies developed around the WSMO framework [Kerrigan et al., 2007]. Figure 5.13
provides a screenshot for the shipment scenario. To provide a comprehensive overview of the
available resources, we use the subsumption hierarchy defined in the goal graph as the basic
browsing structure. The set of suitable Web services for each goal template is displayed in
form of a cluster, which is derived from the discovery cache of the SDC graph.

This SDC graph visualization is initially presented to the user that allows the inspection
of the available resources on the level of requested and provided functionalities. For example,
from the cluster associated with the goal template gtRoot we can easily see that there are
five Web services for package shipment, whereof only three are usable for the goal template
gtUS2AF to ship a package from the USA to Africa. The user can then subsequently navigate
to more detailed perspectives, down to the level of the actual element descriptions. This is
supported by the already existing browsing and editing facilities provided by WSMT; we
refer to [Stollberg and Kerrigan, 2007] for further details. Eventually, this can be extended
towards a comprehensive graphical user interface for goal-based SWS environments.

5.6. Summary and Related Work 169

5.6 Summary and Related Work

In this chapter we have specified the Semantic Discovery Caching technique (short: SDC)
for enhancing the computational performance of automated Web service discovery engines,
which we have identified as the bottleneck for the efficiency and scalability of SWS envi-
ronments. The following summarizes the central aspects of the SDC technique, positions it
within related work, and discusses its applicability as well as complementing techniques.

The primary aim of the SDC technique is to enhance the computational performance
of runtime Web service discovery operations. In our two-phase discovery framework, this is
concerned with detecting the Web services which are suitable for a given goal instance under
functional aspects. A goal instance describes a particular client objective by instantiating
a goal template with concrete inputs. Goal templates are generic and reusable objective
descriptions which are kept in the system, and the suitable Web services for them are
determined at design time. Thus, runtime discovery denotes the time critical and the most
frequently required operation in our approach: it is invoked for each client request, and it
should be performed in an efficient and reliable manner in order to adequately accomplish
the discovery task as the first processing step in SWS environments.

The approach for providing an efficient, scalable, and stable runtime discovery com-
ponent is to capture the relevant knowledge of design time discovery results, and then
effectively use this to minimize the average time for completing runtime discovery tasks.
The basis for this is the SDC graph as a unique indexing structure for the efficient search
of goal templates and Web services. Its skeletal structure is the goal graph, which orga-
nizes the existing goal templates in a subsumption hierarchy with respect to their semantic
similarity. Two goal templates G1, G2 are considered to be similar if they have at least
one common solution, because then mostly the same Web services are usable for them. We
define the goal graph such that the only occurring similarity degree is subsume(G1, G2),
because then the Web services that are usable for the child G2 are a subset of those usable
for parent G1. The outer layer of the SDC graph is the discovery cache, which captures the
minimal knowledge on the functional usability of every Web service for each existing goal
template. We have defined inference-rules between similar goal templates and their usable
Web services as the logical basis of the SDC technique, shown that there only exists one
inferentially correct and minimal SDC graph for a given set of goals and Web services, and
specified the algorithms for the automated creation and maintenance of SDC graphs.

On this basis, we have defined the optimized runtime Web service discovery algorithms.
In principle, these exploit the knowledge captured in the SDC graph to reduce the search
space and minimize the number of matchmaking operations that are necessary to detect

170 Chapter 5. Semantic Discovery Caching

the suitable Web services for a goal instance. We have shown that this enables efficient
runtime Web service discovery also within larger search spaces, because only the minimal
set of relevant candidates needs to be inspected. This optimization strategy has been chosen
with respect to the known performance deficiencies of reasoning techniques. While in this
chapter we have specified the the data structures, techniques and algorithms for the SDC
technique and presented the prototype implementation, the achievable performance increase
is subject to the overall evaluation of this work (see Chapter 6).

Only few existing works address the challenge of enhancing the computational performance
of semantically enabled Web service discovery, although this is commonly considered to be
important for ensuring the success of SWS technology [Preist, 2004; Cardoso and Sheth,
2006; Fensel and van Harmelen, 2007]. In particular, we are not aware of any other approach
that addresses the problem in a similar way as the SDC technique. Existing works mostly
apply clustering techniques for Web services in order to reduce the search space. A major
difference to SDC is that these works do not take a goal-based approach for Semantic Web
services. The following discusses related works for optimizing Web service discovery in more
detail, and also investigates the relationship of the SDC technique to caching techniques for
performance optimization in other areas.

Web Service Categorization. The majority of related works aims at reducing the
search space for Web service discovery by organizing the available Web services in keyword-
based categorization schemes. This essentially follows the registry categorization already
supported in UDDI [Clement et al., 2004]: each Web service is annotated with one or
more keywords which constitute a mostly hierarchical categorization scheme. In the field
of SWS, this idea is extended by using ontologies as the underlying categorization scheme.
Prominent works are [Srinivasan et al., 2004a] wherein OWL-S descriptions are integrated
into a UDDI repository, and [Verma et al., 2005] which uses domain ontologies for annotating
and categorizing Web services in accordance to the WSDL-S approach. Other works that
follow the same idea are [Tausch et al., 2006; Lara et al., 2006; Abramowicz et al., 2007].

The basic idea is the same as in SDC: the set of relevant candidates is reduced to the
Web services in the relevant category as a pre-filtering step before the actual matchmaking.
However, the major deficiency of this approach is the imprecision of the keyword-based
annotations in comparison to the rich functional descriptions used within the SDC tech-
nique. Imagine that a Web service of our running example is annotated with the keywords
“package shipment, USA, North America”; this does not state whether “USA” refers to
the sender or the receiver, or maybe that US-American regulations hold for the shipment

5.6. Summary and Related Work 171

service. Moreover, this imprecision may cause contradictions with the actual discovery re-
sults. Besides, most of the mentioned works require the necessary annotations to be defined
by the Web service providers so that the clustering becomes error-prone. In consequence,
keyword-based clustering techniques appear to be inadequate for the purpose of optimizing
semantically enabled discovery techniques with a high retrieval accuracy. In fact, they ap-
pear to be dispensable because the keyword-based annotations merely denote an addendum
to the functional descriptions which in anyway are required for the semantic matchmaking.

Indexing of Formal Capability Descriptions. A more sophisticated approach for
enhancing the efficiency of Web service discovery in larger search spaces has been presented
in a series of papers around [Constantinescu et al., 2005]. This organizes the available Web
services in a search tree with respect to their formal functional descriptions. These are de-
fined by so-called interval constraints S = {{IN (r, t)}, {OUT (r, t)}, {PRE (cx)}, {EFF (cy)}}
– i.e. the sets of inputs and outputs which are described by their role and type, and pre-
conditions and effects which refer to concepts in a background ontology. The search tree is
defined to be balanced. Its indexing nodes group a set of Web services with respect to the
upper bound S as the union of their interval constraints and the lower bound S as their
intersection, so that S |= S |= S. The actual Web services denote the leaf nodes, defined by
pointers from the indexing nodes. The user can pose discovery requests via a special query
language. These are evaluated by a best-first traversal of the tree, i.e. first an appropriate
indexing node is determined and then its lead nodes are inspected in detail.

Although this approach overcomes the problems of imprecision and error-proneness
of keyword-based clustering techniques discussed above, it has several disadvantages in
comparison to the SDC technique. At first, the interval constraints merely define sets of
predicates and concepts for describing Web services, which is significantly less expressive
than our functional descriptions (see Chapter 4). Secondly, the indexing technique is less
precise than the SDC graph: while here the indexing nodes merely denote the logical union
and intersection of interval constraints – i.e. between sets of predicates and concepts – the
SDC graph properly reflects the semantic relationships of goals and Web services on the
basis of precise functional descriptions. Thirdly, for each new incoming request the search
tree needs to be traversed in a top-down manner until a suitable Web service is detected, and
for each step a matchmaker needs to be invoked. In contrast, the SDC technique enables
discovery-by-lookup, i.e. the detection of suitable Web services for a given client request
without invoking a matchmaker. Finally, it remains unclear how the search tree is created
for a given set of Web services, while the automated creation and maintenance of the SDC
graph is an integral part of the SDC technique.

172 Chapter 5. Semantic Discovery Caching

Caching Techniques. Caching is a well-established means for performance optimiza-
tion applied in several areas of computing, e.g. for memory management [Handy, 1998] or
for traffic management on the Web [Wessels, 2001]. The basic idea is to capture the results
of recent user requests in a cache and then answer new requests from this intermediate
storage, which usually is faster than performing the actual computation. An extended form
are semantic caching techniques [Keller and Basu, 1996] which keep user requests as logical
expressions: if a new query Q′ that is semantically similar to a previous query Q, then the
answer set can be derived from the cache. Respective studies show that caching techniques
can achieve the highest efficiency increase if there are many similar requests [Godfrey and
Gryz, 1997; Chidlovskii et al., 1999]. Caching techniques have also been successfully applied
for enhancing the computational performance of reasoning techniques (e.g. [Astrachan and
Stickel, 1992; Clayton et al., 2002; Nieuwenhuis et al., 2003]).

The SDC technique adopts the principles of caching to the context of Web service
discovery. The SDC graph can be considered as the cache structure, whereby the goal
templates denote the abstract, semantic descriptions of client requests. The achievable
efficiency increase is proportionally dependent on the number of similar goals and Web
services in an application. An important difference to other caching techniques is that the
SDC graph is stored in a persistent memory, and only the relevant goal and Web service
descriptions are loaded into the working memory at runtime. Thus, its size is not critical
for the operational reliability so that a periodical cache clearing is dispensable.

To conclude, the SDC technique is a novel and promising approach to enhance the com-
putational performance of automated Web service discovery. Such techniques appear to be
necessary in order to warrant the applicability of SWS techniques in real-world scenarios.
This can not be achieved by optimizing general purpose reasoning techniques (e.g. [Horrocks
et al., 2004; Kiryakov et al., 2005]), because Web service discovery requires several, possibly
expensive matchmaking operations on potentially complex functional descriptions.

While we here have specified the data structures and algorithms on the basis of rich
functional descriptions which warrant a high retrieval performance, the general approach can
be adapted to other descriptions models and languages. We further have mainly focussed on
the optimization of runtime Web service discovery. However, also other beneficial techniques
can be built upon the SDC graph – e.g. suitable graphical user interfaces for goal-driven
SWS techniques. Moreover, the SDC technique can be further extended, e.g. with advanced
techniques for managing and reasoning on goals (e.g. [Giorgini et al., 2003]).

Chapter 6

Evaluation

This chapter presents the evaluation of the Web service discovery techniques developed in
this work. In order to properly assess the achievable improvements for automated discovery
as a central component in SWS environments, the evaluation consists of two parts.

The first one is a quantitative evaluation which investigates the retrieval accuracy of
the semantically enabled discovery techniques specified in Chapter 4, and in particular
determines the enhancements for the computational performance of automated Web service
discovery that is achievable with the SDC technique defined in Chapter 5. For this, in
Section 6.1 we examine the behavior of our discovery techniques in larger search spaces of
available Web services and compare it with other, not or less optimized techniques in terms
of time efficiency measurements. This will show that performance optimization is necessary
in order to provide efficient and scalable Web service discovery techniques, and that the
SDC technique can achieve significant improvements while maintaining the high retrieval
accuracy of our semantic matchmaking techniques.

The second part is a qualitative evaluation which examines the practical relevance of the
developed technology within real-world SOA applications. The aim is to ascertain whether
the goal-based approach for Semantic Web services presented in Chapter 3 can be benefi-
cially applied to existing SOA systems, in particular in a way such that the optimized Web
service discovery can reveal its potential. For this, in Section 6.2 we define general criteria
for the practical applicability of our technology, and then discuss the possible increase in the
quality and flexibility of one of the largest actually used SOA systems that is maintained
by the US-based telecommunication provider Verizon. We further discuss the employment
of our technology within other SOA application areas, in particular in prominent use case
scenarios that have been considered in research efforts around Semantic Web services.

173

174 Chapter 6. Evaluation

6.1 Performance Analysis

We commence with the quantitative evaluation. With respect to the overall aim of this
work, the aim is to evaluate the retrieval accuracy of our Web service discovery techniques
and in particular to quantify the performance increase that is achievable with the SDC
technique. The following explains the methodology for the performance analysis, presents
the use case scenario and modeling, and discusses the results of the evaluation tests.

6.1.1 Methodology

The overall aim of this work is to develop an efficient and scalable Web service discovery
technique with a high retrieval accuracy. With respect to this, the aim of the quantitative
evaluation is to assess the improvements that can be achieved with the techniques specified
in the preceding elaborations in terms of quantitative measurements.

For this, we specify evaluation tests that allow us to properly evaluate both the design
time and the runtime operations of our two-phased discovery framework with respect to the
retrieval accuracy and the computational performance. The first test addresses the creation
and management of SDC graphs as the design time operations in our framework. Here, we
are interested in the operational correctness of the automatically created SDC graphs as well
as the required time for performing update operations. The second test is concerned with
runtime Web service discovery, i.e. the detection of functionally suitable Web services for
concrete goal instances which denotes the time critical operation in our framework. In order
to evaluate the enhancements in computational performance, we compare our optimized
runtime discovery techniques with other, not or less optimized engines. We specify the
tests such that they cover all relevant aspects, and in particular allow us to examine the
behavior of the discovery techniques in larger search spaces of available Web services.

We use the shipment scenario from the Semantic Web service challenge as the use case
for the performance analysis, which we already have discussed as the running example
in Chapter 5. This is a widely recognized initiative for the demonstration and compari-
son of semantically enabled Web service discovery techniques based on real-world services
(see http://www.sws-challenge.org). We closely follow the original scenario description,
which defines five Web services for package shipment from the USA to different destinations
along with several examples of concrete client requests for Web service discovery. We shall
explain the representation of this use case in our framework as well as the resource modeling
below in Section 6.1.2. The following specifies the evaluation tests in detail; we shall present
and discuss the results below in Section 6.1.3.

http://www.sws-challenge.org�

6.1. Performance Analysis 175

Evaluation Test for SDC Graph Creation and Management

The first test is concerned with the design time operations of our two-phase Web service
discovery framework. This covers the discovery of suitable Web services for goal templates,
and in particular the creation and maintenance of SDC graphs. We consider these operations
to be not time critical because they are performed orthogonal to the discovery of suitable
Web services for a goal instance at runtime.

As discussed in the detailed specification in Section 5.3, the algorithms for the auto-
mated creation and maintenance of SDC graphs can correctly handle all possible situations.
However, the following two aspects appear to be important for assessing the usability of
the SDC technique in real-world applications: (1) the computational complexity of creating
and maintaining the SDC graph for a given and evolving set of goals and Web services, in
particular regarding the required processing times, and (2) the correctness of the SDC graph
at all times. The latter is a pre-requisite for the proper operation of the SDC technique: the
results of the optimized runtime discovery will only be correct if the SDC graph properly
captures the results of the design time discovery runs, and also the update operations for
handling changes on the resources require a previously correct SDC graph.

In consequence, the evaluation test examines the automated management of the SDC
graph for the shipment scenario with respect to these criteria. For this, we define a set of
10 goal templates for package shipment from the USA, and we consider a set of 50 available
Web services that consists of the 5 Web services from the original scenario description and
45 other Web services which do not offer package shipment services and thus are not usable
for any of the goal templates. This appears to be a sufficiently large search space for the
evaluation. Then, we examine the automated SDC graph management with respect to:

1. the required time and the operational correctness for the automated creation of the
SDC graph by the subsequent insertion of the goal templates in a top-down manner
as well as in a different order

2. the required times for performing change management operations on the existing goal
templates and on the available Web services as well as the operational correctness of
the updated SDC graph.

This test covers all relevant aspects for evaluating the functional correctness as well as
the performance of the design time operations in our framework. The design time Web
service discovery is an integral part of the SDC graph creation algorithm, and the use case
scenario covers most of the situations that occur in dynamically evolving applications and
require updates of the SDC graph, in particular the insertion of goal templates at different

176 Chapter 6. Evaluation

positions, the handling of intersection goal templates, design time Web service discovery for
root nodes and child nodes in the SDC graph, and essential change management operations.
We perform the test with the SDC prototype implementation presented in Section 5.5.

Evaluation Test for Runtime Web Service Discovery

The second test is concerned with the detection of functionally suitable Web services for a
given goal instance as the time critical runtime operations in our framework.

Recalling from the preceding elaborations, a goal instance formally describes a particular
client objective by instantiating a goal template with concrete inputs. In order to gain a
better flexibility, we expect every usage request for Web services to be described in terms of
a goal instance for which the usable Web services are detected and executed dynamically.
The first processing step in SWS environments for automated goal solving is functional
Web service discovery which determines the suitable candidates out of the available Web
services; their actual usability is then further inspected within subsequent processing steps.
This is required for each new goal instance, whereby the discovery engine needs to take all
available Web services into account while the subsequent mechanisms merely need to work
with the discovered candidates.

Because of this, the discovery of functionally suitable Web services at runtime is the
time critical operation in our framework. It should be performed in an efficient and reliable
manner in order to adequately accomplish the first processing step and therewith warrant
the operational suitability of SWS environments for effectively solving concrete client re-
quests. Our optimized runtime discovery techniques address this challenge by exploiting
the knowledge captured in the SDC graph in order to minimize the relevant search space as
well as the number of necessary matchmaking operations for completing a runtime discov-
ery task (see Section 5.4). In consequence, the main evaluation interest is to quantify the
increase in the computational performance for runtime discovery that is achievable with the
SDC technique, and also the retrieval accuracy of the applied matchmaking techniques.

To evaluate this in terms of quantitative measurements, we examine the behavior of
our runtime discovery engine in increasingly larger search spaces and compare it with other
engines. As the test data, we define 10 goal instances for package shipment from the USA
which instantiate the goal templates defined in the first test (see above). To simulate realistic
scenarios, we define the set of available Web services to always contain the five Web services
from the original shipment scenario description; all others do not offer package shipment
and thus are not usable for any of the goal instances. We further perform two comparison
tests in order to properly assess the achievable enhancements. The first one compares the

6.1. Performance Analysis 177

SDC-enabled runtime discoverer with a naive engine that does not use any optimization
techniques, and the second one compares the full SDC-enabled engine with an engine that
merely utilizes the captured design time discovery results without further exploiting the SDC
graph. We adopt the following standard criteria for judging the computational performance
of the discovery engines: efficiency as the time required for completing a discovery task,
scalability as the ability to deal with a large search space of available Web services, and
stability as a low variance of the execution time of several invocations [Ebert et al., 2004].
The following explains the design of the comparison tests in more detail.

SDC Runtime Discoverer vs. Naive Engine. The first comparison test examines
the behavior of the SDC-enabled runtime discoverer against a naive engine that does not
use any optimization techniques. The aim is to show the necessity for the optimization of
runtime Web service discovery, and to determine the increase rate that is achievable with
the SDC technique. We compare the behavior for both the discovery of a single Web service
and the discovery of all functionally suitable Web services for a given goal instance.

We use the runtime discovery component from the SDC prototype for the comparison
test, which implements the optimized discovery algorithms specified in Section 5.4. The
comparison engine simulates a naive Web service discovery for goal instances without any
optimization. It investigates the available Web services in a randomized order, and checks
the basic matching condition for the functional suitability of each Web service for the given
goal instance (cf. Definition 4.8 in Section 4.3.2). This is implemented as an extension of
the SDC prototype so that both engines expose the same retrieval accuracy because they
use the same descriptions of goals and Web services, the same matchmaking techniques,
and the same technical infrastructure. We choose this engine for the comparison test in
order to evaluate the effectiveness of our optimized discovery algorithms. A quantitative
comparison with existing Web service discovery techniques appears to be dispensable be-
cause a comparable goal-based discovery engine does not exist and most other approaches
lack in the achievable retrieval accuracy due to less expressive resource descriptions and less
precise matchmaking techniques. We refer to Section 4.5 for the detailed discussion on this.

The comparison test is performed by a sufficiently large number of repetitive test runs
in order to examine and compare the durable behavior of the discovery engines. For the
discovery of a single Web service, we consider sets of 10 up to 2000 available Web services
which always contain the 5 Web services from the original shipment scenario description
while all others are not usable. This simulates the size and structure of search spaces that
can be expected in real-world scenarios. We then perform 50 repetitive test runs for each
of our 10 test goal instances under every set of available Web services. Finally, we prepare

178 Chapter 6. Evaluation

the test results in terms of statistical standard notions such as the arithmetic mean, the
median, and the standard deviation in order to analyze and compare the behavior of the
discovery engines with respect to the computational efficiency. The test set-up for comparing
the discovery of all functionally suitable Web services is analog. Because of the smaller
variance that can be expected from the naive engine for this discovery task, it is sufficient
to consider search spaces of 10 up to 500 Web services and perform 25 repetitive test runs.
Regarding the retrieval accuracy, both engines always detect the same Web services to be
usable because they use the same matchmaking techniques as explained above.

SDCfull vs. SDClight . The second test compares the SDC-enabled runtime Web service
discovery with a discovery engine for goal instances that merely uses the knowledge on
suitable Web services for goal templates without further exploiting the SDC graph. The
motivation beyond this is that a significant part of the achievable efficiency increase for
runtime discovery results from the pre-filtering of the potential candidates on the basis of
the corresponding goal template that is defined for the goal instance. With respect to this,
aim is to evaluate the computational performance of our optimized runtime discovery in
comparison to a simpler optimization technique that merely performs pre-filtering.

In our two-phase discovery framework, we only need to consider those Web services as
potential candidates for a given goal instance GI(G, β) which are suitable for the correspond-
ing goal template G (cf. Theorem 4.1 in Section 4.3.2). In addition to this pre-filtering,
a central method of our optimized runtime Web service discovery algorithms is the refine-
ment of the provided goal instance. This replaces the initially defined corresponding goal
template G by the most appropriate goal template G′ as the lowest existing child node of
G in the SDC graph for which the goal instantiation condition GI(G, β) |= G′ is satisfied;
the set of suitable Web services for G′ is minimal in comparison to all other existing goal
templates, so that the relevant search space is reduced to a minimum (see Section 5.4).

In order to determine the performance enhancements that is achievable with this exhaus-
tive exploitation of the SDC graph, we define the comparison engine SDClight to perform
runtime Web service discovery the same way as our optimized algorithms but without the
refinement-method. We implement this as an extension of the SDC prototype so that both
engines use the same technical infrastructure and expose the same retrieval accuracy. We
extend the original shipment scenario with additional Web services for this comparison test,
because the refinement-method unfolds noticeably for larger numbers of potential candi-
dates. As for the above comparison test, a quantitative comparison with other optimization
techniques for Web service discovery appears to be dispensable because the differences to
the SDC technique reside on the qualitative level as already discussed in Section 5.6.

6.1. Performance Analysis 179

6.1.2 Use Case Scenario and Modeling

We now explain the definition and resource modeling for the shipment scenario in our
framework. The use cases in the SWS challenge are described in natural language without
imposing a specific conceptual model for Semantic Web services [Petrie et al., 2008]. Thus,
a central part of the demonstration and testing of our Web service discovery techniques is
to map the generic description of the shipment scenario into our conceptual model.

The original scenario description defines five Web services for package shipment from the
USA to different destinations under specific conditions, and several examples of concrete
client requests for Web service discovery. In our model, these relate to goal instances
for which Web services shall be discovered at runtime. Elements that correspond to goal
templates are not defined in the original scenario description. The following explains the
definition and modeling of the goals and the Web services in our framework, which very
closely follows the original scenario description. We also present the resulting SDC graph
and define the goal instances used for the evaluation tests.

Resource Modeling. Our two-phased discovery framework is based on the distinction
of goal templates as generic and reusable objective descriptions and goal instances that
represent particular client requests by instantiating a goal template with concrete inputs.
The part of goal and Web service descriptions which is relevant for Web service discovery
are functional descriptions that formally describe the requested and provided functionalities
while abstracting from the behavioral as well as other technical details.

In order to warrant the high retrieval accuracy of our semantic matchmaking techniques,
we have defined formal functional descriptions that precisely describe the solutions of goals
and the executions of Web services with respect to the possible start- and end-states (see
Chapter 4). Table 6.1 shows this for the goal template gtRoot which describes the objective
of shipping a package of any weight from anywhere to anywhere in the world, and the Web
service Weasel from the original scenario description that offers package shipment in the
USA. The functional descriptions are structurally identical: the preconditions φpre define
conditions on the location of the sender and the receiver as well as the maximal weight of
the package, and the effects φeff state that the expected, respectively the provided output is
a shipment order with respect to the inputs. The input variables IN occur as free variables
in both φpre and φeff in order to explicitly specify their logical dependency. A goal instance
formally describes a particular client request by instantiating the input variables specified
for the goal template with concrete values. This input binding is also used to actually
invoke a Web service in order to solve the goal instance (see Chapter 3).

180 Chapter 6. Evaluation

Table 6.1: Examples for Functional Descriptions
Goal Template gtRoot Web Service Weasel

Ω: location & shipment ontologies
IN : {?s,?r,?p,?w}
φpre: sender(?s) ∧ locatedIn(?s, world)

∧receiver(?r) ∧ locatedIn(?r, world)
∧package(?p) ∧ weight(?p, ?w)
∧maxWeight(?w, heavy).

φeff : ∀?o, ?price. out(?o) ⇔ (
shipmentOrder(?o, ?p)
∧from(?p, ?s) ∧ to(?p, ?r)
∧costs(?o, ?price)).

Ω: location & shipment ontologies
IN : {?s,?r,?p,?w}
φpre: sender(?s) ∧ locatedIn(?s, usa)

∧receiver(?r) ∧ locatedIn(?r, usa)
∧package(?p) ∧ weight(?p, ?w)
∧maxWeight(?w, heavy).

φeff : ∀?o, ?price. out(?o) ⇔ (
shipmentOrder(?o, ?p)
∧from(?p, ?s) ∧ to(?p, ?r)
∧costs(?o, ?price)).

We define the relevant background knowledge in two separate domain ontologies, there-
with following the principle of modular ontology design. The location ontology essen-
tially provides a knowledge base of all continents, countries, and cities in the world; their
geographic relationships are defined via the transitive predicate locatedIn(?x,?y). The
shipment ontology specifies the concepts package, sender, receiver, shipment order, and
differentiates weight classes whose formal relationship is defined by a transitive inclusion
predicate, e.g. includedIn(light,heavy). Appendix C.1 provides the complete ontology
specifications as well as the goal template and Web service descriptions in WSML FOL,
which we use as the specification language in the SDC prototype (see Section 5.5).

The functional descriptions as defined here merely define constraints on the locality
and the package weight. The original scenario description defines further aspects on the
available Web services, e.g. the actual price for a particular shipment in dependency of the
package weight and constraints on the delivery time. This information can be used to either
discard a functionally usable Web service due to incompatibility with respective constraints
or policies defined by the client, or to choose the best candidate on the basis of a suitability
ordering. We consider this to be performed by selection and ranking mechanisms which
follow after functional Web service discovery: the purpose of Web service discovery is to
detect functionally suitable candidates out of the available Web services, while their actual
usability for solving a given goal is then further investigated in subsequent processing steps
(see Section 2.2.2). Thus, we consider the functional descriptions as illustrated above to be
sufficient and appropriate for our purposes. The other goal templates and Web services in
the shipment scenario are described analogously, differing in the conditions on the sender
and receiver location and the weight of the shipped package as we shall explain below.

6.1. Performance Analysis 181

SDC Graph. We now turn towards the actual resources that are used for the evaluation.
The following explains the relevant goal templates and Web services, and presents their
organization in the SDC graph that we create and use in our evaluation tests.

As outlined above, we consider the five Web services defined in the original scenario
description as the only available Web services for package shipment. Table 6.2 provides
an overview of the provided functionalities, i.e. the conditions on the locality and the
maximal weight as discussed above. We see that all offer package shipment from the USA
to different destinations; we abstract them to the level of continents, and denote the specific
weight restrictions by the weight classes specified in the shipment ontology (see above).

Table 6.2: Overview of Web Services in the Shipment Scenario

We then define a set of 10 goal templates that can be solved by these Web services.
Figure 6.1 below shows their organization in the SDC graph which we shall use for the
performance tests. The upper part of the figure shows the goal graph, which organizes
the goal templates in a subsumption hierarchy with respect to their semantic similarity.
The most general goal template for the shipment scenario is gtRoot, which describes the
objective of shipping a package of any weight from anywhere to anywhere in the world (see
the functional description in Table 6.1 above); it hence is the root of the SDC graph. The
goal template gtUS2world is for shipping packages of any weight from the USA to anywhere
in the world. It holds that subsume(gtRoot, gtUS2world), so that gtUS2world is a child
node of gtRoot in the SDC graph. Analogously, the direct children of gtUS2world are goal
templates for package shipment from the USA to specific continents; the identifiers of the
goal templates indicate the requested functionality. We further define the goal template
gtUS2EUlight for shipping light packages from the USA to a destination in Europe; the
weight class light includes all weights from 0 to 10 kg. We also define the goal template
gtNA2NAlight for shipping light packages within North America. This is a child of gtRoot,

182 Chapter 6. Evaluation

Figure 6.1: Overview of the SDC Graph for the Shipment Scenario

but its similarity degree with gtUS2world is intersect. As discussed in detail in Section 5.3.2,
this is represented in the SDC graph by the intersection goal template iGT, which describes
the objective of shipping light packages from the USA to North America and is allocated
as a child of gtUS2NA and gtNA2NAlight.

The lower part of Figure 6.1 shows usability degrees of the five Web services for the
individual goal templates. This is the knowledge captured in the discovery cache of the SDC
graph, which we here represent in form of a table in order to maintain the readability. The
usability degrees denote the actual matchmaking results of runtime Web service discovery

6.1. Performance Analysis 183

runs as we shall show below in Section 6.1.3. Let us discuss some aspects of this in order
to gain a better understanding of the use case structure. The usability degree of all five
Web services for gtRoot as well as for gtUS2world is subsume because none of the Web
services offers shipment to every destination in the world. On the level of the children of
gtUS2world, the most frequent usability is intersect while some of the Web services are not
usable any longer. For instance, consider the goal template gtUS2EU for shipping packages of
any weight to Europe. Here, the Web services Muller, Racer and Walker are usable under
the intersect degree because they also support shipment to other continents but only for
packages up to 70 kg, respectively 50 kg; Runner is usable under the plugin degree because
it does not define a maximal weight limit and also supports shipment to other continents,
and Weasel is not usable because it only offers package shipment within the USA. The
goal templates gtUS2EUlight and iGT denote the most specialized objective descriptions.
Because the Web service either cover the requested functionality completely or not at all,
the most frequent usability degree on the lower levels of the goal graph is plugin. Here, the
arc (gtUS2EUlight, Runner) is omitted in the SDC graph because its usability degree can
be directly inferred from plugin(gtUS2EU, Runner) as defined in Section 5.2.2.

Goal Instances. The final aspect for modeling the shipment scenario within our frame-
work is the definition of goal instances. These describe the concrete client requests, analo-
gous to those defined in the original scenario description. We here define 10 goal instances
on the basis of the goal templates specified above, which serve as the test data for the
runtime discovery evaluation tests. Following the original scenario description, we define
all goal instances such that the sender is located in California.

We recall that a goal instance GI(G, β) is defined by its corresponding goal template
G and an input binding β that defines a value assignment for the input variables specified
for G. A goal instance must be a valid instantiation of its corresponding goal template,
which is given if the functional description of G is satisfiable under the concrete input
values defined in β (see Section 4.3.2). Moreover, we assume that there might exist a goal
template G′ which is more appropriate for a goal instance than the one initially defined
by the client. This is exploited by the optimized runtime discovery algorithms in order to
achieve a maximal reduction of the relevant search space (see Section 5.4).

Table 6.3 provides a concise overview of the goal instance definitions, covering all relevant
information for the following discussions. From left to right, the columns define the identifier
of each goal instance, the initially defined corresponding goal template G, the input binding
β, the most appropriate goal template G′ among the existing ones, and the set of functionally
suitable Web services. Each of the goal instances defined here is a valid instantiation of its

184 Chapter 6. Evaluation

Table 6.3: Overview of Goal Instances for the Shipment Scenario

corresponding goal template. Regarding the input bindings, the table shows abstractions
from the actual input bindings. These need to define the sender, the receiver, and the
package to be shipped in order to properly instantiate the goal templates. We here merely
show the specified locations and the package weight as the relevant information for functional
Web service discovery. As above, the usable Web services for the goal instances as shown
in the table denote the results of actual runtime discovery runs. In accordance to our two-
phase Web service discovery model, we observe that the set of usable Web services for each
goal instance is always a subset of those Web services usable for its corresponding goal
template (see Section 4.1). Naturally, this holds for both the initially defined goal template
G as well as for the most appropriate goal template G′.

6.1. Performance Analysis 185

6.1.3 Results and Discussion

The following presents the results of the evaluation tests for the design time operations and
the comparison tests for runtime Web service discovery as specified above in Section 6.1.1.
We provide the results of each test along with the measured times, explain where these
come from, and discuss the meaning for optimizing the Web service discovery task.

The evaluation tests have been run as JUnit tests for the SDC prototype implementation
on a conventional laptop with 2 GHz Intel processor and 1 GB of ram. The following
presents the evaluation results in an aggregated manner which is sufficient for the purpose
of analysis and discussion. Further details on the test implementations and the obtained
evaluation data are provided in Appendix C; all Java sources, the original data, and the
log-files for the evaluation tests are provided on the accompanying CD-R.

SDC Graph Management

The first evaluation test is concerned with the automated creation and maintenance of the
SDC graph for our use case scenario. In order to properly evaluate all relevant aspects of
the design time operations in our framework, we have defined the test to consist of three
parts: (1) creating the SDC graph for the shipment scenario by the subsequent insertion of
all goal templates in a top-down manner, (2) creating the SDC graph by inserting the goal
templates in a different order, and (3) maintenance updates of the SDC graph when goal
templates and Web services are removed or added. The main interest for the evaluation
is the required time for performing the respective operations as well as the operational
correctness of the SDC graph at all times. The following presents and discusses the test
results; additional technical details are provided in Appendix C.2.

SDC Graph Creation. We commence with the creation of the complete SDC graph
for the shipment scenario as shown above in Figure 6.1 in a top-down manner. This means
that we first insert the goal template gtRoot which will become the root node of the SDC
graph, and then add the other 9 goal templates one after another. For the test we consider
50 available Web services of which only the 5 from the original scenario description offer
package shipment while all others are not usable for any of the goal templates.

At first, let us examine the correctness of the automatically generated SDC graph.
To verify this, Figure 6.2 shows the SDC graph that has been created by the SDC Graph

Creator component of our prototype implementation. The graphical representation has
been generated from the internal representation as a WSML knowledge base by the GraphViz
tool on the basis of the dot graph representation language (open source tool available at

186 Chapter 6. Evaluation

Figure 6.2: Created SDC Graph for the Shipment Scenario

http://www.graphviz.org/); we provide the actually created WSML knowledge base in
Appendix C.2. We observe that the SDC graph correctly defines the relevant relationships
of the goal templates and Web services in our test bed. The goal graph as well as the us-
ability of the available Web services is exactly the same as discussed above in Section 6.1.2.
Also the intersection goal template iGT is defined and allocated at the correct position, and
the redundant discovery cache arc (gtUS2EUlight, Runner) is omitted.

Let us now investigate the creation of this SDC graph in more detail. We recall that the
SDC graph for a given set of goal templates and Web services is created by the subsequent
insertion of the goal templates (see Section 5.3.1). A newly inserted goal template G is first
allocated in the goal graph such that the existing goal templates are organized in a proper
subsumption hierarchy without any redundant arcs. Then, the discovery cache is created,
respectively updated so that it defines the minimal set of arcs that are necessary to infer
the precise usability degree of every available Web service for each existing goal template.
For this, the child node discovery method merely inspects the usable Web services for the
parents of G when this has been inserted as a child node in the goal graph; otherwise,
the root node discovery method is applied which needs to also inspect all other available
Web services. With respect to this, Table 6.4 provides an overview of the distinct insertion
operations for creating the complete SDC graph along with the measured times.

http://www.graphviz.org/�

6.1. Performance Analysis 187

Table 6.4: Operations and Times for SDC Graph Creation (Top-Down)

We commence with inserting gtRoot as the first goal template into the SDC graph. We
here need to perform root node discovery in order to determine the suitable Web services and
create the discovery cache; this takes about 20 seconds because all 50 available Web services
need to be inspected. Next, we insert gtUS2world, which becomes a child of gtRoot. We
here can use the child node discovery which takes significantly less time because we only need
to inspect the five Web services which are usable for gtRoot. Analogously, the operations
3 – 9 denote insertions of new child nodes to the SDC graph. The slightly increasing times
result from the need for investigating the semantic similarity with already existing child
nodes, and also from the different numbers of matchmaking operations that are necessary
for the discovery cache creation. Operation 10 requires more time because in the course
of inserting gtNA2NAlight we also need to create and insert the intersection goal template
iGT into the SDC graph. The average time for a single matchmaking operation in this test
is 110 milliseconds; several of these are needed in order to determine the actual similarity
degree of two goal templates, respectively the usability degree of a Web service.

188 Chapter 6. Evaluation

SDC Graph Creation - Other Insertion Order. In the above test, we have created
the SDC graph by the subsequent insertion of the goal templates in a top-down manner.
In real-world applications, we assume that the goal templates are created step-by-step and
then are separately inserted into the SDC graph. To warrant the operational correctness of
the SDC technique in such situations, it is necessary that the SDC graph is correct after
each insertion operation regardless of the goal template insertion order.

To evaluate this, the following examines the stepwise creation of the SDC graph for the
shipment by successively inserting three goal templates in an order that does not correspond
to their position in the final SDC graph. We first insert the goal template gtUS2EUlight,
which eventually will become a child node in the SDC graph. Then, we insert gtUS2world
which becomes the new root node of the SDC graph, and finally we insert gtUS2EU which
will be allocated between the two previously inserted goal templates in the subsumption
hierarchy. This test set-up requires modifications on both the goal graph as well as the
discovery cache of the SDC graph. Table 6.5 provides an overview of the insertion operations
along with the measured times, and Figure 6.3 below shows the visual representation of the
SDC graph created by our prototype implementation after each insertion operation.

Table 6.5: Operations and Times for Stepwise SDC Graph Creation

Similar to the above test, the insertion of gtUS2EUlight as the first goal template
takes about 20 seconds because we need to perform root node discovery for creating the
discovery cache. This needs to inspect all 50 available Web services. The created SDC
graph defines the correct usability degrees of all 4 Web services that are actually usable for
gtUS2EUlight (see Figure 6.1). In the second operation, gtUS2world is properly allocated
as a new root node in the SDC graph. We here also need to perform root node discovery
to create the discovery cache. This however is a little bit faster than the first operation
because the algorithm can make use of the knowledge captured in the previously existing

6.1. Performance Analysis 189

Figure 6.3: Stepwise Creation of the SDC Graph

discovery cache. In the third operation, gtUS2EU is properly allocated as an intermediate
node between gtUS2world and gtUS2EUlight in the goal graph. Here, the previously exist-
ing goal graph arc (gtUS2world, gtUS2EUlight) is removed in order to avoid redundancy.
We can use the child node discovery method to create the discovery cache for gtUS2EU,
which explains the significantly faster processing time than the previous insertion opera-
tions. Finally, the algorithm correctly removes the previously existing discovery cache arc
(gtUS2EUlight, Runner) which now has become redundant in the SDC graph.

SDC Graph Maintenance. The final part of the evaluation test for the SDC graph
management techniques is concerned with the maintenance of the SDC graph when changes
on the existing goal templates or the available Web services occur. Such changes must be
properly reflected in the SDC graph in order to warrant its operational correctness in
dynamically changing environments. For this, we have defined algorithms for ensuring that
the SDC graph maintains its structure and properties when a goal template is removed or
modified or when a Web service is added, removed, or modified (see Section 5.3.3).

190 Chapter 6. Evaluation

Table 6.6: Actions and Times for SDC Graph Maintenance Operations

To evaluate this, we perform the basic maintenance operations on the complete SDC graph
for the shipment scenario that has been created in the first test above. We here choose
four operations which are sufficient to test the correctness of the SDC graph maintenance
techniques. Table 6.6 provides an overview of the operations along with the measured times
for performing them with the Evolution Manager in the SDC prototype.

The first operation removes the goal template gtUS2EU from the SDC graph. Essen-
tially, this is done by removing gtUS2EU and all its goal graph and discovery cache arcs.
However, the resulting SDC graph must properly define the relevant relationships between
the remaining goal templates and their usable Web services. For this, we need to properly
re-allocate the children of the removed goal template within the SDC graph. In our test
bed, gtUS2EUlight becomes a direct child of gtUS2world. We also must re-materialize the
previously omitted discovery cache arc (gtUS2EUlight, Runner) because this can no longer
be inferred after removing the discovery cache of gtUS2EU. As the second operation, we
remove the goal template gtNA2NAlight. This requires to also remove the intersection goal
template iGT because one of its parents does no longer exist and we hence can not perform
matchmaking on the intersection goal template anymore (cf. Definition 5.3).

In the third operation, we remove the Web service Muller from the SDC graph. For
this, we merely need to delete all discovery cache arcs which define this Web service as the
target element. Figure 6.4 below shows the updated SDC graph after the three removal
operations. We observe that all modifications have been performed correctly. We further
see that each of the removal operations requires less than 100 milliseconds. The reason for
this that here none of the removal operations requires matchmaking; the algorithms merely
modify WSML knowledge base wherein the SDC graph is kept within the system, which

6.1. Performance Analysis 191

Figure 6.4: Updated SDC Graph after Removal Operations

can be done effectively via the wsmo4j api. We complete the maintenance test with the
functionality for adding new Web services to the SDC graph. For this, the forth operation
in Table 6.6 re-inserts the Web service Muller, i.e. the one that has been removed in the
previous operation. The algorithm commences with inspecting the usability for gtRoot as
the root node of the updated SDC graph, and then subsequently determines the usability for
the child nodes on the basis of the already existing knowledge in the discovery cache. This
takes around 4 seconds because several matchmaking operations are necessary to determine
the actual usability degree of Web service Muller for each existing goal template.

To conclude, the tests demonstrate that our automated management techniques can
create the operationally correct SDC graph for the shipment use case scenario, independent
of the insertion order of the goal templates, and also that the maintenance support properly
updates the SDC graph when changes on the available resources occur. This ensures the
functional correctness of the SDC technique for optimizing the Web service discovery task,
so that the first main aspect of this evaluation test can be judged positively. Regarding the
required times managing SDC graphs, the creation of the complete SDC graph for our test
bed takes about 1 minute. Once the root node of the SDC graph has been established, the
average time for inserting additional goal templates as well as for other update operations is
around 5 seconds; if no matchmaking is required, then the required time is negligible. The
measured times are of course dependent on the application scenario. However, we assume
to find similar relationships of the relevant goal templates and the available Web services
in other scenarios. We shall discuss this in more detail in Section 6.2.

192 Chapter 6. Evaluation

Runtime Web Service Discovery

We now turn towards the evaluation of the improvements for runtime Web service discovery
that are achievable with the SDC technique. This is concerned with the detection of the
functionally suitable Web services for a given goal instance, which we have identified as
the time critical operation for the efficiency of SWS environments for solving concrete
client requests. The central aim of the SDC technique is to enhance the computational
performance of the runtime discovery task in order to overcome this bottleneck. To evaluate
this, we have defined a comprehensive test bed for examining the behavior of our optimized
runtime discovery techniques in comparison to other Web service discovery engines for
goal instances (see Section 6.1.1). The following first explains the design and the analysis
methodology of the evaluation test, and then discusses the results in detail.

Test Design and Analysis Methodology. The aim is to quantify the improvements
in the computational performance of runtime Web service discovery that can be achieved by
the SDC technique, in particular within larger search spaces of available Web services which
can be expected in real-world scenarios. For this, we have defined the evaluation to consist
of two comparison tests. The first one compares the behavior of the SDC-enabled runtime
discovery in increasingly larger search spaces with a naive discovery engine that does not use
any optimization techniques. This allows us to determine the thorough improvements that
can be achieved with our technique. To also assess the improvements in comparison to less
exhaustive optimization techniques, the second test compares our optimized engine with a
reduced version that does not fully exploit the knowledge captured in the SDC graph.

We perform the tests with the SDC Runtime Discoverer component of our prototype,
which implements the optimized runtime discovery algorithms specified in Section 5.4. The
comparison engines are implemented as extensions of the SDC prototype, i.e. they use the
same matchmaking techniques and technical infrastructure as the SDC-enabled engine. In
consequence, the actually discovered Web services are identical for all engines so that we can
concentrate on the performance comparison. As the test data, we use the 10 goal instances
defined in Table 6.3. These describe concrete client requests for shipping a package from
California to different destinations by instantiating one of the goal templates we have defined
for the shipment scenario (see SDC graph in Figure 6.1). We further consider the five Web
services from the original scenario description as the only available ones that offer package
shipment. Hence, a subset of these is usable for each of the goal instances. Table 6.7 provides
a concise overview of the relevant information for the following discussions, referring to the
detailed explanations on the goal instance definitions above in Section 6.1.2.

6.1. Performance Analysis 193

Table 6.7: Test Data for Runtime Web Service Discovery

In order to properly assess the achievable performance improvements, we investigate the
durable behavior that is observable among several invocations of the discovery engines. For
this, we have defined the comparison tests to consists of several repetitive test runs. We
then prepare the test results in terms of statistical standard notions as explained below. On
this basis, we analyze the evaluation results with respect to the following criteria: efficiency
as the time required for completing a single discovery task, scalability as the ability to deal
with a large search space of available Web services, and stability as a low variance of the
execution time of several invocations. As discussed above, we adopt these from the standard
performance measurement notions in software engineering [Ebert et al., 2004].

Table 6.8 provides an overview of the used statistical notions, following the terminology
and definitions from [Crow et al., 2007]. We use them for analyzing the performance of our
discovery engines as follows. The arithmetic mean µ denotes the average time for completing
a single discovery task, whereby the population n are the test runs and a value xi refers to
the actual time required by a specific discovery engine. We also consider the median x̄ as the
middle value of the test runs with respect to the required time for completing a discovery
task. This is less influenced by extreme values than the arithmetic mean and thus allows
us to better judge the long-term average behavior of a discovery engine with respect to
efficiency and scalability. We further consider the minimum and the maximum times which

194 Chapter 6. Evaluation

Table 6.8: Overview of Used Statistical Notions

Notion Description
Formula

n = entire population
xi = value of a data item i

Arithmetic
Mean µ

the average value of a data set µ = 1
n ×

n∑

i=1

xi

Median x̄

the middle value of a data set such
that 50 % of the values are smaller and
50 % are bigger; in contrast to µ, this
is less influenced by extreme values

given a total order s.t. xi < xi+1:

x̄ =
{

xi, i = n
2 if n is odd

xi−1+xi

2 , i = n
2 + 1

Minimum
xmin

minimal value in a data set xmin ≤ xi
for all i ∈ 1, . . . , n

Maximum
xmax

maximal value in a data set xmax ≥ xi
for all i ∈ 1, . . . , n

Standard
Deviation σ

a measurement for the dispersion of
the values in a data set

σ =

√√√√ 1
n ×

n∑

i=1

(xi − µ)2

Coefficient of
Variation CV

the percentaged value dispersion of a
data set (allows the comparison of data
sets with very different value ranges)

CV =
σ (Standard Deviation)
µ (Arithmetic Mean)

indicate the best, respectively the worst case for completing a discovery task. The final
two notions are used to denote the stability of a discovery engine. The standard deviation
σ denotes how much the values disperse from the arithmetic mean. For our purposes,
this indicates to what extent the times for completing a discovery task vary from the actual
average time: the higher this value is, the more unstable is the discovery engine. We further
use the coefficient of variation CV which denotes the percentaged value dispersion. This
allows us to compare the stability of the discovery engines in larger search spaces where
longer processing times can be expected in particular from the naive discovery engine.

The following presents the comparison tests in detail. We consider both flavors of run-
time discovery that we have identified to be desirable with SWS environments for automated
goal solving: the discovery of a single Web service which can be applied when the discov-
ery is performed in an interleaved manner with the subsequent processing steps, and the
discovery of all functionally suitable Web services that can be applied when the further
usability inspection is performed in a stepwise manner. Because of the technical design
explained above, all engines used in the tests always provide the correct discovery results
in accordance to Table 6.7. Additional information on the technical realization as well as
further details on the test results are provided in Appendix C.3.

6.1. Performance Analysis 195

SDC vs. Naive Engine. We commence with the comparison test of the SDC-enabled
runtime discovery with the naive discovery engine. The aim is to evaluate the overall
improvements for runtime Web service discovery that is achievable with the SDC technique
in comparison to not optimized discovery engines. We are in particular interested in the
behavior of the compared engines within larger search spaces of available Web services.

We first discuss the test results for the discovery of a single Web service. For this, we
inspect the behavior of the discovery engines within increasingly larger search spaces of
10 up to 2000 available Web services; these always contain the five Web services from the
original scenario description as the only potential candidates while all others are not usable.
The SDC discovery engine discovers one suitable Web service for a given goal instance by
the discoverSingleWS algorithm specified in Section 5.4.1. We use the SDC graph from
Figure 6.1 for which we have shown the correct automated creation in the above evaluation
test. The naive engine inspects the available Web services in a randomized order and stops
as soon as a usable Web service has been found. Table 6.9 shows the aggregated comparison
test results of all test runs for all goal instances. From this, we can already make statistically
firm statements on the computational performance of the discovery engines.

Table 6.9: Test Results SDC vs. Naive (Single Web Service Discovery)

196 Chapter 6. Evaluation

The average time of the SDC discoverer for detecting one suitable Web service is 300
milliseconds, independent of the number of the search space size. In contrast, the average
time required by the naive engine steadily grows with the number of the available Web
services. This means that the SDC-enabled engine guarantees scalability because the re-
quired times remain the same for every size of the search space. We also can consider the
SDC-enabled Web service discovery to be sufficiently efficient because an average process-
ing time of less than 1 second for completing the discovery task appears to be expedient to
ensure the effectiveness of SWS environments for automated goal solving. In addition to
the fast processing times, the SCD-enabled discoverer exposes a significantly higher stability
than the naive engine. The standard deviation of the SDC engine stays in the range of 50
milliseconds with an average variation of 13.6 %. This is a negligible variance in real world
applications. Thus, we can well predict the behavior of the SDC engine, which becomes in
particular important within advanced SWS techniques that employ automated Web service
discovery as a heavily used component (see Section 2.2.2). This is not given for the naive
engine: it exposes an average dispersion of 66.3 % where the actually required times ranges
from around 100 milliseconds to over 4 minutes.

Let us now discuss where the performance improvements result from. For this, we
examine the comparison tests for individual goal instances form our test set in more detail.
As the first one, let us consider goal instance gi3 which describes a client request for shipping
a package of 50.5 kg from Berkeley in California to Tunis in Algeria (see Table 6.7). For
this, only Web service Racer is usable because it supports package shipment to Africa for
weights up to 70 kg; all other Web services either do not support this destination or are
restricted to maximal weights of 50 kg (see Table 6.2 in Section 6.1.2). The goal instance
defines gtUS2world as the corresponding goal template. However, the most appropriate
goal template among the existing ones is gtUS2AF for shipping packages from the USA to
Africa. Thus, the SDC discovery algorithm first refines the goal instance so that gtUS2AF is
considered as the corresponding goal template. Then, its usable Web services are inspected
as the potential candidates for gi3. These are Muller, Racer, and Walker; each of them
is usable for gtUS2AF under the intersect usability degree (see Figure 6.1 Section 6.1.2).
Under this degree, matchmaking is required to determine their actual suitability for the goal
instance. The candidates are inspected in a unordered manner, so that the SDC discoverer
requires at minimum 3 matchmaking operations: one for the initial goal instantiation check,
one for the refinement step, and one for determining the usability of Racer when this is
inspected as the first candidate. In the worst case it requires 10 matchmaking operations,
which occurs when goal template gtUS2AF is inspected as the last child of gtUS2world

during the refinement step and also Racer is inspected as the last candidate.

6.1. Performance Analysis 197

Figure 6.5: Performance Comparison Charts Goal Instance gi3

The naive engine inspects the available Web services in a randomized order, and checks
the usability of each by the basic matchmaking condition for the given goal instance (see
Definition 4.8 in Section 4.3.2). Because only one of the available Web services is usable,
the success chance is 10 % for a search space of size 10 and decreases down to 0.05 % for
2000 Web services. Figure 6.5 shows the results of the comparison test for goal instance gi3
in terms of performance charts. The results comply with the general observations discussed
above. The average time for a single matchmaking operation in this test 100 milliseconds.
The actually measured times for the SDC engine are x̄ = 327 msec, xmin = 297 msec, and
xmax = 812 msec; for the naive engine we find xmin = 94 msec and xmax = 245 sec (i.e.
4 min and 5 sec). In order to illustrate the differences in the stability, the lower chart in
the figure shows the variance among the 50 test runs for a search space of 10 available Web
services: we observe that the SDC engine disperses only marginally from the actual average
time while the naive engine varies heavily between less than 0.1 and over 1 second.

198 Chapter 6. Evaluation

As another example, let us examine the comparison test for goal instance gi10. This
instantiates the goal template gtUS2EUlight for shipping a package of 9.99 kg from San
Francisco to Amsterdam (Netherlands). Here, the Web services Muller, Racer, Runner

and Walker are usable because all support package shipment from the USA to Europe. All
of them are usable for gtUS2EUlight under the plugin degree because the goal template
is restricted to light packages (see Figure 6.1). Hence, the SDC discoverer detects one of
the four usable Web services by the lookup-method which – apart from the initial goal
instantiation check – does not require any matchmaking (see Section 5.4.1). The detection
of the actual Web services by searching the SDC graph can then be effectively performed
on the basis of the wsmo4j api. The naive engine needs to inspect every available Web
service as explained above. The mere difference to the above case is that the success chance
is four times higher because there are four usable Web services among the available ones
instead of only one. Figure 6.6 shows the performance charts of the comparison test.

Figure 6.6: Performance Comparison Charts Goal Instance gi10

6.1. Performance Analysis 199

We see that also here the SDC engine exposes an efficient and scalable behavior. The
measured median time of the SDC technique is 30 milliseconds, which remain the same for
larger search spaces. The processing times of the naive engine rise steadily with the size
of the search space. Due to the higher change for success, the actually measured times
are about 4 times faster than the ones for gi3. This emphasizes our above analysis of the
achievable performance improvements, and we can make similar observations for the other
goal instances in our test bed.

We now turn towards the second flavor of runtime discovery, i.e. the detection of all func-
tionally suitable Web services for a given goal instance. The SDC engine performs this
discovery task by the discoverAllWS algorithm specified in Section 5.4.1. At first, the goal
instance is refined towards the most appropriate goal template among the ones existing the
SDC graph so that only the minimal set of Web services needs to be inspected as potential
candidates. Then, their actual usability for the given goal instance is determined via the
lookup-method as well as by additional matchmaking. The naive engine needs to inspect
all available Web services because it can not be ensured that all functionally usable Web
services have been detected until every single one has been examined.

This means that the SDC engine merely inspects the minimal set of potentially relevant
candidates for the given goal instance. In contrast, the naive engine must always inspect
the whole search space so that its processing times will be proportional to the number of
available Web services – independent of the actually given goal instance. Because of this,
it appears to be sufficient to discuss the aggregated results of the comparison test for all 10
goal instances of our test bed as shown in Table 6.10. As a sufficiently exhaustive test design
to make statistically firm statements on the behavior of the discovery engines, we performed
25 repetitive runs for search spaces of 10 up to 500 available Web services of which only the
five Web services from the original scenario description offer shipment services.

From this we can make the following observations about the computational performance.
Considering the efficiency, the SDC engine is always faster than the naive engine, and the
average processing time of 0.5 seconds appears to be sufficiently fast. Also for this discovery
task, the SDC engine warrants scalability because the required times remain the same also in
larger search spaces. In contrast, the processing times of the naive engine rise proportionally
with the number of available Web services. Regarding the stability, the average variance
of the SDC engine is 10.3 %, which is less than for the single Web service discovery. The
actual deviation times in the range of 60 milliseconds appear to be negligible for real-world
applications. The naive engine exposes an even smaller variance, which however becomes
irrelevant under consideration of the significantly longer processing times.

200 Chapter 6. Evaluation

Table 6.10: Test Results SDC vs. Naive (All Web Services Discovery)

We can summarize the central findings of the comparison test between the SDC-enabled
runtime discoverer and the naive engine as follows. The first observation is that an opti-
mization of automated Web service discovery techniques appears to be necessary in order
to warrant the effectiveness of SWS techniques in larger search spaces of available Web
services which can be expected in real-world scenarios. When examining the behavior of
the naive engine as a representative for not optimized discovery techniques, we observe that
already for 500 available Web services the actual processing times for discovering a single
Web service with a success chance of about 1 % range between less than 0.1 seconds and
more than 1 minute (cf. Table 6.9). Although a single matchmaking operation only takes
about 100 milliseconds in our tests, the discovery of all usable Web services in the same
setting takes longer than 1 minute because each of the available Web services must be in-
spected (cf. Table 6.10). Such long processing times and also the unpredictable behavior
appear to be unacceptable for an automated discovery engine, in particular for its successful
employment as a frequently used component within SWS environments.

The second central outcome is that the SDC technique can be considered as a sophis-
ticated optimization technique for automated Web service discovery because it can achieve
significant improvements in the computational performance. With respect to the relevant
quality criteria, the test results show that the SDC-enabled engine is sufficiently efficient
because it performs both flavors of runtime discovery tasks in average times of much less
than 1 second. It also warrants the scalability because the processing times remain the same

6.1. Performance Analysis 201

also within larger search spaces, and it exposes a high stability among several invocations
with marginal variations of the actual processing times. Therewith, the SDC technique
overcomes the mentioned deficiencies to a substantial extent, and it further maintains the
high retrieval accuracy of our semantic matchmaking techniques. A considerable part of the
performance improvements result from our two-phased discovery model wherein only the
usable Web services of the corresponding goal template need to be inspected as potential
candidates for the given goal instance. Further improvements are gained by the exhaustive
exploitation of the SDC graph, in particular by the refinement-method which reduces the
relevant search space to a minimum by considering the most appropriate goal template as
well as by the lookup-method for detecting usable Web services without matchmaking.

SDCfull vs. SDClight . We complete the performance evaluation with a comparison of
our optimized runtime discoverer (SDCfull) and a reduced version that does not thoroughly
utilize the knowledge captured in the SDC graph (referred to as SDClight in the following).
While we already have shown that the SDC technique can achieve substantial improvements
for optimizing automated Web service discovery, the aim of this additional comparison test
is to evaluate to what extent the SDC graph as the underlying data structure for capturing
design time discovery results enhances the achievable performance increase.

Let us briefly recall the relevant background in order to motivate the test design. A
central part of our optimized runtime discovery algorithms is the refinement-method which
– if possible – replaces the initially defined corresponding goal template G by a more ap-
propriate one G′ which is a child node of G in the SDC graph and for which the given goal
instance is a valid instantiation (see Section 5.4). This allows us to minimize the relevant
search space, because the usable Web services for G′ are always a subset of those that are
usable for G. Furthermore, the deeper G′ is allocated in the goal graph, the higher is the
possibility that some Web services are usable under the exact or plugin or degree: these
can be detected by the lookup-method as the most efficient discovery facility.

We have implemented the SDClight engine to use the same matchmaking and discovery
techniques as the SDC-enabled runtime discoverer but without the refinement-method.
This means that it performs runtime discovery on the basis of the goal template that
actually is defined for the given goal instance. Therewith, SDClight represents a simpler
optimization technique for our two-phase Web service discovery which merely utilizes the
knowledge on the captured design time discovery results. Thus, the comparison test allows
us to precisely determine the actual effect of the SDC graph on the performance increase
for runtime discovery: while SDCfull exhaustively exploits all relevant knowledge that is
provided by the SDC graph, the SDClight engine merely utilizes the knowledge captured in

202 Chapter 6. Evaluation

the discovery cache which could technically be realized in form of a simple data base. We
could also study an even simpler comparison engine that only considers the usable Web
services of the corresponding goal template and then, analog to the naive engine, performs
runtime discovery by the basic matchmaking condition for the given goal instance. However,
considering the results of the above comparison test, it is obvious that the SDCfull engine
would clearly dominate such a comparison; we hence do not further investigate this option.

We consider an extended version of the shipment scenario for this comparison test,
because the improvement effects of the refinement-method expectably unfold within larger
SDC graphs. In particular, we extend the original scenario setting as described above in
Section 6.1.2 with 10 additional Web services that offer package shipment analog to the
five existing ones but merely support specific destination countries. For example, we define
wsShipment5 to offer package shipment from North America to France and Japan. This is
usable for our goal templates gtUS2EU and gtUS2AS as well as for their parents under the
subsume degree, but it is not usable for any of the goal instances in our test bed. We also
define 4 additional goal templates for shipping light packages from the USA to the distinct
continents, analog to the already existing gtUS2EUlight; for these goal templates, the five
original Web services are mostly usable under the plugin degree. Table 6.11 provides an
overview of the additional goal templates and Web services, and Figure 6.7 below shows
the SDC graph for the extended shipment scenario.

Table 6.11: Additional Goal Templates and Web Services

6.1. Performance Analysis 203

Figure 6.7: Overview of SDC Graph for Extended Shipment Scenario

The upper part of the figure shows the goal graph after inserting the 4 additional goal
templates, which become child nodes of the already existing goal templates at the lowest
level. Below, we show the usability of all 15 Web services as the actual design discovery
results captured in the discovery cache (see Appendix C.3 for details). We see that all
the additional Web services are either not usable for the existing goal templates, or merely
under the subsume degree because they are restricted to specific countries.

204 Chapter 6. Evaluation

On this basis, we perform both flavors of runtime discovery for each of our 10 goal
instances and compare the performance of the SDCfull engine with the one of SDClight .
Because none of the additional Web services is usable for any of the goal instances, the
actual discovery results for both engines are still the same as shown in Table 6.7 above.
The mere difference is that for goal instance gi1 now gtUS2AFlight is the most appropriate
goal template, and for goal instance gi8 this is now gtUS2ASlight.

Figure 6.8 shows the results of the comparison test in form of a comparison chart along
with the measured median times of 100 repetitive test runs. Let us commence the analysis
with some general observations. Naturally, both engines warrant the scalability because
they only consider the relevant subset of the available Web services. Both engines perform
the runtime discovery tasks in average times below 1 second, so that they can be considered
to be sufficiently efficient for their application purpose; SDCfull is about 38 % faster for
the single Web service discovery, and ca. 17 % faster for the discovery of all Web services
(see the last column in the figure). The average standard deviation for single Web service
discovery is 77 milliseconds (= 24 %) for SDCfull and 91 milliseconds (= 20 %) for SDClight ;
for the discovery of all Web services we measured 128 milliseconds (= 15 %) for SDCfull and
203 milliseconds (= 18 %) for SDClight . This means that SDCfull exposes a better stability
among several invocations. However, the actual time variation for both engines remains in
the range of milliseconds which appears to be negligible for real-world scenarios.

In the following we discuss the test results for the individual goal instances in detail.
These represent different cases with respect to the actual effects of the refinement-method on
the achievable performance increase. We commence with the single Web service discovery.

Figure 6.8: Test Results SDCfull vs. SDClight

6.1. Performance Analysis 205

The rest results are shown in the first two data rows in Figure 6.8. There are four goal
instances for which both engines require only a minimal time, namely gi4, gi8, gi9, and
gi10. For each, Web service Runner is usable under the plugin degree for the initially
defined corresponding goal template, so that it is immediately discovered by the lookup-
method. SDCfull shows significant improvements of over 50 % in comparison to SDClight for
the goal instances gi1, gi2, gi6, and gi7, while it only is a little bit faster for gi3 and gi5.
To determine the reason for these differences, we need to examine the processing behavior
of the discovery engines in more detail. For this, we investigate the necessary matchmaking
operations which denote the most expensive part for performing the discovery task.

The goal instance gi1 wants to ship a 1.0 kg package from San Francisco to Tunis,
and defines gtUS2AF as the corresponding goal template. The Web services Muller, Racer,
and Walker are usable for gi1 (see Table 6.7). The most appropriate goal template in the
extended SDC graph is gtUS2AFlight. Hence, SDCfull refines the goal instance accordingly,
which requires 1 matchmaking operation. Then, it will detect one of the actually usable
Web services by the lookup-method because all of them are usable for gtUS2AFlight under
the plugin degree. Also wsShipment6 and wsShipment7 are potential candidates, but do
not need to be inspected because the discovery task is already completed successfully. The
SDClight engine considers gtUS2AF as the basis for performing runtime discovery. The same
5 Web services are potential candidates, but their usability degree is either subsume or
intersect so that matchmaking is necessary. Here, the success chance is 3/5 so that in
average 3 matchmaking operations are necessary to complete the discovery task.

This explains the differences in the measured average times, and we can make similar
observations for the other goal instances. For gi2, SDCfull refines the corresponding goal
template from gtRoot down to gtUS2EUlight, which takes 5 matchmaking operations in
average because the refinement-method inspects the child nodes in an unordered manner;
then Web service Runner will be detected via the lookup-method. In contrast, SDClight needs
to inspect all usable Web services for gtRoot by matchmaking with a success chance of 4/15.
For gi6, SDCfull takes 3 matchmaking operations for the refinement from gtUS2world to
gtUS2EU, and then detects Runner via the lookup-method. Here, SDClight needs perform
matchmaking for Web services that are usable for gtUS2world with a success chance of
3/11. The same holds analogously for gi7. For gi3, the engines expectably require the
same number of matchmaking operations and thus expose similar processing times. For gi5,
SDCfull takes 1 matchmaking operation while SDClight requires 2 in average; the measured
average times are still nearly identical because the refinement of the corresponding goal
template from gtUS2NA to iGT is a more expensive operation because we need to inspect
both parents of the intersection goal template.

206 Chapter 6. Evaluation

For the discovery of all usable Web services, the differences in the measured times
are smaller because both engines always need to inspect all potential candidates for this
discovery task (see the lower two rows in Figure 6.8). Also for this discovery task, the better
performance of SDCfull results from the reduction of the necessary matchmaking operations
that is achieved by the refinement-method. Considering goal instance gi1, SDCfull needs
3 matchmaking operations in average: 1 for the refinement to gtUS2AFlight so that then
the three actually usable Web services can be detected by the lookup-method, and 2 to
ensure that wsShipment6 and wsShipment7 are not usable; the SDClight engine needs to
perform matchmaking for all 5 Web services that are usable for gtUS2AF as the initially
defined goal template because the occurring usability degrees are subsume and intersect.
For goal instance gi2, SDCfull requires 7 matchmaking operations in average (5 for the
refinement and 2 for the additional Web services), while SDClight needs 15 in order to check
all Web services that are usable for gtRoot under the subsume degree. For goal instance
gi3, SDCfull needs 8 while SDClight requires 11 matchmaking operations, and we can explain
the differences for the other goal instances analogously. In the cases where the measured
average times are nearly identical, both engines expectably require the same number of
matchmaking operations (see goal instances gi8, gi9, gi10). A special case is goal instance
gi5 where SDClight is a little bit faster. Here, SDClight needs 5 matchmaking operations to
check all the Web services which are usable for gtUS2NA as the initially corresponding goal
template; SDCfull only needs 3 (1 for the refinement to iGT, and 2 for checking the usability
of the Web services Weasel and wsShipment8), but all these require the more expensive
matchmaking on the basis of an intersection goal template.

To conclude, this comparison test shows that the SDC technique achieves better perfor-
mance enhancements for Web service discovery than closely related optimization techniques.
The reason for this is the maximal reduction of the necessary matchmaking operations by
considering the most appropriate goal template for performing a discovery task. This be-
comes in particular evident when the matchmaking requires more complex reasoning tasks.
While in our comparison test a single matchmaking takes about 100 milliseconds, the usabil-
ity check of a Web service for a specific goal instance in the best-restaurant-search example
that we have discussed in Chapter 4 takes about 1.5 seconds. If we then save 3 matchmaking
operations by the refinement-method, we would save about 5 seconds for the discovery task.
We further observe that the actual improvement gain is dependent on the structure of the
SDC graph. When comparing the test results for the goal instances gi2, gi6, and gi7 with
those of gi3, gi8, and gi9, we see that the performance enhancement by the refinement-
method is higher if there are fewer direct children of the initially defined corresponding goal
template than Web services which are usable under the subsume or intersect.

6.2. Practical Relevance 207

6.2 Practical Relevance

After having shown our Web service discovery techniques expose a high retrieval accuracy
and that significant performance improvements can be achieved with the SDC technique,
the second part of the evaluation is concerned with the practical relevance of the developed
technology. For this, the following discusses if and to what extent this can improve the
quality of SOA technologies in real-world applications.

Our technology is designed to provide an efficient and scalable Web service discovery
component for Semantic Web service environments. It is based on a goal-driven approach,
and we have developed semantically enabled discovery techniques with a high retrieval accu-
racy along with a caching-based mechanism for enhancing the computational performance.
Naturally, there are application scenarios for which this appears to be desirable and wherein
substantial quality improvements can be achieved, but there might also be scenarios wherein
such technologies are dispensable or where only marginal improvements are achievable. In
consequence, there are two central questions for evaluating the practical relevance of our
Web service discovery technology:

1. when is the application of technology reasonable with respect to the goal-based ap-
proach and the need for efficient and highly accurate Web service discovery?

2. what is the expectable increase in the quality and performance of SOA technologies
when our technology is employed?

In order to properly answer these questions, the following examines the applicability of
our technology in real-world scenarios on the basis of a qualitative estimation model that
allows us to assess both the gainable improvements in the overall operational quality of the
SOA system as well as the performance increase that can be achieved by the SDC technique.
We first define the estimation model, and then inspect the applicability of our technology
within one of the largest actually deployed SOA systems that maintained by the US-based
telecommunication provider Verizon, and also for prominent use case scenarios that have
been investigated in the area of Semantic Web services.

6.2.1 Methodology

As the basis for the applicability study, the following specifies a model for judging the general
suitability of our technology as well as the qualitative improvements that can expectably be
gained for a specific application scenario. The aim is to provide a general estimation model
that allows users to decide on the applicability with minimal efforts.

208 Chapter 6. Evaluation

For this, we define the model to consist of two consecutive parts. The first one is a criteria
catalogue for determining the general suitability of our technology. This is defined in form
of a checklist which can be evaluated by inspecting the scenario structure and the purpose
of the target SOA system. The second part is a mathematical model for estimating the
performance increase that can be gained by the SDC technique, which allows users to decide
on whether our complete technology framework shall be employed or if a partial solution
might be sufficient. This requires a more detailed analysis of the application scenario, which
naturally is only necessary when the general applicability has been evaluated positively. The
following defines the estimation model in detail.

Criteria for General Applicability

We commence with the criteria for determining the overall suitability of our technology
for a given application scenario. Following the design of our framework, we define decision
criteria for (1) realizing the goal-driven approach for Semantic Web services, (2) the need
for efficient and highly accurate automated Web service discovery, and (3) the employment
of the SDC technique. We define the criteria so that users can evaluate them on the basis of
a high level analysis of the given application scenario. If most aspects appear to be relevant,
then the employment of our technology can be considered to be reasonable; if not, then the
discrepancies can be used to identify other technical solutions.

(1) Goal-based Approach. Our technology supports a goal-based approach for Se-
mantic Web services: clients specify the objective to be achieved in terms of a goal, and the
system solves this by automatically detecting and executing the necessary Web services.

A goal formally describes an objective that a client wants to solve by using Web services,
abstracting from technical details. Goals can be used in a SOA application to describe and
process both end-user requests as well as specific sub-tasks for which Web services shall be
employed. This enables (1) the lifting of the formulation of Web service usage request to
the level of the problems that shall be solved, and (2) enhancements in the flexibility of
the system because the actual Web services are determined dynamically at runtime (see
Section 2.2.1). To facilitate this, we have developed a conceptual model for describing
and using goals in SOA system. This distinguishes goal templates as generic and reusable
objective descriptions that are kept in the system and goal instances that describe concrete
client objectives by instantiating a goal template, and supports the automated invocation of
Web services via client interfaces that facilitate the automated invocation and consumption
of a Web service in order to actually solve a given goal (see Chapter 3).

6.2. Practical Relevance 209

This provides a conceptual model for SOA applications with sophisticated support for
the client side, in particular when SWS techniques shall be employed because our goal
model contains the necessary semantic descriptions. However, the realization of a real-world
application requires considerable effort in addition to the provision of the Web services. We
hence define the following decision criteria for the goal-based approach:

• support for problem-oriented Web service usage is desirable,

• the flexibility of the system with respect to changes on the existing Web services and
their technical availability is important,

• support for request formulation by the instantiation of goal templates is sufficient;

• otherwise, a different model for handling client requests is required.

(2) Web Service Discovery. The second building block of our technology is the two-
phase Web service discovery specified in Chapter 4. This separates design time discovery
as the detection of suitable Web services for goal templates, and runtime discovery as the
detection of the actually suitable Web services for a concrete goal instance. For this, we
define sufficiently rich functional descriptions of goals and Web services, and we provide
semantic matchmaking techniques that warrant a high retrieval accuracy for both phases.
The following criteria allow users to judge the necessity of such a discovery technology:

• automated Web service discovery is needed, either as a stand-alone facility or as part
of a comprehensive SWS system for automated goal solving;

• the target system requires high precision and recall for the discovery task in order to
ensure the desired operational quality.

(3) SDC Technique. The third component of our technology is the SDC technique,
the caching-based mechanism for enhancing the computational performance of Web service
discovery specified in Chapter 5. This creates a SDC graph which organizes goal templates
in a subsumption hierarchy and captures the results of design time discovery runs, and then
effectively uses this knowledge for optimizing the runtime discovery task as the time critical
operation by minimizing the necessary matchmaking efforts.

The need for optimized discovery techniques arises when the target system is expected
to deal with larger amounts of goals and Web services. The computational performance
becomes in particular relevant when advanced SWS techniques shall be used wherein an

210 Chapter 6. Evaluation

automated discovery engine is employed as a frequently used component. We have shown
that the SDC technique can achieve satisfactory improvements for this. However, the actual
performance gain is dependent on the structure of the specific application scenario. In
particular, the structure of the resulting SDC graph affects the achievable performance
increase: in the best case, the necessary goal templates and the available Web services can
be organized such that runtime discovery can be performed with minimal matchmaking
effort; in the worst case this is not given, so that no performance improvements can be
achieved. Besides, the SDC technique is especially designed for applications wherein larger
numbers of concrete client requests need to be processed while changes on the available
resources are rare, so that an efficient and stable runtime discovery facility can be provided
by creating the SDC graph is created once with seldom updates. The following criteria
allow users to decide on the employment of the SDC technique, for which we provide the
estimation model for the achievable performance increase below:

• optimized Web service discovery techniques appear to be desirable because

– a larger number of goals and Web services can be expected in the application

– the target system shall employ SWS techniques wherein automated Web service
discovery is a central and often performed operation

• large numbers of similar concrete client requests are expected

• a sufficient increase in the computational performance can be expected (see estimation
model below).

Estimation of Achievable Performance Increase

In order to provide a more sophisticated decision criterion for the application of the SDC
technique in a real world scenario, the following defines a mathematical model for estimating
the expectable performance increase for the runtime discovery task.

As discussed in Section 5.4.3, the achievable performance increase is dependent on the
topology of the SDC graph as the knowledge structure that is explored by our optimized
discovery techniques. This is created on the basis of the existing goal templates and the
usability of the available Web services, so that in fact the achievable performance increase
is dependent on the specific application scenario. With respect to this, a method for de-
termining if and to what extent the structure and relationship of the resources in a given
application scenario facilitate the creation of a SDC graph that ensures significant perfor-
mance improvements appears to be desirable for supporting the applicability decision.

6.2. Practical Relevance 211

For this, we provide a model for identifying the performance improvement that can be
achieved with the SDC technique for any application scenario. The aim is to provide an
indicator that is sufficiently meaningful and can be calculated with minimal efforts. Hence,
we define a mathematical formula for indicating the expectable performance increase rate
PIR as percentaged gain in comparison to a non-optimized discovery engine. The following
defines this in detail for a given SDC graph, and below we provide a simplified version for
estimating the expectable performance increase on the basis of approximated values.

Definition. The purpose of the performance increase rate PIR is to provide a simple but
meaningful indicator for the expectable effectiveness of the SDC technique for optimizing
Web service discovery in a given application scenario. We define this as the percentaged per-
formance increase that can be gained by the SDC-enabled runtime discoverer in comparison
to a naive engine that does not apply any optimization techniques.

The first element of the model is the similarity ratio Rsim that denotes to which extent
the resources in the application scenario are semantically similar. This provides a general
indicator for the achievable performance increase: the higher the similarity ratio, the more
goal templates and Web services are organized in the SDC graph subsumption hierarchy
which then can be effectively explored by the runtime discovery algorithms. We define Rsim

as the number of semantically similar goal templates in relation to the existing ones, i.e. the
quotient of goal templates that are organized in a connected subgraph of the SDC graph.
We do not have to consider the Web services here because they are allocated as leaf nodes
in the SDC graph. In order to use this as a weighting factor for overall performance increase
rate, we define the formula such that Rsim = 1 for the best case where all goal templates
and their usable Web services can be organized in a completely connected SDC graph, and
Rsim = 0 for the worst case where all goal templates are disjoint.

Rsim =
n∑

i=1

|Gsim(i)| − 1
|Gtotal| − 1

× 1
i

where i = subgraph (6.1)

The other elements are cost models for estimating the processing times for runtime
Web service discovery that can be expected from the SDC-enabled discoverer and from
the naive engine. Under consideration of the findings of the performance analysis above in
Section 6.1, we define this with respect to the number of necessary matchmaking operations
as the computationally most expensive part.

Formula 6.2 defines the cost model of the SDC-enabled engine for a given goal instance
GI(G, β) as the costs for the refinement-method plus those for checking the usability of the
potential candidate Web services. For the former, we need to traverse the SDC graph from

212 Chapter 6. Evaluation

the initially defined goal template G down to the most appropriate goal template G′. The
costs for this is the distance of G and G′ multiplied with half of the branching factor (the
maximal number of direct children in the goal graph), because every goal template on the
path G → . . . → G′ needs to be inspected and for each parent the children are inspected
in an unordered manner. If G is already the most appropriate goal template, then this
summand becomes null because distance(G,G) = 0. The second summand defines the costs
for discovering a single Web service as the quotient of the number of relevant candidates (i.e.
usable Web services for G′) and those that are actually usable for GI(G, β). Analogously,
Formula 6.3 defines the costs for discovering a single Web service with the naive engine as
the quotient of all Web services and those that are usable for the given goal instance. For the
discovery of all usable Web services both engines need to inspect all potential candidates,
so that the cost models define |usable(W,G′)|, respectively |W | instead of the quotients.

CostSDC =
(

distance(G,G′)× b(SDCGG)
2

)
+

|usable(W,G′)|
|usable(W,GI(G, β))| (6.2)

CostSDC =
|W |

|usable(W,GI(G, β))| (6.3)

We now integrate the elements into the overall formula for the performance increase rate
PIR. As shown in Formula 6.4, we define this as the reciprocal value of the percentaged
quotient of the cost models for the SDC-enabled engine and the naive engine multiplied
with the similarity ratio as the general weighting factor. This indicates the performance
increase that is effectively gainable by the SDC technique.

PIR = Rsim ×
(

100−
(

CostSDC

CostNaive
× 100

))
(6.4)

For illustration, let us exemplify the calculation and interpretation of the PIR for the
shipment scenario as defined in Section 6.1.2 above. Here, all 10 goal templates are seman-
tically similar, so that Rsim = 9

9 = 1. Let us consider goal instance gi6 for shipping a 60
kg package from Monterey (in California) to Berlin (in Germany). It defines gtUS2world as
the corresponding goal template while the most appropriate one is gtUS2EU, and there are
two usable Web services for gi6 (see Table 6.3). We can now estimate the costs for the SDC
engine as follows: distance(G,G′) = 1 because gtUS2EU is a direct child of gtUS2world,
b(SDCGG)

2 = 3 because gtUS2world has 6 direct children as the maximal branching factor,
and |usable(W,G′)|

|usable(W,GI(G,β))| = 4
2 = 2 because only two of the Web services usable for gtUS2EU are

actually usable for the goal instance. So, we obtain CostSDC = (1 × 3) + 2 = 5. When

6.2. Practical Relevance 213

we consider a search space of 10 available Web services, then CostNaive = 10
2 = 5 so that

PIR10 = 1 × (100 − (5
5 × 100)) = 0 %. This means that no performance increase can

be expected for this setting. However, if we consider 100 available Web services, we get
CostNaive = 100

2 = 50 and PIR100 = 1× (100− (5
50 × 100)) = 90 %, which indicates that a

significant performance increase can be achieved with the SDC technique, and also that an
optimization technique appears be desirable for this scenario.

Approximation. The above formulae require knowledge about the actual SDC graph for
the given application scenario. In order to support the estimation for application scenarios
where this is not given, we now define a calculation formula that allows users to work with
approximated knowledge on the available resources and the resulting SDC graph.

For this, we simplify the formulae for the similarity ratio as well as the cost models so
that they can be evaluated on the basis of an approximation of the expected SDC graph
and work with estimated values (denoted by ∼). For Rsim, we define the approximation to
merely consider the expected connectivity degree of the SDC graph while abstaining from
possibly existing subgraphs. We expect this to converge towards 1 for most applications
because usually the available Web services and thus the goals that can be solved by them are
mostly similar. The approximation formula for CostSDC merely considers the expected costs
for the refinement-method; as a generous approximation, we assume that half of the goal
graph needs to be traversed for finding the most appropriate goal template. We abandon
the costs for additional matchmaking because these details are presumably not known and
also only marginally influence the results. For the naive engine, we work with the expected
number of available Web services |W |∼ and the expected average number of Web services
that are usable for a goal instance in the application scenario. We then use formula 6.4 to
calculate the expectable performance increase rate PIR.

Rsim ≈ |Gsim|∼
|Gtotal|∼ (6.5)

CostSDC ≈ diam(SDCGG)∼

2
× b(SDCGG)∼

2
(6.6)

CostNaive ≈ |W |∼
µ(|usable(W,GI(G, β))|∼)

(6.7)

This allows users to evaluate the improvements that can be gained by the SDC technique
on the basis of an approximated outline of the application scenario without the need of
actually modeling the resources in detail. Similar models can be defined to estimate the
expectable improvements in comparison to other optimization techniques.

214 Chapter 6. Evaluation

6.2.2 The Verizon SOA System

We now examine the application of our technology for the SOA system maintained by the
US-based telecommunication provider Verzion. This contains around 1.500 Web services
that are used by over 650 client applications, and therewith represents on the worldwide
largest SOA systems that is actually deployed at this point in time. The following first
explains the system architecture and the applied SOA technologies, and then discusses the
applicability of our technology on the basis of the evaluation model presented above. All
information on the system provided here are non-confidential and have been approved for
research purposes by Verizon in person of chief scientist Dr. Michael Brodie.

Overview

Verizon is one of the major telecommunication providers in the USA (see www.verizon.

com). As an early adaptor of the SOA technology, Verizon uses Web services to provide,
maintain, and integrate basic functionalities among the IT applications used in local offices
and departments that are distributed over the country. The system has been in use since
2004 and is continuously extended with new Web services and functionalities.

Figure 6.9 below shows an overview of the Verizon SOA system. Its heart is the co-called
IT Workbench (short: ITW) which provides the central management facilities. This is a
web-based tool for registering Web services and client applications along with publication
support and a discovery facility. Currently, there are about 1.500 registered Web services
that provide basic facilities for product, customer, and sales management. These mostly
are simple request-response services, e.g. a getCustomerInfo Web service for retrieving
the data of a customer in a specific sales record. The Web services are used as the basic
building blocks within client applications. For example, the IT system of a local Verizon
service center uses the getCustomerInfo Web service instead of a proprietary implementa-
tion.. Currently, there are about 580 company internal and 70 external client applications
registered in the system. Technically, the Web service usage is realized by the conventional
technologies as described in Section 2.1.1: the Web services carry a WSDL description,
and the client applications invoke them via client-stubs over SOAP messages. This sys-
tem architecture complies with the idea of SOA as discussed in Section 2.1.2: the Web
services provide basic functionalities that are used by several client applications in order to
enhance the interoperability and reduce the maintenance costs of the IT systems in Verizon
as a larger enterprise that is distributed over several locations. The following information
indicates the size and the extensive usage of the Verizon SOA system.

www.verizon.com�
www.verizon.com�

6.2. Practical Relevance 215

Figure 6.9: Overview of Verizon SOA System

• Transactions (i.e. Web Service Invocations): 15 million per day

• Growth Rate (new Web Services): 23 per month

• Number of Web Service Providers: 68

• Service Developers: 5000+, Service Administrators: 798, Dashboard Users: 1600+

The most interesting aspect for our discussion is the Web service discovery technique
supported by the system. For this, the Web services are annotated on the basis of a 15
slot meta-data set that includes information about the owner, the technical access, usage
rights, and also about the functionality. The latter is based on the so-called Verizon Business
Taxonomy which consists of three categories: the business area as the relevant management
area, the service line as the Verizon product line, and the business object that identifies the
data item. Each category has a set of pre-defined values of which one or more can be used
to describe a Web service. Table 6.12 provides an overview of the categorization scheme
along with the number of associated Web services. We here work with a data set that
has been provided in November 2006 and contains 984 Web services. The total number of
7921 shown in the table indicates that most Web services are annotated with several of the
pre-defined values, which means that they can process e.g. several business objects.

These annotations provide relatively precise information about the offered functionality.
For example, the annotation of the getCustomerInfo Web service mentioned above with the
area Pre-Order & Sales Order Management for the service line Long Distance Services and
the business object Work Order means that it can provide the customer data of a specific

216 Chapter 6. Evaluation

Table 6.12: Web Service Descriptions in the Verizon SOA System

ordering for a long distance service. The publication interface in the ITW ensures that a
newly registered Web services is annotated with at least one value per category, so that the
relevant meta-data are existing in the system. On this basis, client application developers
can search for suitable Web services. Apart from a direct lookup for already known Web
services, the ITW provides a search functionality over the meta-data annotations.

This already provides Web service discovery support with respect to the provided func-
tionalities. Although using a keyword-based search technique, the business taxonomy ap-
pears to be sufficiently exhaustive in order to warrant relative precise search results. How-
ever, the clients need to inspect the discovered candidates manually in order to determine
their actual suitability for the intended usage, and also manually integrate the finally chosen
one into the client application. In our data set, the average number of Web services with
the same annotations – i.e. with the same values for all three categories – is 21 with a range
from 1 to 622. With respect to this, the main challenges reported by the management team
of the Verizon SOA system is a more precise discovery technique, and also a better solution
for handling changes in the available Web services. We shall examine in the following if and
to what extent our technology can help to accomplish this.

Applicability Study

We now discuss the potential quality improvements that could be achieved by applying
our technology to the Verizon SOA system. Considering the criteria catalogue specified in
above Section 6.2.1, the goal-based approach appears to be suitable in order to enhance
the flexibility of the system with respect to the constantly growing and changing resources.
Also, a semantically enabled Web service discovery technique appears to be desirable for

6.2. Practical Relevance 217

enhancing the support for detecting the suitable Web services for a client application. Hence,
in general the deployment of our technology appears to be reasonable. The following first
illustrates the modeling as well as the adopted system design in accordance to our technology
framework, and discusses the suitability of the SDC technique.

Modeling and Usage. The basis for applying our technology are the semantic de-
scriptions of the goals and Web services. In particular, we require the formal functional
descriptions as specified in Section 4.2 that precisely describe the provided and requested
functionalities. The following exemplifies this for one of the existing Web services and an
imaginary usage request from a client application.

We require sufficiently exhaustive domain ontology in order to properly specify the func-
tional descriptions. For this, let us define the Verizon Business Ontology that essentially
follows the already existing business taxonomy outlined above. This defines the three cat-
egories area, line, and object as top-level concepts along with the predefined values as
sub-concepts which further describe the respective entity. We assume that every business
object is associated with a specific management area and a particular service line. Let this
be expressed by the relations inArea(object, area) and the axiom ∀?o, ?a1, ?a2. object(?o)∧
inArea(?o, ?a1) ⇒ ¬inArea(?o, ?a2), and the relation forLine(object, line) along with
∀?o, ?l1, ?l2. object(?o)∧forLine(?o, ?l1) ⇒ ¬forLine(?o, ?l2). We further define a function
operation(?item) along with three sub-functions get(?item), create(?item), delete(?item)
for describing the basic management operations on data items.

We consider the existing Web service GetCustomerInfoByBTN that retrieves customer
information for the Long Distance Services line, supports three of the business areas, and
accepts four different business objects as input. Let us assume a client application that
requires this (or a similar) functionality for processing work order items. In our approach,
this is described in terms of a goal. More precisely, we define a goal template GetDataItem

for getting the desired data item, and the individual usage requests are described as goal
instances which instantiate this goal template. Table 6.13 shows the functional descriptions
for the goal template and for the Web service. Both use the Verizon Business Ontology

outlined above as the background ontology, and define four input variables IN : ?x denotes
the requested, respectively the provided output item; the others denote the input object ?o
with the associated business area ?a and the service line ?l. The preconditions φpre specify
the restrictions on the inputs: the goal template supports all business objects for all areas
and all service lines, while the Web service is restricted to four business object types and
three business areas. The effects φeff state that the get(?item)-operation shall, respectively
will be executed with respect to the business object provided as input.

218 Chapter 6. Evaluation

Table 6.13: Functional Descriptions for Verizon SOA System
Goal Template GetDataItem Web Service GetCustomerInfoByBTN

Ω: Verizon Business Ontology
IN : {?x,?o,?a,?l}
φpre: item(?x)∧

object(?o)∧
inArea(?o, ?a) ∧ area(?a)∧
forLine(?o, ?l) ∧ line(?l).

φeff : get(?x) ∧ forObject(?x, ?o).

Ω: Verizon Business Ontology
IN : {?x,?o,?a,?l}
φpre: customer(?x)∧

object(?o) ∧ (LSR(?o) ∨OSR(?o)
∨OSt(?o) ∨WO(?o))∧

inArea(?o, ?a) ∧ area(?a)∧
(PS(?a) ∨ PPI(?a) ∨ PFW (?a))∧

forLine(?o, ?l) ∧ LDS(?l).
φeff : get(?x) ∧ forObject(?x, ?o).

In the client applications, the concrete invocation requests are then formulated in terms
of goal instances. For example, let us assume a request for the customer data of the
work order item wo123. The goal instance specify GetDataItem as the corresponding goal
template, and define the input binding β = {?x|customer, ?o = wo123, ?a = PS, ?l =
LDS}. Our semantic matchmaking techniques will determine that the Web service is usable
for this goal instance. However, if the requested output item would be the person in charge
for the work order item, then GetCustomerInfoByBTN will be determined to not be usable.
The reason is that here the Web service only partially covers the functionality requested by
GetDataItem, which refers to the subsume match in our terminology. Under this usability
degree, additional matchmaking is necessary in order to determine the functional suitability
of a Web service for a specific goal instance (see Section 4.3.2).1

The analyzed data set contains 57 Web services with the descriptions area = PS, line =
LDS, and object = WO. This would be the search result of the ITW discovery. Then, the
client application developer then needs to inspect the Web services manually, and finally
integrate the chosen one into the application. In contrast, our discovery techniques provide
a significantly higher retrieval accuracy because they can determine the actually usable
Web services for each individual invocation request. The main reason is that our functional

1We use the following abbreviations with respect to the readability (cf. Table 6.12):

• Business Areas: Pre-Order & Sales Order Management (PS), Product, Pricing, Inventory
Management (PPI), Provisioning, Field Fulfillment, Workforce Management (PFW)

• Services Lines: Long Distance Services (LDS)

• Business Objects: Customer Service Record (CSP), Order or Service Request (OSR), Order
Status (OSt), Work Order (WO).

6.2. Practical Relevance 219

descriptions are more precise than the 3-dimensional keyword-based annotations; the nec-
essary domain ontology for this can be easily defined on the basis of the already existing
business taxonomy. Also, changes on the available Web services can be handled smoothly
with our 2-phase discovery model because new or modified Web services need to be inspected
once at design time and then are properly integrated into the system for the successive run-
time discovery operations. Moreover, the goal-based approach allows to dynamically select
one of the usable candidates at runtime: e.g. if the GetCustomerInfoByBTN Web services is
not available due to some technical problem, then a different one from the discovery result
for the goal instance can be used. This ensures a much higher flexibility of the system in
comparison to the currently hard-wired invocation of the target Web services out of the
client applications. This shows that our technology can be considered as an appropriate
solution for addressing the main challenges reported for the Verizon SOA system.

Applying the SDC Technique. We now investigate whether the employment of the
SDC technique appears to be necessary and suitable in order to improve computational
performance of the automated discovery process. The basic criteria for this are given because
we can expect very many similar goal instances that need to be solved while only a relatively
small number of changes need to be handled (see the reported numbers above). Thus, the
main question is whether the existing Web services and the necessary goal templates allow
the creation of a SDC graph upon which a substantial performance increase can be achieved.

For this, let us consider the expectable structure of the SDC graph for the Verizon SOA
system. The vast majority of the Web services in the analyzed data set is concerned with
data management, i.e. the retrieval, creation, deletion, or modification of some data item
analog to the GetCustomerInfoByBTN Web service discussed above. We thus concentrate
on these kind of functionalities. Let us assume that all relevant goal templates for data
item management in the Verizon SOA system are modeled analogously to the one shown
in Table 6.13. We can generate the additional goal templates by exploring the taxonomic
structure of the Verizon Business Ontology as explained in Section 5.3.4. This results
in the balanced structure of the SDC graph as illustrated in Figure 6.10: the root node is
the most generic goal template for all data management operations on any item ?x for any
business object ?o in any area ?a and for any service line ?l. On the next level, we find the
goal templates that specify the specific operation that shall be perform on the data item
?x. The subsequent levels define restrictions on the allowed input values: on level 2, we
find goal templates that are restricted to one of the 6 business areas, the ones on level 3 are
further restricted to one of the 15 service lines, and finally on level 4 all inputs are restricted
to a specific sub-category.

220 Chapter 6. Evaluation

Figure 6.10: Structure of SDC Graph for Verizon SOA System

Regarding the usability of the Web services, the analyzed data set contains about 900
Web services for data management. Expectably, a third of these will be usable for each
of the goal templates on level 1 which define the basic data item management operations.
The number of usable Web services decreases significantly on the subsequent levels of the
SDC graph due to the more specialized restrictions. As the average number of get() Web
services with the same annotations in the data set, let us assume that there are in average
15 Web services usable for each of the most specialized goal templates on level 4. Out of
these, let in average 3 be usable for a specific goal instance which also defines the type of
the requested output ?x. This corresponds to the average number of getCustomer() Web
services with the same annotations in the given data set.

We now can estimate the achievable performance increase rate PIR as defined above in
Section 6.2.1. The similarity ration for data management operations is 1 because all goal
templates and Web services are organized in a connected SDC graph. Let us assume that
each goal instance for data management instantiates one of the goal templates from level
1. The most appropriate goal template that would be used by our optimized discovery
algorithms will always be allocated on level 4. We then can estimate the processing costs
for runtime discovery as follows: we always need to traverse the SDC graph from level
1 to level 4 so that distance(G,G′) = 3. The children at each level are inspected in a
unordered manner, so that we can estimate 3 operations to get from level 1 to level 2, then
7.5 for the next level, and 6.5 for finding G′ on level 4. Then, we have to examine the 15

6.2. Practical Relevance 221

candidate Web services with a success chance of 3/15, which in average requires another
5 operations to find a usable Web service for the given goal instance. So CostSDC =
3 + 3 + 7.5 + 6.5 + 5 = 25. A naive engine that subsequently investigates all necessary Web
services needs in average 300 matchmaking operations (i.e. the 900 available ones divided
by 3 as the number of expectably usable ones). Thus, we can expect a performance increase
of 1× (

100− (
25
300 × 100

))
> 90 % by applying the SDC technique.

This indicates that an optimized technique appears to be necessary when applying
automated Web service discovery within the Verizon SOA system. Also, the expectable
performance increase appears to be adequate in order to warrant an efficient and scalable
runtime discovery. A problem for the actual deployment could be the relatively high number
of matchmaking operations for determining the most appropriate goal template in the rel-
atively large SDC graph. However, this could be overcome by integrating the semantically
enabled discovery engine with the already existing search facilities. Instead of detecting the
most appropriate goal template by the refinement-method as specified in our technology,
we could use the ITW search facility for this. This would allow us to reduce the necessary
matchmaking operations to 5 for detecting an actually usable Web services. Under the as-
sumption that a single matchmaking operation takes about 100 milliseconds as within the
performance tests discussed in Section 6.1, the average time for a runtime discovery task
would be 0.5 seconds. This appears to be sufficiently fast for a real-world application with
respect to the high retrieval accuracy of our discovery techniques.

6.2.3 Other Application Areas

After having outlined the beneficial employment within an existing real-world SOA applica-
tion, we now examine further scenarios in order to provide a more comprehensive evaluation
of the practical relevance of our technology. For this, we inspect a selection of applications
that have been investigated as use case scenarios in research efforts around Semantic Web
services. We first examine scenarios wherein our technology can expectably achieve sub-
stantial improvements, and then discuss scenarios for which this can not be expected.

Promising Scenarios

We commence with scenarios where significant improvements can be expected from applying
our technology. With respect to our criteria catalogue, the common characteristics of such
applications are that a high flexibility of the target system is desirable due to the dynami-
cally changing environment, and that automated Web service discovery shall be employed
as a heavily used facility for handling larger numbers of goals and Web services.

222 Chapter 6. Evaluation

The Travel Scenario. One of the most prominent use case scenarios for demonstration
SWS technologies is the travel scenario which we already discussed as the running example
in Chapter 3. This is concerned with searching and booking items related to traveling such
as flights, hotels, train tickets, etc, and appears to be a promising application scenario for
our technology because several offers and requests can be expected.

Let us examine the scenario setting and the handling within our technology framework
in more detail. The market for travel and tourism is one of the largest lines of industry
throughout the world with very many service providers and customers, and it is highly
automated in both the inter-business (B2B) and the business-to-consumer part (B2C). In
general, we can distinguish two types of offers and requests in the travel domain: basic ones
that are concerned with a single item such as a flight ticket for a specific journey, and more
complex ones that deal with packages of several items, e.g. an all-inclusive holiday tour.
This distinction will naturally be reflected in Web services for the travel domain, so we can
expect to find basic Web services e.g. for searching and booking flight tickets with a specific
airlines, and complex Web services that offer multi-item travel packages

In our technology framework, the goals and Web services for basic and complex func-
tionalities are handled by different conceptual entities. For the former, the goal templates
as well as the Web services have a formal functional description which is sufficient for the
purpose of automated discovery. For the latter, the resources are specified as aggregations
of basic functionalities. An example for this is the ”Virtual Travel Agency“ Web service
defined in [Stollberg and Lara, 2004] that provides complex travel offers by dynamically
aggregating basic services from other providers. In order to warrant its flexibility for spe-
cific requests and also with respect to the constantly changing offers, it is realized as an
orchestration of goals for basic travel services. Analogously, one can define composite goals
in order to describe complex objectives as a collection of other goal templates along with a
desired workflow (see Section 3.2.3).

In order to solve a goal instance for such a composite goal – respectively to execute
a Web service that is dynamically composed of other Web services – we need to perform
runtime discovery for each of the subgoals. This means that the efficiency of the discovery
technique becomes even more important than in the previous examples because it needs
to be performed multiple times. Effectively, the overall time required for the discovery of
the actual Web services is the sum of the runtime discovery times for every invocation of
each subgoal. Because every composite goal eventually is an aggregation of basic goals, it
appears to be sufficient to create a SDC graph that considers the basic goal templates and
Web services: if we can sufficiently optimize the runtime discovery task on the level of basic
goals, then we will gain the summative performance increase of the composite goal.

6.2. Practical Relevance 223

Figure 6.11: SDC Graph for Travel Scenario

For illustration, let us recall the example for a composite goal that we have outlined
discussed in Section 3.2.3. This requests to book a flight and a hotel for some trip, and is
aggregated of four subgoals: (1) a suitable flight shall be found at first, and then (2) a hotel
for the actual duration of the stay shall be found; next, (3) the flight shall be booked, and
finally (4) the hotel shall be reserved. Here, we need to perform runtime discovery at least
four times in order to find the actual Web services for solving a concrete goal instance.

To estimate the performance increase by applying the SDC technique, let us assume
that the necessary basic goal templates can be organized in a SDC graph as outlined in
Figure 6.11 above. The goals for searching and booking are organized in two separated
subgraphs because they are functionally disjoint. As the usable Web services, let us consider
the numbers of publicly available ones that are found ny the SeekDa search engine (see
http://seekda.com/): these are 95 for the keyword ”flight“, and 116 for the keyword
”hotel“. Let us assume that 10 of these are usable for each of the subgoals out of which 5
are usable for the inputs defined in the goal instance. On this basis we can estimate:

• for subgoal (1), the SDC runtime discoverer needs to traverse the SDC graph from
searchFlight to one of its lowest children and then inspect the 10 potential can-
didates. Here, distance(G,G′) = 2, b(SDCGG)/2 = 1.5, and the success chance is
10/5 = 2 so that CostSDC (1) = 5.5. Analogously, we get CostSDC (2) = 1 + 1.5 + 2 =
4.5, CostSDC (3) = 2 + 1 + 2 = 5, and CostSDC (4) = 1 + 2 = 3. As the total time for
finding all necessary Web services, we get CostSDC = 5.5 + 4.5 + 5 + 3 = 18;

• the naive engine always needs to subsequently inspect all available Web services until
it finds one of the 5 usable ones. So, CostNaive = (95 + 116 + 95 + 116)/5 = 84.4;

• we obtain PIR = 16
16 ×

(
100− (

18
84.4 × 100

))
= 78.67 %.

http://seekda.com/�

224 Chapter 6. Evaluation

This example shows that already for a composite goal with a relatively small number of
subgoals and usable Web services a not optimized discovery technique exposes an inadequate
performance while the SDC technique ensures acceptable processing times. The same need
for efficient and scalable discovery component naturally arises for Web service discovery
techniques where – analog to the example – the suitable composition candidates need to
be determined at each iteration of the composition algorithm [Bertoli et al., 2007]. We
can identify several scenarios with a comparable structure and application purpose, so that
similar improvements can be expected from applying our technology. The following lists
some of them which have served as demonstration use cases in research projects.

Wholesaler Supply Chain Management. In a case study for the wholesaler of
British Telecom (BT) the basic telecommunication services of about 150 trading partners
have been integrated [Duke et al., 2005]. The wholesaler selects the most appropriate offer
from the trading partners, and also aggregates them into service bundles for a specific
customer demand. For this, the customer requests can be modeled as composite goals that
consist of several subgoals for basic services. Due to the analogy with the travel scenario
and because the trading partners usually provide several services, we can expect a similar
performance increase when applying the SDC technique as in the above example.

E-Banking Services. Another prosperous application area are advanced services for
e-banking. Examples for this are the mortgage comparison service and the stock market
client developed within the DIP project [López-Cobo et al., 2007]. The system integrates
offers from several financial service providers, which are then selected and aggregated with
respect to specific client requests. Also here we can expect similar benefits as in the above
example because the offers of several providers need to be matched with the end-user goals.

Business Process Management. An important application area for SOA technology
is Business Process Management (BPM). The idea of semantic BPM is to enhance existing
technologies on the basis of ontologies [Hepp et al., 2005]. In particular, the hard-wired
invocation of Web services in the distinct activities in a business process as supported by
BPEL shall be replaced by a goal-based technique in order to overcome the deficiencies
in flexibility and interoperability. For this, the execution of a business process requires
runtime Web service discovery, analogously to the solving of composite goals discussed
above. The SUPER project (see www.ip-super.org) investigates large scale use cases
from major European telecommunication providers whose size and setting is similar to the
one of the Verizon system discussed above. Thus, we can expect substantial performance
improvements when applying our optimized discovery techniques.

www.ip-super.org�

6.2. Practical Relevance 225

Scenarios where Efficient Discovery is Dispensable

We complete the applicability study with discussing scenarios where the employment of our
technology appears to be not necessary. Essentially, this is given when most of the criteria
of our applicability catalogue as defined in Section 6.2.1 to not apply, respectively when
they are evaluated negatively. In particular, (1) the goal-based approach and automated
Web service discovery techniques are not required in scenarios where only known Web
services shall be used directly within the client applications, and (2) the employment of the
SDC technique for optimizing the discovery task is unnecessary in applications that merely
deal with a relatively small number of goals and Web services, because then only marginal
improvements in the computational performance can be expected.

An example for this is the collection of e-commerce Web services that are provided by
Amazon. These provide generic facilities for product, customer, shopping cart, and billing
management on the basis of Amazon’s own e-commerce technology, with the intention of
providing off-the-shelf solutions for the development of other online shops. Although several
applications have successfully utilized the Amazon Web services since the initiative com-
menced in 2005 [Shanahan, 2007], currently the employment of automated and optimized
Web service discovery techniques appears to be superfluous. The reason is that – at the
time of writing – Amazon is the sole sole provider of such advanced e-commerce solutions
in form of Web services, and also that the current number of available Web services is rel-
atively small (11 in March 2008). However, this situation will certainly change when other
providers enter the market with competitive Web services.

To conclude, we have shown that the technology developed in this work can achieve signif-
icant improvements for the quality of existing SOA systems with respect to the retrieval
accuracy and the computational performance of automated Web service discovery. We have
discussed several scenarios where our optimized discovery techniques are beneficially appli-
cable, in particular when larger numbers of goals and Web services need to be handled in
dynamically changing environments. On the other hand, there are also application scenarios
where automated and optimized discovery techniques are not needed, which mainly results
from the fact that the current systems merely deal with relatively small numbers of Web
services. However, this situation will expectably change when the applications grow to a
larger scale in terms of the involved providers and clients.

Chapter 7

Conclusions

This chapter concludes the thesis. The aim of the work has been to develop an efficient
and scalable technique for automated Web service discovery as a central and time critical
operation within Semantic Web service environments. For this, we have defined a conceptual
model for problem-oriented and flexible Web service usage on the basis of goals that formally
describe client objectives. We have specified semantically enabled Web service discovery
techniques that expose a high retrieval accuracy, and extended this with a caching-based
optimization technique for enhancing the computational performance of automated Web
service discovery. The techniques have been implemented as components in the open source
software developed around the WSMO framework, and we have shown that significant
improvements for several real-world SOA applications can be achieved.

The following summarizes the central findings of the thesis and depicts the scientific
contributions. Finally, we conclude the work with general remarks on the potential of
Semantic Web service technology as well as on the challenges for future developments.

7.1 Summary

In order to provide a concise overview of the thesis, the following recapitulates the line
of argument and depicts the central aspects of the developed technology in a condensed
manner. We already have discussed related works in detail within the preceding chapters,
so that here we can concentrate on the solutions elaborated in this work.

As the general research context, in Chapter 2 we have examined Web services and
Service-Oriented Architectures (SOA) as a novel design paradigm for IT systems. A Web
service supports the invocation of a program over the Internet. The idea of SOA is to

226

7.1. Summary 227

use Web services as the basic building blocks within IT systems instead of proprietary
solutions. The aim is to exploit the Internet as an infrastructure for computation, to reduce
the development and maintenance costs by exhaustive re-use of existing implementations,
and also to better integrate data and processes within and in between organizations on the
basis of a generic and standardized technology. Although the initial Web service technologies
around WSDL, SOAP, and UDDI support the technical realization of this vision, they limit
the detection of suitable Web services to manual inspection and merely support Web service
usage in form of hard-wired invocations. The emerging concept of Semantic Web services
(SWS) aims at overcoming these deficiencies by developing inference-based techniques for
the automated discovery, composition, mediation, and execution of Web services.

The specific research problem addressed in this work is the retrieval accuracy and com-
putational performance of automated Web service discovery. This is concerned with the
detection of the suitable Web services for a given request, and is commonly performed as
the first processing step in SWS environments. Thus, discovery appears to be the bottleneck
for scalability of SWS systems because it needs to inspect all potential candidates, which
becomes in particular important for larger search spaces that can be expected in real-world
applications. With respect to this, an automated discovery engine should (1) expose a high
retrieval accuracy for the detection of suitable Web services, and (2) perform the discovery
task in an efficient and scalable manner in order to serve as a reliable component within
SWS environments. We further have argued that a goal-based approach appears to be suit-
able to better support the Web service usage by clients in a SOA system. Therein, clients
describe the objective to be achieved as a goal that abstracts from technical details, and
the SWS system then detects and executes the necessary Web services for solving this.

This thesis has presented a conceptual model and a technical solution for this challenge,
with the aim of advancing the state-of-the-art in SWS technology developments. For this,
the work consists of the following parts that we shall summarize below:

1. a model for describing and handling goals as formalized client requests in order to
facilitate problem-oriented and flexible Web service usage (Chapter 3)

2. semantically enabled Web service discovery techniques that distinguish design time
and runtime operations and ensure a high retrieval accuracy (Chapter 4)

3. the Semantic Discovery Caching technique as a caching-based mechanism for enhanc-
ing the computational performance of automated Web service discovery (Chapter 5)

4. a comprehensive evaluation that assesses the achievable improvements as well as the
practical relevance of the developed technologies (Chapter 6).

228 Chapter 7. Conclusions

Goal Model for Semantic Web Services

We have defined a conceptual model for describing and handling goals as formalized client
objectives within SWS systems. This extends and refines the initial goal model that has
been defined in the WSMO framework, and integrates several solutions that have been
developed in related research and development efforts.

The purpose of the goal-based approach is to enable problem-oriented Web service usage
in SOA systems, so that clients can focus on the problem to be solved while the technical
details are mostly handled by the system. Also, the flexibility of the system for handling
changes in the environment can be increased because the actual Web services for a concrete
client request can be detected dynamically at runtime.

To facilitate this, we have defined our goal model to consist of two central aspects. We
(1) explicitly distinguish goal templates as generic and reusable objective descriptions that
are kept in the system, and goal instances that describe specific client requests and are
defined by instantiating a goal template with concrete inputs. To support the automated
consumption of Web services for solving a goal, we (2) introduce the notion of client inter-
faces that specify a compatible behavior for the one supported by the Web service. This is
defined on the level of goal templates, and the inputs defined in a goal instance are used
to actually invoke the Web service at runtime. We further have defined the goal model to
be extensible, e.g. by the definition of composite goals for describing more complex client
objectives or the specification of non-functional client requirements in a goal.

This model follows the principles of previous approaches for goal-based technologies
developed in several AI disciplines. It adheres to the design of the initial WSMO goal
model, which however appears to be not sufficiently elaborated to adequately realize goal-
driven SWS technologies. To overcome its deficiencies, we have integrated and refined the
conceptual and technical solutions that have been developed in related efforts, particularly
in the context of the IRS and the WSMX systems. We have proposed possible extensions
for the WSMO specification languages on the conceptual level, and we have shown that
existing technologies can be used to work with the refined goal model. Summarizing, the
contributions to the realization of the goal-based approach for SWS technologies are:

• the explicit distinction of goal templates and goal instances that facilitates the devel-
oped of workable, efficient, and user-friendly SWS techniques

• the concept of client interfaces that enables the automated invocation and consump-
tion of Web services for solving a goal

• the extensibility of the goal model for additional goal types and description elements.

7.1. Summary 229

Two-Phase Web Service Discovery

In this work, we consider Web service discovery as the first processing step that detects
suitable Web services for solving a goal with respect to the requested and the provided
functionality. The actual usability of the discovered candidates is then further inspected in
subsequent processing steps that consider non-functional and behavioral aspects.

In accordance to our goal model, we separate the discovery task into two phases: the
suitable Web services for goal templates are discovered at design time, and the actual
Web services for a goal instance are determined at runtime. We have specified semantic
matchmaking techniques that work on sufficiently rich functional descriptions in order to
ensure a high precision and recall for functional discovery in both phases.

We have formally defined functional descriptions for precisely describing the provided
and requested functionalities with respect to the possible executions of a Web service,
respectively the solutions for a goal. For this, we have defined a 3-layered abstraction model.
The lowest level considers Web service executions as finite sequences of states that can be
observed in the world, and the second level abstracts this to merely consider the start- and
end-states. Upon this, we have defined the formal meaning of functional descriptions that
formally describe the overall provided and requested functionalities in terms of preconditions
and effects, following the standard approach in formal software specification. As the highest
abstraction level, we have defined a representation of functional descriptions as a first-order
logic structure that allows us to consider the requested and provided functionalities in terms
of classical model-theoretic semantics.

On this basis, we have specified the semantic matchmaking techniques for the two-
phased discovery approach. For design time discovery, the four matching degrees exact,
plugin, subsume, and intersect that distinguish different situations when a Web service is
functionally usable for solving a goal template, while the disjoint degree denotes that this is
not given. A goal instance is required to be a valid instantiation of a goal template, which
is given if the functional description is satisfiable under the concrete input values. Then,
the solutions for a goal instance are a subset of those for the corresponding goal template.
Thus, only those Web services that are usable for the goal template are potential candidates
for the goal instance, and we further can use the design time discovery results to minimize
the reasoning effort for the runtime discovery task. We have shown that our techniques can
achieve a high retrieval accuracy for both the design- and the runtime discovery task.

We use classical first-order-logic (FOL) as the specification language for functional de-
scriptions, and we employ the automated theorem prover vampire to implement the match-
making techniques in form of proof obligations. The motivation for this is to address the

230 Chapter 7. Conclusions

challenge of Web service discovery on a general level, i.e. to specify the relevant descriptions
and matchmaking techniques within a sufficiently expressive language and later on define
restrictions on the modeling in order to ensure desirable computational properties. FOL
appears to be an adequate choice for this, because it provides a high expressivity and serves
as a logical umbrella for most ontology languages. We have discussed the limitations of this
approach, in particular with respect to computational complexity of FOL specifications.

The generic design of our discovery techniques allows the adaptation to other SWS
framework, in particular to the ones that use the ontology languages currently recommended
for the Semantic Web. To summarize, the contributions of this work for the challenge of
automated Web service discovery by semantic matchmaking are:

• the explicit separation of design time and runtime operations that enables efficient
and scalable Web service discovery

• the definition of sufficiently expressive functional descriptions to precisely describe
Web services and goals with respect to their possible executions and solutions

• the support for functional Web service discovery on the level of goal instances

• semantic matchmaking techniques with a high retrieval accuracy for both phases.

The SDC Technique

The Semantic Discovery Caching technique (short: SDC) is a novel approach for enhancing
the computational performance of automated Web service discovery, in particular for the
runtime discovery tasks as the time critical operation in our two-phased approach. For this,
we capture the results of runtime discovery runs and effectively utilize this knowledge to
optimize the runtime discovery task. This adopts the principle of semantic caching as a
successful optimization technique to the context of automated Web service discovery.

The heart of the technique is the SDC graph, a directed acyclic graph that provides
an efficient search index for goal templates and Web services. Its inner layer is the goal
graph that organizes the existing goal templates in subsumption hierarchies with respect
to the semantic similarity of the requested functionalities. We consider goal templates to
be similar if they have at least one common solution, because then mostly the same Web
services are usable for them. The outer layer is the discovery cache that captures the design
time discovery results by the minimal set of arcs that are necessary to determine the precise
usability degree of every available Web service for each existing goal template.

7.1. Summary 231

The SDC graph is a formally defined knowledge structure, and for a given set of goals
and Web services there is only one possible graph that properly presents the relevant rela-
tionships. The logical basis for exploiting SDC graphs are inference rules between similar
goal templates and their usable Web services which result from the formal framework. SDC
graphs are created automatically on the basis of semantic matchmaking, and we have de-
fined the necessary management algorithms to ensure that its properties are maintained
in all possibly occurring situations when a goal template or a Web service is added, re-
moved, or modified. Our prototype implementation keeps SDC graphs in form of a WSML
knowledge base, so that it also available as an index structure of the existing goal templates
and the available Web services for other SWS techniques. As an example for this, we have
presented the prototype of a goal-based browser that allows clients to inspect Web service
on the level of the goals that can be solved by them.

The time critical operation in our framework is runtime Web service discovery. This
needs to be performed for every goal instance in order to assure the flexibility of the system,
and it should be carried out in an efficient and reliable manner in order to warrant an ade-
quate processing of concrete client requests. For this, we have defined optimized algorithms
for discovering a single Web services as well as for detecting all usable Web services for a
given goal instance. These exploit the knowledge captured in the SDC graph in order to
minimize the relevant search space and the number of necessary matchmaking operations.
This allows us to reduce the computational costs for runtime discovery, and also to warrant
the operational reliability also within larger search spaces because only the minimal set
of relevant candidates needs to be inspected. The optimization strategy has been chosen
with respect to the known performance deficiencies of reasoning techniques, and within the
evaluation we have shown that a significant increase in the computational performance can
be achieved in real-world scenarios (see below). Summarizing, the SDC technique is:

• a new approach for the performance optimization of automated Web service discovery

• the SDC graph as the underlying knowledge structure properly organizes the existing
goal templates and their usable Web services in all possible situations

• the SDC graph can be generated and maintained automatically, and it provides a
general purpose index structure that also can be used for other SWS techniques

• the optimization for runtime discovery is achieved by minimizing the relevant search
space and the necessary matchmaking operations

• the high retrieval accuracy of our semantic matchmaking techniques is maintained.

232 Chapter 7. Conclusions

Evaluation

The purpose of the evaluation has been to assess if and to what extent the developed tech-
nology accomplishes the research aim of developing an efficient and scalable Web service
discovery technique with a high retrieval accuracy. For this, we have conducted an ex-
haustive performance analysis which covers all relevant aspects, and we have examined the
applicability of out technology to existing real-world SOA applications.

For the former, we have in detail examined the functional correctness and the computa-
tional performance for all relevant aspects of our technology within the shipment scenario as
defined in the Semantic Web Service Challenge, a widely recognized initiative for the demon-
stration and comparison of SWS technologies based on real-world services. This shows that
our prototype implementation can create and properly maintain functionally correct SDC
graphs, i.e. the design time discovery results precisely correspond to the expected accuracy,
and the resulting SDC graph properly arranges the goal templates and their usable Web
services. The creation of the complete SDC graph for the shipment scenario takes about 1
minute, while the update operations are in average performed within 5 seconds.

For the runtime discovery task, the comparison with a naive engine has revealed that
optimization is necessary to warrant an adequate processing of concrete client requests, and
that the SDC technique can achieve significant improvements in the efficiency, scalability,
and stability. It performs the runtime discovery task in average times of 0.5 seconds, in-
dependent of the search space size and with a minimal variation over several invocations.
The processing times of the naive engine raise proportionally with the number of available
Web services to a couple of minutes, which appears to be unacceptable for real-world ap-
plications. We also have shown that the SDC-enabled engine exposes a better performance
than a slightly reduced version that does not thoroughly exploit the SDC graph.

To assess the practical relevance of this work, we have examined the applicability of our
technology in the Verizon SOA system wherein 1.500 Web services are used by over 650
client applications. We have outlined how the goal-based approach can considerably enhance
the flexibility by replacing the hard-wired invocation of Web services, and explained how
our semantic matchmaking techniques can significantly increase the retrieval accuracy for
Web service discovery in comparison to the currently used keyword-based technique. Also,
the size of the system requires optimized discovery techniques, and significant performance
improvements can be expected from employing the SDC technique. Similar improvements
can be expected in other application scenarios where larger numbers of goals and Web
services need to be handled. Therewith, the evaluation has shown that the research aims
of this thesis have been accomplished successfully because:

7.2. Discussion and Outlook 233

• our goal-model adequately facilitates problem-oriented Web service usage in SOA
applications and can enhance the flexibility of the system

• the two-phase Web service discovery and our semantic matchmaking techniques en-
sure a high retrieval accuracy for automated discovery at both design- and runtime

• the SDC technique can achieve significant improvements in efficiency, scalability, and
stability of automated Web service discovery

• the techniques developed in this work appear to be beneficially applicable for all
scenarios where automated discovery is a frequently performed operation and a larger
number of goals and Web services can be expected.

7.2 Discussion and Outlook

We conclude the thesis with general remarks on the status and future predictions for the
development and the practical applicability of semantically enhanced SOA technologies. In
particular, we discuss the challenge of obtaining the necessary semantic annotations, the
general problem of the applicability of comprehensive SWS technologies, and the require-
ments that arise for a large scale adaptation in industry. Although a detailed investigation
exceeds the scope of this work, these aspects appear to be relevant in order to properly
judge the potential of technologies like the one developed in this work.

The pre-requisite for the operational reliability of SWS techniques is the existence of
exhaustive and correct semantic descriptions of the available Web services and of all other
relevant resources. Most of the techniques developed so far focus on new functionalities and
the achievable benefits under the assumption that the necessary resource descriptions are
given. However, this appears to not be the case, in particular when SWS techniques shall
be employed within existing systems. For example, the comprehensive application of our
Web service discovery techniques within the Verizon SOA system would require to correctly
describe all existing Web service on the basis of an exhaustive domain ontology which needs
to be developed. Thus, techniques for the semantic annotation of legacy system appear to be
essential in order to assure the applicability of SWS technologies in real-world settings. This
challenge as only received very little attention in the research community so far. Presumably,
it is possible to adopt existing techniques for the ontology-based annotation of natural
language texts for this. However, this can in general only be supported in a semi-automated
manner due to the gap between syntactic and adequate semantic descriptions, and also the
annotation of Web services is expectably much more complex.

234 Chapter 7. Conclusions

The second aspect related to the general applicability of SWS techniques is the extent
to which they shall be employed such that a substantial benefit can be achieved while
the effort and costs remain moderate. Let us consider the state-of-the-art in conventional
SOA and SWS technology with respect to the achievable degree of automation and the
costs for their employment. The initial Web service technology seems to not be optimal
because it limits the Web service usage to manual inspection. The SAWSDL approach
appears to be only a little bit better: the semantic annotation by additional tags in WSDL
documents is relatively easy to realize, but the surplus value of SWS techniques that work on
this are only marginal. The OWL-S approach requires exhaustive semantic descriptions on
which significant quality improvements can be achieved; however, its employment in existing
systems is very expensive. The WSMO approach can achieve the highest benefits because it
includes the goal-driven approach as well as mediation facilities, but its employment requires
a comprehensive re-design of a SOA system. With respect to this, the aim for future research
should be to identify the optimal degree of employment for which the cost-benefit-relation
is minimal, and then initiate respective technology standardizations.

Another aspect for the practical employment of SWS technology in large-scale com-
mercial applications is the provision of adequate tooling support. Although a remarkable
number of graphical editors, APIs, and execution environments already exists, the techni-
cal infrastructure appears to still be not sufficient to adequately support the usage of SWS
techniques within real-world SOA applications. Considering the technology developed in
this work, customizable graphical user interfaces for the management of goal instances as
well as sophisticated validation services for functional descriptions seem to be desirable in
order to better support end-users and system developers. However, this can be considered
as supplementary development effort once the underlying technology is specified.

To conclude, semantic techniques for the automated detection and usage of Web services
like the one developed in this work appear to be capable and eligible to effectively support
the idea of Service-Oriented Architectures. However, in order to leverage a successful de-
ployment of such techniques within future SOA technology, it appears to be necessary to
properly address the challenges outlined above.

Bibliography

[Abramowicz et al., 2007] Abramowicz, W., Haniewicz, K., Kaczmarek, M., and
Zyskowski, D. (2007). Architecture for Web services Filtering and Clustering. In Proc. of
the 2nd International Conference on Internet and Web Applications and Services (ICIW
2007), Mauritius.

[Akkiraju et al., 2005] Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M.-
T., Sheth, A., and Verma, K. (2005). Web Service Semantics - WSDL-S. W3C Member
Submission 7 November 2005. online: http://www.w3.org/Submission/WSDL-S/.

[Albert et al., 2005] Albert, P., Henocque, L., and Kleiner, M. (2005). Configuration-
Based Workflow Composition. In Proc of 3rd International Conference on Web Services
(ICWS-05), Orlando, Florida.

[Alexiev et al., 2005] Alexiev, V., Breu, M., de Bruijn, J., Fensel, D., Lara, R., and Lausen,
H. (2005). Information Integration with Ontologies. Wiley, West Sussex, UK.

[Allen et al., 1990] Allen, J., Austin, T., and Hendler, J. (1990). Readings in Planning.
Morgan Kaufmann Publishers.

[Allen, 2006] Allen, P. (2006). Service Orientation: Winning Strategies and Best Practices.
Cambridge University Press.

[Alonso et al., 2004] Alonso, G., Casati, F., Kuno, H., and Machiraju, V. (2004). Web Ser-
vices: Concepts, Architectures and Applications. Data-Centric Systems and Applications.
Springer, Berlin, Heidelberg.

[Anderson, 1991] Anderson, J. R. (1991). Cognitive Architectures in a Rational Analysis.
In van Lehn, K., editor, Architectures for Intelligence, pages 1–24. Lawrence Erlbaum
Associates, Hillsdale, N.J. (USA).

235

http://www.w3.org/Submission/WSDL-S/�

236 Bibliography

[Andrews et al., 2003] Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J.,
Leymann, F., Liu, K., Roller, D., Smith, D., Thatte, S., Trickovic, I., and Weerawarana, S.
(2003). Business Process Execution Language for Web Services version 1.1. Specification,
IBM, BEA Systems, Microsoft, SAP AG, Siebel Systems. online: http://www-128.ibm.
com/developerworks/library/specification/ws-bpel/.

[Anton et al., 1994] Anton, A. I., McCracken, W. M., and Potts, C. (1994). Goal De-
composition and Scenario Analysis in Business Process Reengineering. In Proc. of the
6th Conference on Advanced Information Systems Engineering (CAiSE’94), Utrecht, The
Netherlands, pages 94–104.

[Antoniou et al., 2007] Antoniou, G., Baldoni, M., Bonatti, P. A., Nejdl, W., and
Olmedilla, D. (2007). Rule-Based Policy Specification. In Yu, T. and Jajodia, S., editors,
Secure Data Management in Decentralized Systems, volume 33 of Advances in Informa-
tion Security. Springer.

[Astrachan and Stickel, 1992] Astrachan, O. L. and Stickel, M. E. (1992). Caching and
Lemmaizing in Model Elimination Theorem Provers. In Proc. of the 11th International
Conference on Automated Deduction (CADE-11).

[Avancha et al., 2002] Avancha, S., Joshi, A., and Finin, T. (2002). Enhanced Service
Discovery in Bluetooth. IEEE Computer, 35(6):96–99.

[Baader et al., 2003] Baader, F., D., C., McGuinness, D. L., Nardi, D., and Patel-
Schneider, P. F. (2003). The Description Logic Handbook. Cambridge University Press.

[Bachlechner et al., 2006] Bachlechner, D., Siorpaes, K., Fensel, D., and Toma, I. (2006).
Web Service Discovery - A Reality Check. Technical Report DERI-TR-2006-01-17, DERI.

[Baeza-Yates and Ribeiro-Neto, 1999] Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Mod-
ern Information Retrieval. Addison Wesley.

[Bang-Jønsen and Gutin, 2000] Bang-Jønsen, J. and Gutin, G. (2000). Digraphs: Theory,
Algorithms and Applications. Monographs in Mathematics. Springer, London.

[Battle et al., 2005] Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M., Hull,
R., Kifer, M., D., M., S., M., McGuinness, D., Su, J., and Tabet, S. (2005). Semantic
Web Services Framework (SWSF). W3C Member Submission 9 September 2005. online:
http://www.w3.org/Submission/SWSF/.

http://www-128.ibm.com/developerworks/library/specification/ws-bpel/�
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/�
http://www.w3.org/Submission/SWSF/�

Bibliography 237

[Benatallah et al., 2005] Benatallah, B., Hacid, M.-S., Leger, A., Rey, C., and Toumani,
F. (2005). On Automating Web Services Discovery. VLDB Journal, 14(1):84–96.

[Berardi et al., 2003] Berardi, D., Calvanese, D., Giacomo, G. D., Lenzerini, M., and Me-
cella, M. (2003). Automatic Composition of e-Services that Export their Behavior. In
Proc. of First Int. Conference on Service Oriented Computing (ICSOC).

[Bernays and Schönfinkel, 1928] Bernays, P. and Schönfinkel, M. (1928). Zum Entschei-
dungsproblem der Mathematischen Logik. Mathematische Annalen, 99:342 – 372.

[Berners-Lee et al., 2001] Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The Se-
mantic Web. A new form of Web content that is meaningful to computers will uleash a
revolution of new possibilities. Scientific American, 284(5):34–43.

[Bertoli et al., 2007] Bertoli, P., Hoffmann, J., Lecue, F., and Pistore, M. (2007). Integrat-
ing Discovery and Automated Composition: from Semantic Requirements to Executable
Code. In Proc. of the IEEE 2007 International Conference on Web Services (ICWS’07),
Salt Lake City, USA.

[Bidoit et al., 1991] Bidoit, M., Kreowski, H.-J., Lescanne, P., Orejas, F., and Sannella,
D. (1991). Algebraic System Specification and Development. A Survey and Annotated
Bibliography, volume 501 of Lecture Notes in Computer Science. Springer.

[Birell and Nelson, 1984] Birell, A. D. and Nelson, B. J. (1984). Implementing Remote
Procedure Calls. ACM Transactions on Computer Systems, 2(1):39–59.

[Book, 1974] Book, R. (1974). Comparing Complexity Classes. Journal of Computer and
System Sciences, 3(9):213–229.

[Börger et al., 1997] Börger, E., Grädel, E., and Gurevich, Y. (1997). The Classical Deci-
sion Problem. Perspectives in Mathematical Logic. Springer.

[Borgida, 1996] Borgida, A. (1996). On the Relative Expressiveness of Description Logics
and Predicate Logics. Artificial Intelligence, 82(1–2):353–367.

[Born et al., 2007] Born, M., Drr, F., and Weber, I. (2007). User-friendly Semantic Anno-
tation of Business Process Modeling. In Proc. of the WISE 2007 Workshop on Human-
friendly Service Description, Discovery and Matchmaking (Hf-SDDM), Nancy, France.

[Bratko, 2000] Bratko, I. (2000). Prolog Programming for Artifical Intelligence. Longman,
3rd edition.

238 Bibliography

[Bratman, 1987] Bratman, M. E. (1987). Intention, Plans and Practical Reason. Harvard
University Press, Cambridge, MA (USA).

[Brodie et al., 2005] Brodie, M., Bussler, C., de Brujin, J., Fahringer, T., Fensel, D., Hepp,
M., Lausen, H., Roman, D., Strang, T., Werthner, H., and Zaremba, M. (2005). Seman-
tically Enabled ServiceOriented Architectures: A Manifesto and a Paradigm Shift in
Computer Science. Technical Report TR-2005-12-26, DERI.

[Bussler, 2003] Bussler, C. (2003). B2B Integration: Concepts and Architecture. Springer,
Berlin, Heidelberg.

[Cabral and Domingue, 2005] Cabral, L. and Domingue, J. (2005). Mediation of Seman-
tic Web Services in IRS-III. In Proc. of the Workshop on Mediation in Semantic Web
Services (MEDIATE 2005), held at the 6th International Conference on Service Oriented
Computing (ICSOC 2005), Amsterdam, The Netherlands.

[Cardoso and Sheth, 2006] Cardoso, J. and Sheth, A. (2006). Semantic Web Services,
Processes and Applications. Semantic Web and Beyond. Springer.

[Chidlovskii et al., 1999] Chidlovskii, B., Roncancio, C., and Schneider, M.-L. (1999). Se-
mantic Cache Mechanism for heterogeneous Web Querying. Computer Networks (Ams-
terdam, Netherlands), 31(11–16):1347–1360.

[Cimpian and Mocan, 2005] Cimpian, E. and Mocan, A. (2005). WSMX Process Media-
tion Based on Choreographies. In Proceedings of the 1st International Workshop on Web
Service Choreography and Orchestration for Business Process Management at the BPM
2005, Nancy, France.

[Cimpian et al., 2006] Cimpian, E., Mocan, A., and Stollberg, M. (2006). Mediation En-
abled SemanticWeb Services Usage. In Proc. of the 1st Asian Semantic Web Conference
(ASWC 2006), Beijing, China.

[Clancey, 1985] Clancey, W. J. (1985). Heuristic Classification. Artificial Intelligence,
27(3):289–350.

[Clayton et al., 2002] Clayton, R., Cleary, J. G., Pfahringer, B., and Utting, M. (2002).
Tabling Structures for Bottom-Up Logic Programming. In Proc. of 12th International
Workshop on Logic Based Program Synthesis and Tranformation, Madrid, Spain.

Bibliography 239

[Clement et al., 2004] Clement, L., Hately, A., von Riegen, C., and Rogers, T. e. (2004).
UDDI Version 3. Uddi spec technical committee draft, OASIS. Available from
http://uddi.org/pubs/uddi v3.htm.

[Cohen, 2006] Cohen, F. (2006). Fast SOA: The way to use native XML Technology to
achieve Service Oriented Architecture Governance, Scalability, and Performance. Series
in Data Management Systems. Morgan Kaufmann.

[Cohen and Levesque, 1990] Cohen, P. R. and Levesque, H. J. (1990). Intention is Choice
with Commitment. Artificial Intelligence, 42:213–261.

[Colucci et al., 2005] Colucci, S., Di Noia, T., Di Sciascio, E., Donini, F. M., and
Mongiello, M. (2005). Concept abduction and contraction for semantic-based discovery
of matches and negotiation spaces in an e-marketplace. Electronic Commerce Research
and Applications, 4:345–361.

[Constantinescu et al., 2005] Constantinescu, I., Binder, W., and Faltings, B. (2005). Flex-
ible and Efficient Matchmaking and Ranking in Service Directories. In Proc. of the 3rd
International Conference on Web Services (ICWS 2005), Florida, USA.

[Crawford et al., 2000] Crawford, I., Wadleigh, K. R., and Wadleigh, K. (2000). Software
Optimization for High Performance Computing: Creating Faster Application. Prentice-
Hall.

[Crow et al., 2007] Crow, E. L., Davis, F. A., and Maxfield, M. W. (2007). Statistics
Manual. Dover Publications, Inc., New York (USA).

[Davis et al., 2006] Davis, J., Studer, R., and Warren, P. (2006). Semantic Web Technol-
ogy. Trends and Research in Ontology-based System. Wiley & Sons.

[de Bruijn, 2006] de Bruijn, J. (2006). Logics for the Semantic Web. In Cardoses, J.,
editor, Semantic Web: Theory, Tools and Applications. Idea Publishing Group.

[de Bruijn and Fensel, 2005] de Bruijn, J. and Fensel, D. (2005). Ontology Definitions. In
Marcia J. Bates, Mary Niles Maack, M. D., editor, Encyclopedia of Library and Informa-
tion Science. Tylor and Francis Books.

[de Bruijn and Heymans, 2006] de Bruijn, J. and Heymans, S. (2006). WSML Ontology
Semantics. WSML Deliverable D28.3 Final Draft. available at: http://www.wsmo.org/
TR/d28/d28.3/.

http://www.wsmo.org/TR/d28/d28.3/�
http://www.wsmo.org/TR/d28/d28.3/�

240 Bibliography

[de Bruijn et al., 2005a] de Bruijn, J., Lara, R., Arroyo, S., Gomez, J. M., Han, S.-K.,
and Fensel, D. (2005a). A Unified Semantic Web Services Architecture based on WSMF
and UPML. The International Journal of Web Engineering and Technology (IJWET),
2(2-3):148–180.

[de Bruijn et al., 2005b] de Bruijn, J., Lausen, H., Krummenacher, R., Polleres, A., Pre-
doiu, L., Kifer, M., and Fensel, D. (2005b). The Web Service Modeling Language
WSML. Deliverable D16.1 final draft 05 Oct 2005, WSML Working Group. Available at:
http://www.wsmo.org/TR/d16/d16.1/v0.2/.

[de Leenheer and Mens, 2006] de Leenheer, P. and Mens, T. (2006). Ontology Evolution:
State of the Art and Future Directions. In Hepp, de Leenheer, de Moor, and Sure,
editors, Ontology Management. Semantic Web, Semantic Web Services, and Business
Applications. Springer.

[de Nivelle and Piskac, 2005] de Nivelle, H. and Piskac, R. (2005). Verification of an Off-
Line Checker for Priority Queues. In Proc. of the 3rd IEEE International Conference on
Software Engineering and Formal Methods (SEFM’2005), Koblenz, Germany.

[Denney et al., 2006] Denney, E., Fischer, B., and Schumann, J. (2006). An Empirical
Evaluation of Automated Theorem Provers in Software Certification. International Jour-
nal on Artificial Intelligence Tools, 15(1):81–107.

[Dickinson and Wooldridge, 2005] Dickinson, I. and Wooldridge, M. (2005). Agents are
not (just) Web Services: Considering BDI Agents and Web Services. In Proceedings of
the 2005 Workshop on Service-Oriented Computing and Agent-Based Engineering (SO-
CABE’2005), Utrecht, The Netherlands.

[Diestel, 2005] Diestel, R. (2005). Graph Theory, volume 173 of Graduate Texts in Math-
ematics. Springer, Heidelberg, 3. edition.

[Diller, 1994] Diller, A. (1994). Z: An Introduction to Formal Methods. John Wiley &
Sons, 2 edition.

[Dimitrov et al., 2007] Dimitrov, M., Simov, A., Momtchev, V., and Konstantinov, M.
(2007). WSMO Studio - A Semantic Web Services Modelling Environment for WSMO
(System Description). In Proc. of the 4th European Semantic Web Conference (ESWC),
Innsbruck, Austria.

http://www.wsmo.org/TR/d16/d16.1/v0.2/�

Bibliography 241

[Domingue et al., 2008] Domingue, J., Cabral, L., Galizia, S., Tanasescu, V., Gugliotta,
A., Norton, B., and Pedrinaci, C. (2008). IRS-III: A Broker-based Approach to Semantic
Web Services. Journal of Web Semantics. (to appear).

[Domingue et al., 2005] Domingue, J., Galizia, S., and Cabral, L. (2005). Choreography
in IRS III. Coping with Heterogeneous Interaction Patterns in Web Services. In Proc. of
the 4th International Semantic Web Conference (ISWC 2005), Galway, Ireland.

[Duke et al., 2005] Duke, A., Richardson, M., Watkins, S., and Roberts, M. (2005). To-
wards B2B Integration in Telecommunications with Semantic Web Services. In Pro-
ceedings of Second European Semantic Web Conference, ESWC 2005, Heraklion, Crete,
Greece, pages 710–724.

[Duschka and Genesereth, 1997] Duschka, O. M. and Genesereth, M. R. (1997). Query
Planning in Infomaster. In Proc. of the ACM Symposium on Applied Computing.

[Ebert et al., 2004] Ebert, C., Dumke, R., Bundschuh, M., and Schmietendorf, A. (2004).
Best Practices in Software Measurement. Springer.

[Erl, 2005] Erl, T. (2005). Service-Oriented Architecture (SOA). Concepts, Technology,
and Design. Prentice Hall PTR.

[Farrell and Lausen, 2007] Farrell, J. and Lausen, H. (2007). Semantic Annotations for
WSDL and XML Schema. W3C Recommendation 26 January 2007. online: http:

//www.w3.org/TR/sawsdl/.

[Fensel, 1995] Fensel, D. (1995). Formal Specification Languages in Knowledge and Soft-
ware Engineering. The Knowledge Engineering Review, 10(4):361–404.

[Fensel, 2000] Fensel, D. (2000). Problem-Solving Methods: Understanding, Description,
Development, and Reuse. Springer, Berlin, Heidelberg.

[Fensel, 2003] Fensel, D. (2003). Ontologies: A Silver Bullet for Knowledge Management
and E-Commerce. Springer, Berlin, Heidelberg, 2 edition.

[Fensel and Bussler, 2002] Fensel, D. and Bussler, C. (2002). The Web Service Modeling
Framework WSMF. Electronic Commerce Research and Applications, 1(2).

[Fensel et al., 2006] Fensel, D., Lausen, H., Polleres, A., de Bruijn, J., Stollberg, M., Ro-
man, D., and Domigue, J. (2006). Enabling Semantic Web Services. The Web Service
Modeling Ontology. Springer, Berlin, Heidelberg.

http://www.w3.org/TR/sawsdl/�
http://www.w3.org/TR/sawsdl/�

242 Bibliography

[Fensel et al., 2003] Fensel, D., Motta, E., Benjamins, V. R., Crubezy, M., Decker, S.,
Gaspari, M., Groenboom, R., Grosso, W., van Harmelen, F., Musen, M., Plaza, E.,
Schreiber, G., Studer, R., and Wielinga, B. (2003). The Unified Problem Solving Method
Development Language UPML. Knowledge and Information Systems Journal (KAIS),
5(1):83–131.

[Fensel and Schönegge, 1998] Fensel, D. and Schönegge, A. (1998). Inverse Verifica-
tion of Problem-Solving Methods. International Journal of Human-Computer Studies,
49(4):339–361.

[Fensel and Straatman, 1998] Fensel, D. and Straatman, R. (1998). The Essence of
Problem-Solving Methods: Making Assumptions to Gain Efficiency. International Jour-
nal of Human-Computer Studies, 48(2):181–215.

[Fensel and van Harmelen, 2007] Fensel, D. and van Harmelen, F. (2007). Unifying Rea-
soning and Search to Web Scale. IEEE Internet Computing, 11(2).

[Fikes and Nilsson, 1971] Fikes, R. and Nilsson, N. (1971). STRIPS: A New Approach to
the Application of Theorem Proving to Problem Solving. Artificial Intelligence, 2:189–
208.

[Galizia, 2006] Galizia, S. (2006). WSTO: A Classification-Based Ontology for Managing
Trust in Semantic Web Services. In Proc. of the 3th European Semantic Web Conference
(ESWC 2006), Budva, Montenegro.

[Galizia et al., 2007] Galizia, S., Gugliotta, A., and Domingue, J. (2007). A Trust Based
Methodology for Web Service Selection. In Proc. of the 1st IEEE International Conference
on Semantic Computing (IEEE-ICSC 2007) , Irvine, California, USA, September 17-19,
2007.

[Gallier, 1986] Gallier, J. H. (1986). Logic for Computer Science: Foundations of Auto-
matic Theorem Proving. John Wiley & Sons.

[Gallo and Rago, 1994] Gallo, G. and Rago, G. (1994). The Satisfiability Problem for
the Schönfinkel-Bernays Fragment: Partial Instantiation and Hypergraph Algorithms.
Technical Report 4/94, Dip. Informatica, Universita di Pisa.

[Gannon et al., 1994] Gannon, J. D., Purtilo, J. M., and Zelkowitz, M. V. (1994). Software
Specification. A Comparison of Formal Methods. Ablex Publishing Co.

Bibliography 243

[Genesereth and Nilsson, 1987] Genesereth, M. J. and Nilsson, N. J. (1987). Logical Foun-
dations of Artificial Intelligence. Morgan Kaufmann.

[Gerede et al., 2004] Gerede, C. E., Hull, R., Ibarra, O. H., and Su, J. (2004). Automated
Composition of E-services: Lookaheads. In Proc. of International Conference on Service
Oriented Computing (ICSOC 2004), NY.

[Ghallab et al., 2004] Ghallab, M., Nau, D., and Traverso, P. (2004). Automated Planning.
Theory & Practice. Morgan Kaufmann.

[Giorgini et al., 2003] Giorgini, P., Mylopoulos, J., Nicchiarelli, E., and Sebastiani, R.
(2003). Formal Reasoning Techniques for Goal Models. Journal on Data Semantics I,
Lecture Notes in Computer Science, Springer(2800):1–20.

[Giunchiglia et al., 2005] Giunchiglia, F., Yatskevich, M., and Giunchiglia, E. (2005). Effi-
cient Semantic Matching. In Proceedings of the 2nd European Semantic Web Conference
(ESWC 2005), Crete, Greece.

[Godfrey and Gryz, 1997] Godfrey, P. and Gryz, J. (1997). Semantic Query Caching for
Heterogeneous Databases. In Proc. of 4th Knowledge Representation Meets Databases
Workshop (KRDB) at VLDB’97, Athens, Greece.

[Goméz-Peréz et al., 2003] Goméz-Peréz, A., Corcho, O., and Fernandez-Lopez, M.
(2003). Ontological Engineering. With Examples from the Areas of Knowledge Manage-
ment, E-Commerce and Semantic Web. Series of Advanced Information and Knowledge
Processing. Springer, Berlin, Heidelberg.

[Gruber, 1993] Gruber, T. R. (1993). A Translation Approach to Portable Ontology Spec-
ifications. Knowledge Acquisition, 5:199–220.

[Gruninger and Menzel, 2003] Gruninger, M. and Menzel, C. (2003). The Process Speci-
fication Language (PSL) Theory and Applications. AI Magazine, 24(3):63–74.

[Haller et al., 2005] Haller, A., Cimpian, E., Mocan, A., Oren, E., and Bussler, C. (2005).
WSMX - A Semantic Service-Oriented Architecture. In Proceedings of the International
Conference on Web Service (ICWS 2005), Orlando, Florida.

[Haller et al., 2007] Haller, A., Filipowska, A., Kaczmarek, M., van Lessen, T., Nitzsche,
J., and Norton, B. (2007). Process Ontology Language and Operational Semantics for
Semantic Business Processes. Deliverable D1.3, SUPER.

244 Bibliography

[Haller and Scicluna, 2005] Haller, A. and Scicluna, J. (2005). WSMX Choreography.
Working Draft D13.9, WSMX. 28 June 2005, online: www.wsmo.org/TR/d13/d13.9/.

[Handy, 1998] Handy, J. (1998). The Cache Memory Book. Series in Computer Architec-
ture and Design. Morgan Kaufmann, 2 edition.

[Harth and Decker, 2005] Harth, A. and Decker, S. (2005). Optimized Index Structures
for Querying RDF from the Web. In Proc. of 3rd Latin American Web Congress, Buenos
Aires, Argentina, Oct. 31 - Nov.

[Haselwanter et al., 2006] Haselwanter, T., Kotinurmi, P., Moran, M., Vitvar, T., and
Zaremba, M. (2006). WSMX: a Middleware Platform to Enact Semantic SOA in a B2B
Integration Scenario. In Proc. of the 4th International Conference on Service Oriented
Computing (ICSOC 2006), Chicago, USA.

[He et al., 2004] He, H., Haas, H., and Orchard, D. (2004). Web Services Architecture
Usage Scenarios. W3C Working Group Note 11 February 2004November 2004. online:
http://www.w3.org/TR/ws-arch-scenarios/.

[Hepp et al., 2007] Hepp, M., de Leenheer, P., de Moor, A., and Sure, Y. (2007). On-
tology Management. Semantic Web, Semantic Web Services, and Business Applications.
Semantic Web and Beyond. Springer.

[Hepp et al., 2005] Hepp, M., Leymann, F., Domingue, J., Wahler, A., and Fensel, D.
(2005). Semantic Business Process Management: A Vision Towards Using Semantic Web
Services for Business Process Management. In Proc. of the IEEE International Conference
on e-Business Engineering (ICEBE 2005), October 18-20, 2005, Beijing, China.

[Hoare, 1969] Hoare, C. A. R. (1969). An Axiomatic Basis for Computer Programming.
Communincations of the ACM, 12(10):576–580.

[Hoffmann et al., 2007] Hoffmann, J., Bertoli, P., and Pistore, M. (2007). Service Com-
position as Planning, Revisited: In Between Background Theories and Initial State Un-
certainty. In Proc. of the 22nd National Conference of the American Association for
Artificial Intelligence (AAAI’07), Vancouver, Canada.

[Hofstadter, 1979] Hofstadter, D. R. (1979). Goedel, Escher, Bach: an Eternal Golden
Braid. Basic Books, New York (USA).

www.wsmo.org/TR/d13/d13.9/�
http://www.w3.org/TR/ws-arch-scenarios/�

Bibliography 245

[Horrocks et al., 2004] Horrocks, I., Li, L., Turi, D., and Bechhofer, S. (2004). The In-
stance Store: Description Logic Reasoning with Large Numbers of Individuals. In Proc.
of International Workshop on Description Logics (DL 2004), British Columbia, Canada.

[Horrocks et al., 1998] Horrocks, I., Sattler, U., and Tobies, S. (1998). A PSpace-
Algorithm for Deciding ALCNIR+-Satisfiability. Technical Report LTCS-98-08, RWTH
Aachen, Germany.

[Hull et al., 2006] Hull, D., Zolin, E., Bovykin, A., Horrocks, I., Sattler, U., and Stevens,
R. (2006). Deciding Semantic Matching of Stateless Services. In Proc. of the 21st National
Conference on Artificial Intelligence (AAAI’2006).

[Jones, 1990] Jones, C. B. (1990). Systematic Software Development using VDM. Prentice-
Hall.

[Kavantzas et al., 2005] Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon,
Y., and Barreto (eds.), C. (2005). Web Services Choreography Description Language
Version 1.0. Candidate Recommendation 9 November 2005, W3C. online at: http:

//www.w3.org/TR/ws-cdl-10/.

[Keller and Basu, 1996] Keller, A. M. and Basu, J. (1996). A Predicate-based Caching
Scheme for Client-Server Database Architectures. The VLDB Journal, 5:35–47.

[Keller et al., 2006a] Keller, U., Lara, R., Lausen, H., and Fensel, D. (2006a). Semantic
Web Service Discovery in the WSMO Framework. In Cardoses, J., editor, Semantic Web:
Theory, Tools and Applications. Idea Publishing Group.

[Keller et al., 2005] Keller, U., Lara, R., Lausen, H., Polleres, A., and Fensel, D. (2005).
Automatic Location of Services. In Proceedings of the 2nd European Semantic Web
Conference (ESWC 2005), Crete, Greece.

[Keller and Lausen, 2006] Keller, U. and Lausen, H. (2006). Functional Description of
Web Services. Deliverable D28.1, WSML Working Group. Most recent version available
at: http://www.wsmo.org/TR/d28/d28.1/.

[Keller et al., 2006b] Keller, U., Lausen, H., and Stollberg, M. (2006b). On the Semantics
of Funtional Descriptions of Web Services. In Proceedings of the 3rd European Semantic
Web Conference (ESWC 2006), Montenegro.

[Kerrigan et al., 2007] Kerrigan, M., Mocan, A., Tanler, M., and Fensel, D. (2007). The
Web Service Modeling Toolkit - An Integrated Development Environment for Semantic

http://www.w3.org/TR/ws-cdl-10/�
http://www.w3.org/TR/ws-cdl-10/�
http://www.wsmo.org/TR/d28/d28.1/�

246 Bibliography

Web Services (System Description). In Proc. of the 4th European Semantic Web Confer-
ence (ESWC), Innsbruck, Austria.

[Kifer et al., 2004] Kifer, M., Lara, R., Polleres, A., Zhao, C., Keller, U., Lausen, H.,
and Fensel, D. (2004). A Logical Framework for Web Service Discovery. In Proc. of
the ISWC 2004 workshop on Semantic Web Services: Preparing to Meet the World of
Business Applications, Hiroshima, Japan.

[Kiryakov et al., 2005] Kiryakov, A., Ognyanov, D., and Manov, D. (2005). A Pragmatic
Semantic Repository for OWL. In Proc. of Int. Workshop on Scalable Semantic Web
Knowledge Base Systems (SSWS 2005), NYC.

[Klusch et al., 2006] Klusch, M., Fries, B., and Sycara, K. (2006). Automated Semantic
Web Service Discovery with OWLS-MX. In Proc. of the 5th International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2006), Hakodate, Japan,
May 8 - 12.

[Kopecky, 2007] Kopecky, J. (2007). Semantic Annotations for WSDL and XML Schema.
Talk at W3C track in the WWW 2007 Conference, Banff, Canada.

[Kopecký et al., 2006] Kopecký, J., Roman, D., Moran, M., and Fensel, D. (2006). Se-
mantic Web Services Grounding. In Proc. of the International Conference on Internet
and Web Applications and Services (ICIW’06), Guadeloupe, French Caribbean.

[Kuokka and Harada, 1996] Kuokka, D. and Harada, L. (1996). Integrating Information
via Matchmaking. Journal of Intelligent Information Systems, 6(2–3):261–279.

[Lambert et al., 2007] Lambert, D., Galizia, S., and Domingue, J. (2007). Agile Elicitation
of Semantic Goals by using Wikis. In Proc. of the WISE 2007 Workshop on Human-
friendly Service Description, Discovery and Matchmaking (Hf-SDDM), Nancy, France.

[Lara et al., 2004] Lara, L., Roman, D., Polleres, A., and Fensel, D. (2004). A Conceptual
Comparison of WSMO and OWL-S. In Proc. of the European Conference on Web Services
(ECOWS 2004), Erfurt, Germany.

[Lara, 2006] Lara, R. (2006). Two-phased Web Service Discovery. In Proc. of AI-Driven
Technologies for Services-Oriented Computing Workshop at AAAI-06, Boston, USA.

[Lara et al., 2006] Lara, R., Corella, M. A., and Castells, P. (2006). A Flexible Model
for Web Service Discovery. In Proc. of the 1st International Workshop on Semantic
Matchmaking and Resource Retrieval: Issues and Perspectives, Seoul, South Korea.

Bibliography 247

[Lausen et al., 2005] Lausen, H., Polleres, A., and Roman (eds.), D. (2005). Web Service
Modeling Ontology (WSMO). W3C Member Submission 3 June 2005. online: http:

//www.w3.org/Submission/WSMO/.

[Lewis, 1980] Lewis, H. R. (1980). Complexity Results for Classes of Quantificational
Formulas. Journal of Computer and System Sciences (JCSS), 21(3):317–353.

[Li and Horrocks, 2003] Li, L. and Horrocks, I. (2003). A Software Fframework for Match-
making based on Semantic Web Technology. In Proceedings of the 12th International
Conference on the World Wide Web, Budapest, Hungary.

[López-Cobo et al., 2007] López-Cobo, J.-M., Losada, S., Cicurel, L., Bas, J.-L., Bellido,
S., and Benjamins, R. (2007). Ontology Management in e-Banking Applications. In
Hepp, M., Leenheer, P. D., de Moor, A., and Sure, Y., editors, Ontology Management.
Semantic Web, Semantic Web Services, and Business Applications. Springer.

[Loveland, 1978] Loveland, D. W. (1978). Automated Theorem Proving: A Logical Basis,
volume 6 of Fundamental Studies in Computer Science. North-Holland Publishing.

[Lu, 2005] Lu, H. (2005). Semantic Web Services Discovery and Ranking. In Proc. of the
ACM International Conference on Web Intelligence(WI 2005), Compiegne, France.

[Ludwig et al., 2003] Ludwig, H., Keller, A., Dan, A., King, R. P., and Franck, R. (2003).
Web service level agreement (wsla). Language specification, IBM. online: http://www.

research.ibm.com/wsla/WSLASpecV1-20030128.pdf.

[Manola and Miller, 2007] Manola, F. and Miller, E. (2007). SPARQL Query Language
for RDF. W3C Candidate Recommendation 14 June 2007. online: www.w3.org/RDF/.

[Marks and Bell, 2006] Marks, E. A. and Bell, M. (2006). Service-Oriented Architecture
(SOA): A Planning and Implementation Guide for Business and Technology. Wiley.

[Martens, 2003] Martens, A. (2003). On Compatibility of Web Services. Petri Net Newlet-
ter, 65:12–20.

[Martin, 2004] Martin, D. (2004). OWL-S: Semantic Markup for Web Services. W3C Mem-
ber Submission 22 November 2004. online: http://www.w3.org/Submission/OWL-S/.

[Martin et al., 1999] Martin, D., Cheyer, A. J., and Moran, D. B. (1999). The Open Agent
Architecture: A Framework for building Distributed Software Systems. Applied Artificial
Intelligence, 13(1–2):91–128.

http://www.w3.org/Submission/WSMO/�
http://www.w3.org/Submission/WSMO/�
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf�
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf�
www.w3.org/RDF/�
http://www.w3.org/Submission/OWL-S/�

248 Bibliography

[Martin et al., 2007] Martin, D., Paolucci, M., and Wagner, M. (2007). Towards Semantic
Annotations of Web Services: OWL-S from the SAWSDL Perspective. In Proc. of the
ESWC 2007 workshop OWL-S: Experiences and Directions, Innsbruck, Austria.

[McCarthy, 1963] McCarthy, J. (1963). Situations, Actions and Causal Laws. Technical
report, Stanford University.

[McCarthy and Hayes, 1969] McCarthy, J. and Hayes, P. J. (1969). Some Philosophical
Problems from the Standpoint of Artificial Intelligence. Machine Intelligence, 4:463–502.

[McGuinness and van Harmelen, 2004] McGuinness, D. and van Harmelen, F. (2004).
OWL Web Ontology Language - Overview. W3C Recommendation 10 February 2004.
online: http://www.w3.org/TR/owl-features/.

[McIlraith et al., 2001] McIlraith, S., Cao Son, T., and Zeng, H. (2001). Semantic Web
Services. IEEE Intelligent Systems, Special Issue on the Semantic Web, 16(2):46–53.

[McIlraith and Son, 2002] McIlraith, S. and Son, T. C. (2002). Adapting Golog for Compo-
sition of Semantic Web Services. In roc. of the 8th International Conference on Knowledge
Representation and Reasoning (KR ’02), Toulouse, France.

[Meyer, 2000] Meyer, B. (2000). Object-Oriented Software Construction. Professional
Technical Reference. Prentice Hall, 2. edition.

[Mocan and Cimpian, 2007] Mocan, A. and Cimpian, E. (2007). An Ontology-based Data
Mediation Framework for Semantic Environments. International Journal on Semantic
Web and Information Systems (IJSWIS), 3(2):66 – 95.

[Mocan et al., 2005] Mocan, A., Cimpian, E., Stollberg, M., Scharffe, F., and Scicluna, J.
(2005). WSMO Mediators. WSMO deliverable D29 final draft 21 Dec 2005. available at:
http://www.wsmo.org/TR/d29/.

[Motik et al., 2007] Motik, B., Shearer, R., and Horrocks, I. (2007). Optimized Reasoning
in Description Logics using Hypertableaux. In Proc. of the 21st Conference on Automated
Deduction (CADE-21), Bremen, Germany, July 17-20.

[Motta, 1999] Motta, E. (1999). Reusable Components for Knowledge Modelling: Princi-
ples and Case Studies in Parametric Design. IOS Press, Amsterdam.

[Newell, 1982] Newell, A. (1982). The Knowledge Level. Artificial Intelligence, 18:87–122.

http://www.w3.org/TR/owl-features/�
http://www.wsmo.org/TR/d29/�

Bibliography 249

[Newell, 1990] Newell, A. (1990). Unified Theories of Cognition. Harvard University Press,
Cambridge, MA (USA).

[Newell and Simon, 1972] Newell, A. and Simon, H. A. (1972). Human Problem Solving.
Prentice-Hall, Englewood Cliffs, New Jersey.

[Nieuwenhuis et al., 2003] Nieuwenhuis, R., Hillenbrand, T., Riazanov, A., and Voronkov,
A. (2003). On the Evaluation of Indexing Techniques for Theorem Proving. In Proc. of
the 1st International Joint Conference on Automated Reasoning, Siena, Italy.

[Nilsson, 1971] Nilsson, N. J. (1971). Problem-Solving Methods in Artifuical Intelligence.
McGraw-Hill.

[Noia et al., 2003] Noia, T. D., Sciascio, E. D., Donini, F., and Mongiello, M. (2003). A
System for Principled Matchmaking in an Electronic Marketplace. In Proc. of the 12th
International Conference on the World Wide Web (WWW’03), Budapest, Hungary.

[Norton and Pedrinaci, 2006] Norton, B. and Pedrinaci, C. (2006). 3-Level Service Com-
position and Cashew: A Model for Orchestration and Choreography in Semantic Web
Services. In On the Move to Meaningful Internet Systems (OTM Workshops 2006), Mont-
pellier, France, Oct 29 - Nov 03.

[Noy, 2004] Noy, N. (2004). Semantic Integration: a Survey of Ontology-based Approaches.
ACM SIGMOD Record, 33(4):65–70.

[Olmedilla et al., 2004] Olmedilla, D., Lara, R., Polleres, A., and Lausen, H. (2004). Trust
Negotiation for Semantic Web Services. In Proc. of the 1st International Workshop on
Semantic Web Services and Web Process Composition at the ICWS 2004, SanDiego,
California (USA).

[Oren et al., 2005] Oren, N., Preece, A., and Norman, T. (2005). Service Level Agreements
for Semantic Web Agents. In Proc. of the 2005 AAAI Fall Symposim on Agents and the
Semantic Web, Arlington, Virgina (USA).

[Oundhakar et al., 2005] Oundhakar, S., Verma, K., Sivashanmugam, K., Sheth, A., and
Miller, J. (2005). Discovery of Web Services in a Multi-Ontology and Federated Registry
Environment. International Journal of Web Services Research, 1(3):8–39.

[Paolucci et al., 2003] Paolucci, M., Ankolekar, A., Srinivasan, N., and Sycara, K. (2003).
The DAML-S Virtual Machine. In Proc. of the 2nd International Semantic Web Confer-
ence (ISWC),Sandial Island, Florida.

250 Bibliography

[Paolucci et al., 2002] Paolucci, M., Kawamura, T., Payne, T., and Sycara, K. (2002). Se-
mantic Matching of Web Services Capabilities. In Proc. of the 1st International Semantic
Web Conference, Sardinia, Italy.

[Papadimitriou, 1994] Papadimitriou, C. H. (1994). Computational Complexity. Addison-
Wesley.

[Paurobally et al., 2005] Paurobally, S., Tamma, V., and Wooldridge, M. (2005). Cooper-
ation and Agreement between Semantic Web Services. In Proc. of the W3C Workshop
on Frameworks for Semantics in Web Services. Innsbruck, Austria.

[Petrie et al., 2008] Petrie, C., Lausen, H., Zaremba, M., and Margaria-Steffen, T. (2008).
Semantic Web Services Challenge, volume 8 of Semantic Web and Beyond. Springer. (to
appear).

[Pistore et al., 2004] Pistore, M., Barbon, F., Bertoli, P., Shaparau, D., and Traverso, P.
(2004). Planning and Monitoring Web Service Composition. In Proc. of the Workshop
on Planning and Scheduling for Web and Grid Services at the ICAPS 2004, Whistler,
British Columbia, Canada, June 3-7.

[Preist, 2004] Preist, C. (2004). A Conceptual Architecture for Semantic Web Services.
In Proc. of the 2nd International Semantic Web Conference (ISWC 2004).

[Prevosto and Waldmann, 2006] Prevosto, V. and Waldmann, U. (2006). SPASS+T. In
Proc. of the FLoC’06 Workshop on Empirically Successful Computerized Reasoning, Seat-
tle, USA.

[Rao and Georgeff, 1991] Rao, A. S. and Georgeff, M. P. (1991). Modeling Rational Agents
within a BDI-Architecture. In Proceedings of Knowledge Representation and Reasoning
(KR&R-91), pages 473–484.

[Reiter, 1991] Reiter, R. (1991). The Frame Problem in the Situation Calculus: a Simple
Solution (sometimes) and a Completeness Result for Goal Regression. In Lifschitz, I.,
editor, Artificial Intelligence and Mathematical Theory of Computation, Papers in Honor
of John McCarthy. Academic Press.

[Riazanov, 2003] Riazanov, A. (2003). Implementing an Efficient Theorem Prover. PhD
thesis, The University of Manchester.

Bibliography 251

[Riazanov and Voronkov, 2002] Riazanov, A. and Voronkov, A. (2002). The Design and
Implementation of VAMPIRE. AI Communications, 15(2):91–110. Special Issue on
CASC.

[Roman et al., 2006] Roman, D., Lausen, H., and Keller, U. e. (2006). Web Service Mod-
eling Ontology (WSMO). Final Draft D2, WSMO Working Group. version v1.3, 21
October 2006, online at: http://www.wsmo.org/TR/d2/v1.3/.

[Roman and Scicluna, 2007] Roman, D. and Scicluna, J. (2007). Orchestration in WSMO.
Working Draft D15, WSMO. April 22, 2007; online at: www.wsmo.org/2005/d15/v0.1/.

[Roman et al., 2007] Roman, D., Scicluna, J., and Nitzsche, J. (2007). Ontology-based
Choreography. Final Draft D14, WSMO Working Group. version v1.0, 15 February
2007, online at: http://www.wsmo.org/TR/d14/v1.0/.

[Scharffe and de Bruijn, 2005] Scharffe, F. and de Bruijn, J. (2005). A language to specify
mappings between ontologies. In Proc. of the Internet Based Systems IEEE Conference
(SITIS05).

[Schmid and Lindemann, 1998] Schmid, B. F. and Lindemann, M. (1998). Elements of
a Reference Model for Electronic Markets. In Proc. of the 31st Hawaiian International
Conference on System Sciences, Hawaii, USA.

[Schulz and Sutcliffe, 2005] Schulz, S. and Sutcliffe, G. (2005). TPTP Format for Inter-
preted Integer Arithmetic. available at: www.cs.miami.edu/∼tptp/TPTP/Proposals/
IntegerArithmetic.html.

[Serain and Craiq, 2002] Serain, D. and Craiq, I. (2002). Middleware and Enterprise Ap-
plication Integration. Springer, 2. edition.

[Shanahan, 2007] Shanahan, F. (2007). Amazon.com Mashups. Wiley Publishing Inc.

[Shanahan, 1997] Shanahan, M. (1997). Solving the Frame Problem: A Mathematical
Investigation of the Common Sense Law of Inertia. MIT Press, Cambridge, MA.

[Smullyan, 1968] Smullyan, R. M. (1968). First Order Logic. Springer.

[Srinivasan et al., 2004a] Srinivasan, N., Paolucci, M., and Sycara, K. (2004a). Adding
OWL-S to UDDI – Implementation and Throughput. In Proc. of the First International
Workshop on Semantic Web Services and Web Process Composition at the ICWS 2004,
San Diego, California, USA.

http://www.wsmo.org/TR/d2/v1.3/�
www.wsmo.org/2005/d15/v0.1/�
http://www.wsmo.org/TR/d14/v1.0/�
www.cs.miami.edu/~tptp/TPTP/Proposals/IntegerArithmetic.html�
www.cs.miami.edu/~tptp/TPTP/Proposals/IntegerArithmetic.html�

252 Bibliography

[Srinivasan et al., 2004b] Srinivasan, N., Paolucci, M., and Sycara, K. (2004b). An Ef-
ficient Algorithm for OWL-S Based Semantic Search in UDDI. In Proc. of the First
International Workshop on Semantic Web Services and Web Process Composition at the
ICWS 2004, San Diego, California, USA.

[Stollberg, 2005] Stollberg, M. (2005). Reasoning Tasks and Mediation on Choreography
and Orchestration in WSMO. In Proceedings of the 2nd International WSMO Implemen-
tation Workshop (WIW 2005), Innsbruck, Austria.

[Stollberg et al., 2005a] Stollberg, M., Cimpian, E., and Fensel, D. (2005a). Mediating
Capabilities with Delta-Relations. In Proceedings of the First International Workshop on
Mediation in Semantic Web Services, co-located with the Third International Conference
on Service Oriented Computing (ICSOC 2005), Amsterdam, the Netherlands.

[Stollberg et al., 2006a] Stollberg, M., Cimpian, E., Mocan, A., and Fensel, D. (2006a).
A Semantic Web Mediation Architecture. In Proceedings of the 1st Canadian Semantic
Web Working Symposium (CSWWS 2006), Quebec, Canada.

[Stollberg et al., 2006b] Stollberg, M., Feier, C., Roman, D., and Fensel, D. (2006b). Se-
mantic Web Services – Concepts and Technology. In Ide, N., Cristea, D., and Tufis, D.,
editors, Language Technology, Ontologies, and the Semantic Web. Kluwer Publishers.

[Stollberg and Kerrigan, 2007] Stollberg, M. and Kerrigan, M. (2007). Goal-based Visu-
alization and Browsing for Semantic Web Services. In Proc. of the WISE 2007 Work-
shop on Human-friendly Service Description, Discovery and Matchmaking (Hf-SDDM),
Nancy, France.

[Stollberg and Lara, 2004] Stollberg, M. and Lara, R. (2004). WSMO Use Case “Virtual
Travel Agency”. Deliverable D3.3, WSMO.

[Stollberg and Norton, 2007] Stollberg, M. and Norton, B. (2007). A Refined Goal Model
for Semantic Web Services. In Proc. of the 2nd International Conference on Internet and
Web Applications and Services (ICIW 2007), Mauritius.

[Stollberg and Rhomberg, 2006] Stollberg, M. and Rhomberg, F. (2006). Survey on Goal-
driven Architectures. Technical Report DERI-TR-2006-06-04, DERI.

[Stollberg et al., 2005b] Stollberg, M., Roman, D., Toma, I., Keller, U., Herzog, R., Zug-
mann, P., and Fensel, D. (2005b). Semantic Web Fred – Automated Goal Resolution on
the Semantic Web. In Proc. of the 38th Hawaiian International Conference on System
Science (HICSS-38), Big Island, Hawaii (USA).

Bibliography 253

[Studer et al., 2007] Studer, R., Grimm, S., and Abecker, A. (2007). Semantic Web Ser-
vices. Concepts, Technologies, and Applications. Springer.

[Sutcliffe and Suttner, 1998] Sutcliffe, G. and Suttner, C. (1998). The TPTP Problem
Library: CNF Release v1.2.1. Journal of Automated Reasoning, 21(2):177–203.

[Sycara et al., 2003] Sycara, K., Paolucci, M., Ankolekar, A., and Srinivasan, N. (2003).
Automated Discovery, Interaction and Composition of Semantic Web services. Journal
of Web Semantics, 1(1):27–46.

[Sycara et al., 1999] Sycara, K., Widoff, S., Klusch, M., and Lu, J. (1999). Dynamic
Service Matchmaking Among Agents in Open Information Environments. Journal of the
ACM SIGMOD Record, Special Issue on Semantic Interoperability in Global Information
Systems, 28(1):47–53.

[Sycara et al., 2002] Sycara, K., Widoff, S., Klusch, M., and Lu, J. (2002). Larks: Dy-
namic Matchmaking Among Heterogeneous Software Agents in Cyberspace. Autonomous
Agents and Multi-Agent Systems, 5:173–203.

[Tausch et al., 2006] Tausch, B., d’Amato, C., Staab, S., and Fanizzi, N. (2006). Efficient
Service Matchmaking using Tree-Structured Clustering. In Poster at the 5th International
Semantic Web Conference (ISWC 2006), Athens, Georgia (USA).

[Toma et al., 2007] Toma, I., Roman, D., Fensel, D., Sapkota, B., and Gómez, J. M.
(2007). A Multi-criteria Service Ranking Approach Based on Non-FunctionalProperties
Rules Evaluation. In Proc. of the Fifth International Conference on Service-Oriented
Computing (ICSOC 2007), Vienna, Austria, September 17-20, 2007.

[Traverso and Pistore, 2004] Traverso, P. and Pistore, M. (2004). Automatic Composition
of Semantic Web Services into Executable Processes. In Proc. of the 3rd International
Semantic Web Conference (ISWC 2004), Hiroshima, Japan.

[Tsarkov et al., 2004] Tsarkov, D., Riazanov, A., Bechhofer, S., and Horrocks, I. (2004).
Using Vampire to Reason with OWL. In Proc. of the 3rd International Semantic Web
Conference (ISWC 2004), Hiroshima, Japan.

[Turing, 1950] Turing, A. M. (1950). Computing Machinery and Intelligence. Mind,
49:433–460.

254 Bibliography

[Vedamuthu et al., 2007] Vedamuthu, A. S., Orchard, D., Hirsch, F., Hondo, M., Yendluri,
P. Boubez, T., and Yalçinalp, Ü. (2007). Web Services Policy 1.5 – Framework. Recom-
mendation 4 September 2007, W3C. online at: http://www.w3.org/TR/ws-policy.

[Verma et al., 2005] Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oundhakar, S.,
and Miller, J. (2005). METEOR-S WSDI: A Scalable P2P Infrastructure of Registries for
Semantic Publication and Discovery of Web Services. Journal of Information Technology
and Management, 6(1):17–39. Special Issue on Universal Global Integration.

[Vitvar et al., 2007a] Vitvar, T., Kopecky, J., Zaremba, M., and Fensel, D. (2007a).
WSMO-Lite: Lightweight Descriptions of Services on the Web. In Proc. of 5th IEEE
European Conference on Web Services (ECOWS), November, 2007, Halle, Germany.

[Vitvar et al., 2007b] Vitvar, T., Zaremba, M., and Moran, M. (2007b). Dynamic Service
Discovery through Meta-Interactions with Service Providers. In Proc. of the 4th European
Semantic Web Conference (ESWC 2007), Innsbruck, Austria.

[Vu et al., 2005] Vu, L.-H., Hauswirth, M., and Aberer, K. (2005). QoS-Based Service
Selection and Ranking with Trust and Reputation Management. In Proc. of the OTM
Confederated International Conferences CoopIS, DOA, and ODBASE 2005, Cyprus.

[Wache et al., 2004] Wache, H., Serafini, L., and Garćıa-Castro, R. (2004). Survey of
Scalability Techniques for Reasoning with Ontologies. Deliverable D2.1.1, Knowledge
Web Project (FP6-507482).

[Wang et al., 2006] Wang, X., Vitvar, T., Kerrigan, M., and Toma, I. (2006). A QoS-aware
Selection Model for Semantic Web Services. In Proc. of the 4th International Conference
on Service Oriented Computing (ICSOC), December, 2006, Chicago, USA.

[Weber et al., 2007] Weber, I., Hoffmann, J., Mendling, J., and Nitzsche, J. (2007). To-
wards a Methodology for Semantic Business Process Modeling and Configuration. In Proc.
of the 2nd International Workshop on Business Oriented Aspects concerning Semantics
and Methodologies in Service-oriented Computing (SeMSoC 2007), Vienna, Austria.

[Weerawarana et al., 2005] Weerawarana, S., Curbera, F., Leymann, F., Storey, T., and
Ferguson, D. F. (2005). Web Services Platform Architecture: SOAP, WSDL, WS-Policy,
WS-Addressing, WS-BPEL, WS-Reliable Messaging, and More. Prentice Hall PTR.

[Wessels, 2001] Wessels, D. (2001). Web Caching. O’Reilly & Associates Inc.

http://www.w3.org/TR/ws-policy�

Bibliography 255

[Wetzstein et al., 2007] Wetzstein, B., Ma, Z., Filipowska, A., Kaczmarek, M., Bhiri, S.,
Losada, S., Lopez-Cob, J.-M., and Cicurel, L. (2007). Semantic Business Process Manage-
ment: A Lifecycle Based Requirements Analysis. In Proc. of the Workshop on Semantic
Business Process and Product Lifecycle Management (SBPM-2007) at the ESWC 2007,
Innsbruck, Austria.

[Wilson and Keil, 1999] Wilson, R. A. and Keil, F. C. (1999). The MIT Encyclopedia of
the Cognitive Sciences. MIT Press, Cambridge, MA (USA).

[Wooldridge and Rao, 1999] Wooldridge, M. and Rao, A. (1999). Foundations of Rational
Agency. Kluwer Academic Publishers.

[Wu et al., 2003] Wu, D., Parsia, B., E., S., Hendler, J., and Nau, D. (2003). Automating
DAML-S Web Services Composition Using SHOP2. In Proceedings of 2nd International
Semantic Web Conference (ISWC 2003), Sanibel Island, Florida.

[Zaremba and Bussler, 2005] Zaremba, M. and Bussler, C. (2005). Towards Dynamic Exe-
cution Semantics in Semantic Web Services. In Proceedings of the WWW 2005 Workshop
on Web Service Semantics: Towards Dynamic Business Integration.

[Zaremba et al., 2005] Zaremba, M., Moran, M., and Haselwanter, T. (2005). WSMX
Architecture. Final Working Draft D13.4, WSMX. 13 June 2005, online: www.wsmo.org/
TR/d13/d13.4/.

[Zaremba et al., 2006] Zaremba, M., Vitvar, T., Moran, M., and Haselwanter, T. (2006).
WSMX Discovery for the SWS Challenge. In Proc. of the Semantic Web Services Chal-
lenge Phase III Workshop at the ISWC 2006, Athens, Georgia, USA.

[Zaremski and Wing, 1997] Zaremski, A. M. and Wing, J. M. (1997). Specification Match-
ing of Software Components. ACM Transactions on Software Engineering and Method-
ology, 6(4):333–369.

www.wsmo.org/TR/d13/d13.4/�
www.wsmo.org/TR/d13/d13.4/�

Appendix A

Appendix for Chapter 4

A.1 Proof for Proposition 4.1

Proposition 4.1 in Section 4.2.2 defines the formal meaning of the representation of a func-
tional description by the FOL structure DFOL = (Σ?, Ω?, IN , φD) where φD is a single FOL
formula of the form [φpre]ΣD→Σpre

D
⇒ φeff . It states that there is a bijection between the

logical models of DFOL and the possible executions of a Web service W with W |= D such
that every T ∈ {T }W is described by a Σ?-interpretation that is a model of DFOL.

A functional description D = (Σ?,Ω, IN , φpre, φeff) describes the overall functionality
that is provided by a Web service or requested by a goal, and its formal semantics is defined
on the basis of a state-based model where we consider T = (s0, sm) as the abstraction of
the actual executions of Web services that are observable as finite sequences of states. The
purpose of the representation of functional descriptions by DFOL is to facilitate reasoning
on functional descriptions in terms of conventional model-theoretic semantics. As the basis
for this, the following formally defines the correspondence between the state-based model
and the first-order logic framework that does not encompass the notion of states.

We commence with the correspondence of an abstract sequence of states T = (s0, sm) as
an execution of a Web service and a Σ?-interpretation I that assigns objects of the universe
U to the non-logical symbols in a formula. We consider I to semantically formally describe
T = (s0, sm) if I defines the objects that exist at both the start-state s0 and the end-state
sm. The following defines this by introducing the notion of semantic similarity, denoted by
I ' T , as the mapping between the state-based and the static formalisms. We here use
the surjective function ω := s → ModΣ(Ω,U)× P(U) that assigns a Σ?-interpretation to a
particular state s of the world as defined in [Keller et al., 2006b].

256

A.1. Proof for Proposition 4.1 257

Definition A.1. Let T = (s0, sm) be the abstraction of a finite sequence of states with
the start-state s0 and the end-state sm. Let Σ? = ΣS ∪ ΣD ∪ Σpre

D be a signature over
first-order logic that consists of static symbols ΣS, dynamic symbols ΣD, and their pre-
variants Σpre

D . Let I be a Σ?-interpretation that assigns objects of the universe U , and let
ω : S → ModΣ(Ω,U)×P(U) be a surjective function that assigns such a Σ?-interpretation
to a state s that is observable in the world.

We define the semantic description of T = (s0, sm) by a Σ?-interpretation I as

I ' T iff . (i) for all predicate symbols α ∈ Σ? with the arity n holds
∀?x1, . . . , ?xn ∈ U . (?x1, . . . , ?xn) ∈ (ω(s0) ∪ ω(sm))〈α〉

⇔ (?x1, . . . , ?xn) ∈ I〈α〉.
(ii) for all function symbols f ∈ Σ? with the arity n holds

∀?x1, . . . , ?xn, ?y ∈ U . (ω(s0) ∪ ω(sm))〈f(?x1, . . . , ?xn) =?y〉
⇔∈ I〈f(?x1, . . . , ?xn) =?y〉.

This states that a Σ?-interpretation I formally describes an abstract sequence of states
T = (s0, sm) if I assigns all predicate and function symbols to the same objects that
exist in the start-state s0 and in the end-state sm. On this basis, we can now define the
conditions under which a FOL formula φ properly represents a functional description D
whose formal semantics are defined in a state-based model. Essentially, this is given if
there is a one-to-one correspondence between the models of φ and the executions of a Web
service W that provides the functionality described by D. The following defines this by
extending the notion of semantic simulation to a mapping between a FOL formula φ and a
functional description D, denoted by φ ' D. We recall that every T ∈ {T }W is unique (cf.
Definition 4.2), and that W |= D is given if for every T ∈ {T }W it holds that if s0 |= φpre

then sm |= φeff (cf. Definition 4.5).

Definition A.2. Let W be a Web service and let {T }W be the set of all its abstract execu-
tions. Let D = (Σ?,Ω, IN , φpre, φeff) be a functional description, and let β : (?i1, . . . , ?in) →
U be an input binding for D. Let φ be a first-order logic formula that is defined over Σ?.

We define the semantic simulation of D by a first-order logic formula φ as

φ ' D iff . for all Web Services W with W |= D under all input bindings β:
(i) for all T ∈ {T }W there is a Σ?-interpretations I such that

if I ' T then I |= φ, and
(ii) for all Σ-interpretations I there is a T ∈ {T }W such that

if I |= φ then I ' T .

258 Appendix A. Appendix for Chapter 4

This provides the correctness criterion for a first-order logic formula to properly rep-
resent a functional description D while maintaining its formal meaning. We now can use
this to show that DFOL is a FOL structure that satisfies these conditions. Recalling from
Definition 4.6, DFOL = (Σ?, Ω?, IN , φD) is a representation of D that is defined over the
same signature Σ? and the same background ontology Ω extended by the pre-variants of
dynamic symbols, and it defines the same input variables IN that occur as free variables in
both the precondition φpre and in the effect φeff . The only difference is that φD is a single
FOL formula of the form [φpre]ΣD→Σpre

D
⇒ φeff wherein the renaming function [φ]ΣD→Σpre

D

replaces the dynamic symbols that occur in the precondition φpre by their pre-variants.

Proposition A.1. Let D = (Σ?, Ω, IN , φpre, φeff) be a functional description, and let
DFOL = (Σ?, Ω?, IN , φD) be a FOL structure that represents D.

It holds that DFOL ' D

Proof. We need to show that clauses (i) and (ii) of Definition A.2 hold for DFOL and D.
For this, we consider the executions of a Web service W in a not changing world under
three different input bindings β1, β2, β3 which cover all relevant cases:
〈1〉 for T (β1) = (s0, sm): s0, β1 |=A φpre and sm, β1 |=A φeff

〈2〉 for T (β2) = (s0, sm): s0, β2 6|=A φpre

〈3〉 for T (β3) = (s0, sm): s0, β3 |=A φpre and sm, β3 6|=A φeff .
In case 〈1〉, the execution T (β1) satisfies the condition for W |= D because the start-state
s0 satisfies the precondition φpre and the end-state sm satisfies the effect φeff . There must
be a Σ?-interpretation I under β1 that is a model of DFOL such that I(β1) ' T (β1)
because (i) if I, β |= φpre and I, β |= φeff then I, β |= φD, and (ii) DFOL defines exactly
the same non-logical symbols in φpre and φeff . The renaming function [φ]ΣD→Σpre

D
ensures

that the dynamic symbols and their pre-variants which occur in D are specified by distinct
symbols; this is merely a symbol substitution, so that if s0, β |=A φpre then also s0, β |=A
[φpre]Σpre

D →ΣD
. Hence, the same objects that exist in the start-state s0 and the end-state sm

of T (β1) must be describable by a Σ?-interpretation I(β1) such that I(β1) |= φD. Then,
it holds that I(β1) ' T (β1) in accordance to Definition A.1. This proves clause (i) of
Definition A.2 hold for DFOL. This correlation holds for all executions of a Web service W

with W |= D which are of type T (β1). Because each of the abstract executions of a Web
service are distinct, for each T ∈ {T }W there must be a different Σ?-interpretation I that
is a model of DFOL and for which I ' T holds. Under any input binding β, if there is a
Σ?-interpretation I(β) with I(β) |= φD but I(β) 6' T (β), then this T does not denote an
execution of a Web service W with W |= D; the same holds if I(β) ' T (β) but I(β) 6|= φD.
This shows that clause (ii) of Definition A.2 holds for DFOL.

A.1. Proof for Proposition 4.1 259

In case 〈2〉, the start-state of T (β2) does not satisfy the precondition defined in D.
Formally, T (β2) satisfies the condition for W |= D, and also a Σ?-interpretation I(β2) with
I(β2) ' T (β2) is a model of DFOL. However, we can not make any statement about the
end-state sm of T (β2) because either sm, β2 |=A φeff or sm, β2 6|=A φeff can hold. Because
of the same reasons as above, it holds for both cases that if I(β2) ' T (β2) then also
I(β2) |= φD and vice versa. Hence, DFOL ' D holds for executions of Web services of
the type of T (β2). However, such a T is not considered as a possible solution for a goal
because the goal instantiation condition GI(G, β) |= G requires that the precondition of
DG is satisfied.

Finally, case 〈3〉 handles the situation where the precondition is satisfied but the effect
is not. Here, T (β3) does not satisfy the condition for W |= D, and also a Σ?-interpretation
I(β3) with I(β3) ' T (β3) is a not a model of DFOL because if Iβ |= φpre and Iβ 6|= φeff

then Iβ 6|= φD. This substantiates the proof as the negative case: if a T ∈ {T }W can not be
simulated by a model of DFOL or if a model of DFOL does not correspond to a T ∈ {T }W ,
then W does not provide the functionality described by D.

In order to avoid the situations where it is not possible to make a clear statement about the
behavior of a Web service, we can define a stronger representation of a functional descrip-
tions as DFOL+ = (Σ?,Ω?, IN , φD+) where φD+ is a FOL formula of the form [φpre]ΣD→Σpre

D
∧

φeff . This defines a logical conjunction between the precondition and the effect formulae
instead of the implication defined in DFOL. We refer to this as the conjunctive semantics of
a functional description. Here, only those sequences of states T = (s0, sm) for which both
the precondition and the effect are satisfied correspond to models of DFOL+. This means
that only those T ∈ {T }W of the type discussed in case 〈1〉 of the above proof are con-
sidered, while those discussed in case 〈2〉 are neglected because they can not be described
by a model of DFOL+. In consequence, the FOL representation DFOL+ of a functional
descriptions logically entails DFOL as the one that we have discussed above.

Proposition A.2. Let D = (Σ?, Ω, IN , φpre, φeff) be a functional description. Let DFOL =
(Σ?, Ω?, IN , φD) be the representation of D where φD := [φpre]ΣD→Σpre

D
⇒ φeff , and let

DFOL+ = (Σ?, Ω?, IN , φD+) be the representation of D where φD+ is a FOL formula of the
form [φpre]ΣD→Σpre

D
∧ φeff .

It holds that DFOL+ |= DFOL.

260 Appendix A. Appendix for Chapter 4

A.2 Proof for Proposition 4.3

Proposition 4.3 in Section 4.3.1 defines constraints on the modeling of functional descrip-
tions and the used domain ontologies in order to ensure the decidability of the semantic
matchmaking techniques. In particular, it ensures that the proof obligations for the five
matching degrees defined in Table 4.2 remain in the Bernays–Schönfinkel fragment of FOL
and thus are decidable. For this, it is required that:

(i) Ω? as well as φpre, φeff ∈ DG,DW do not contain any function symbols
(ii) all formulae φ ∈ Ω? have a ∃ ∗ ∀∗ quantifier prefix in prenex normal form
(iii) φDG and φDW do not have any existential quantifier in prenex normal form.

Proof. We need to show that the three constraints ensure that the matchmaking conditions
for all five matching degrees remain in the Bernays–Schönfinkel class, which covers all FOL
formulae that (1) do not contain function symbols and (2) have a ∃ ∗ ∀∗ quantifier prefix
when written in prenex normal form.

We commence with the plugin(DG,DW) degree, whose condition is defined as Ω? |=
∀β. φDG ⇒ φDW (cf. Table 4.2). We can proof this by showing the unsatisfiability of the
FOL formula

∧
Ω?∪¬(∀β, ∀−−−→vother. φDG ⇒ φDW) where −−−→vother ∈ Vfree\(IN G∪IN W). Clause

(ii) requires that all formula in the domain ontology have a ∃ ∗ ∀∗ quantifier prefix when
written in prenex normal form, so that in combination with clause (i) every formula in the
domain ontology Ω can be expressed in the Bernays–Schönfinkel fragment of FOL and thus∧

Ω? ∈ FOLBS is given. For the remaining part, clause (iii) requires that both functional
descriptions DG and DW have only universal quantifiers when their representation as a single
FOL formula with φD = [φpre]ΣD→Σpre

D
⇒ φeff is written in prenex normal form. Let us

denote this by ∀−→g . φDG(−→g), and ∀δ(−→w). φDW (δ(−→w)) where δ(−→w) is a variable substitution
to ensure that distinct objects are considered for the goal template and the Web service
description. We then can transform the right hand side of the proof obligation as follows:

¬(∀β, ∀−−−→vother. (∀−→g . φDG(−→g) ⇒ ∀δ(−→w). φDW (δ(−→w))) (0)
⇔ ∃β, ∃−−−→vother. ¬(∀−→g . φDG(−→g) ⇒ ∀δ(−→w). φDW (δ(−→w))) (1)

⇔ ∃β, ∃−−−→vother. ¬(¬∀−→g . φDG(−→g) ∨ ∀δ(−→w). φDW (δ(−→w))) (2)

⇔ ∃β, ∃−−−→vother,∀−→g . φDG(−→g) ∧ ¬(∀δ(−→w). φDW (δ(−→w))) (3)

⇔ ∃β, ∃−−−→vother,∀−→g . φDG(−→g) ∧ ∃δ(−→w). ¬φDW (δ(−→w)) (4)

⇔ ∃β, ∃−−−→vother,∀−→g , ∃δ(−→w). φDG(−→g) ∧ ¬φDW (δ(−→w)) (5)

⇔ ∃β, ∃−−−→vother,∃δ(−→w), ∀−→g . φDG(−→g) ∧ ¬φDW (δ(−→w)) (6)

A.2. Proof for Proposition 4.3 261

We see that the resulting FOL formula is in the Bernays–Schönfinkel class, because
all existential quantifiers precede the universal quantifiers and clause (i) ensures that no
function symbols occur in φDG or in φDW . The first five steps of the transformation follow
the conventional rules for moving quantifiers and resolving implications in order to transform
a FOL formula into prenex normal form. In the last step, we can change the order of
the quantifiers ∀−→g ∃δ(−→w) to ∃δ(−→w)∀−→g because the variable substitution δ(−→w) ensures that
variables which possibly occur as locally bound variables in both φDG and φDW are explicitly
considered as distinct objects in the proof obligation.

This shows that three constraints on the modeling of the background ontology Ω and the
functional descriptions facilitates the evaluation of the condition for the plugin(DG,DW)
matching degree on the basis of a FOL formula that remains in the Bernays–Schönfinkel
class and thus is decidable. The same holds analogously for the subsume(DG,DW) de-
gree that can be evaluated by proving the unsatisfiability of the FOL formula

∧
Ω? ∪

¬(∀β, ∀−−−→vother. φDW ⇒ φDG). Here,
∧

Ω? ∈ FOLBS is given because of the clauses (i) and
(ii), and clause (iii) ensures that the transformation of the right hand side to prenex nor-
mal formal will result in the formula ∃β, ∃−−−→vother, ∃δ(−→g),∀−→w . φDW (−→w) ∧ ¬φDG(δ(−→g)) ∈
FOLBS . In consequence, the modeling constraints also ensure that the condition for the
exact(DG,DW) degree is decidable: under the assumption that the functional descriptions
are consistent it holds that exact(DG,DW) ⇔ plugin(DG,DW) ∧ subsume(DG,DW) (cf.
Proposition 4.2), and if the conditions for both plugin(DG,DW) and subsume(DG,DW) are
decidable then also their conjunction is decidable. For the overall proof obligation, we need
to define three variable substitutions analogous to φDW as explained above.

The condition for the intersect(DG,DW) degree requires that ∃β.
∧

Ω? ∧ φDG ∧ φDW

is satisfiable. Here, the modeling constraints ensure that the prenex normal form of the
proof obligation is a FOL formula of the form ∃β, ∀−−−→vother, ∀−→g , ∀δ(−→w).

∧
Ω? ∧ φDG(−→g) ∧

φDW δ(−→w), which is in the Bernays–Schönfinkel class and therewith decidable. Analogously,
the condition for the disjoint(DG,DW) degree can be evaluated by the proof obligation
∀β, ∀−−−→vother, ∀−→g , ∀δ(−→w). ¬(

∧
Ω? ∧ φDG(−→g) ∧ φDW δ(−→w)) whose prenex normal form only

contains universal quantifiers, thus also is in Bernays–Schönfinkel class and therewith is
decidable. This completes the proof.

262 Appendix A. Appendix for Chapter 4

A.3 Proof for Theorem 4.1

Theorem 4.1 in Section 4.3.2 defines the integrated matchmaking conditions for Web service
discovery on the goal instance level in our two-phase discovery framework. It states that
a Web service W is usable under functional aspects to solve a goal instance GI(G, β) with
GI(G, β) |= G under consideration of the matching degree between W and the correspond-
ing goal template G if and only if:

(i) exact(DG,DW) or
(ii) plugin(DG,DW) or
(iii) subsume(DG,DW) and

∧
Ω? ∧ [φDW]β is satisfiable, or

(iv) intersect(DG,DW) and
∧

Ω? ∧ [φDG]β ∧ [φDW]β is satisfiable.

Proof. We commence with clause (iv) which defines the conditions on the functional us-
ability of W under the intersect matching degree between W and the corresponding goal
template G. This is the weakest degree under which the basic condition for a match on the
goal template level is satisfied (cf. clause (i) of Definition 4.3), and it requires the complete
matching on the goal instance level from Definition 4.8 to be performed at runtime. The
other matching degrees under which match(G,W) is given can be understood as special-
izations of the intersect degree with respect to their formal relations, cf. Proposition 4.2.
We also recall that GI(G, β) |= G is only given if the input binding β defined in the goal
instance GI(G, β) satisfies the functional description DG of the corresponding goal template
G (cf. Definition 4.7), and that [φD]β is the β-instantiation of a functional description D
wherein every occurrence of each IN -variable is replaced by the concrete value assignment
defined in the input binding β (cf. Definition 4.8).

The intersect(DG,DW) is given if there is an input binding β under which
∧

Ω?∧φDG ∧
φDW is satisfiable, so that there is at least one T1 ∈ ({T }G ∩{T }W) but there can also be a
T2 where T2 ∈ {T }G but T2 6∈ {T }W as well as a T3 where T3 ∈ {T }W but T3 6∈ {T }G. Thus,
if intersect(DG,DW) then W can provide at least one solution for G. For W to be suitable
for a specific goal instance GI(G, β) with GI(G, β) |= G, it must hold that 〈1〉 an execution
of W of type T1 can be triggered when W is invoked with the input binding β defined in
GI(G, β), and 〈2〉 that this execution is a solution for the corresponding goal template G

under β. This is given if the union of the formulae Ω?∪{[φDG]β, [φDW]β} is satisfiable, i.e. if
the basic matchmaking condition for the goal instance level from Definition 4.8 is satisfied.
A Σ?-interpretation I for which this holds represents a T which is a solution for GI(G, β)
and can be provided by W if it is invoked with β (cf. Proposition 4.1). If such a common
model does not exists, then there does not exists any T ∈ ({T }G(βG)∩{T }W (βW)), and thus
W is not usable for solving GI(G, β) (cf Definition 4.3).

A.3. Proof for Theorem 4.1 263

We now show clause (iii). The condition for subsume(DG,DW) is defined as Ω? |=
∀β. φDG ⇐ φDW so that {T }G ⊇ {T }W and for all input bindings β holds that if T (β) ∈
{T }W then T (β) ∈ {T }G. This means that every possible execution of W is a solution
for the goal template G. However, for W to be suitable for a goal instance GI(G, β) with
GI(G, β) |= G it must hold that W can actually be invoked with the input binding β

defined in GI(G, β) – otherwise the possible solutions for GI(G, β) are a subset of those of
G which can not be provided by W . To ensure this, it must hold that [φDW]β is satisfiable
under consideration of the background ontology Ω?. If this is given, then every execution
of W when invoked with β is a solution of GI(G, β), i.e. T ∈ {T }GI(G,β) ⇔ T ∈ {T }W (β),
because it holds for all T ∈ {T }W (β) ⊂ {T }W ⊆ {T }G. If [φDW]β is not satisfiable, then we
can not make any statement of the resulting execution of W , and hence we do not consider
W to be suitable for solving GI(G, β).

For clause (ii), the condition for plugin(DG,DW) is defined as Ω |= ∀β. φDG ⇒ φDW .
As the opposite of the subsume degree, this means that {T }G ⊆ {T }W and for all input
bindings β holds that T (β) ∈ {T }G ⇒ T (β) ∈ {T }W , so that every solution for G can be
provided by W . Under this degree, W is usable for every possible goal instance GI(G, β)
with GI(G, β) |= G because (1) {T }GI(G,β) ⊂ {T }G ⊆ {T }W , and (2) for each input
binding β holds that if T ∈ {T }GI(G,β) then T ∈ {T }W (β). We thus do not need to perform
any additional matchmaking at runtime for Web services that are usable under the plugin
degree for the corresponding goal template of a goal instance. The same holds for the exact
matching degree between whose condition is defined as Ω? |= ∀β. φDG ⇔ φDW . Here, it
holds that {T }GI(G,β) ⊂ {T }G and {T }G = {T }W , and for each β holds if T ∈ {T }GI(G,β)

then T ∈ {T }W (β). This proves clause (i) of the theorem.
The disjoint(DG,DW) degree is given if ∃β.

∧
Ω? ∧ φDG ∧ φDW is unsatisfiable, which

means that there does not exists any possible execution of W that is a solution for the goal
template G. In consequence, there also can not exist any execution of W that is a solution for
a goal instance GI(G, β) with GI(G, β) |= G because it then holds that {T }GI(G,β) ⊂ {T }G.
Because ¬intersect(DG,DW) ⇔ disjoint(DG,DW) and thus also disjoint(DG,DW) =>

¬(exact(DG,DW)∨plugin(DG,DW)∨ subsume(DG,DW)), cf. Proposition 4.2, clauses (i) -
(iv) define all possible situations wherein W is usable for solving a goal instance GI(G, β).
This completes the proof.

Appendix B

Appendix for Chapter 5

B.1 Proof for Theorem 5.1

Theorem 5.1 in Section 5.2.1 defines the inference rules of the form d(Gi, Gj)∧ d(Gi,W) ⇒
d(Gj ,W) for all possible situations that can occur between between two semantically similar
goal templates and the usability degree for Web services. These rules provide the logical
basis for the SDC technique, in particular for managing and exploiting the SDC graph.

The inference rules result from the formal definition of the similarity degrees d(Gi, Gj)
between two goal templates Gi, Gj , and the matching degrees d(G,W) that denote the
usability of a Web Service W for a goal template G. The conditions for both types of
matching degrees are defined such they consider the relationship of the individual execu-
tions of a Web service, respectively the individual solutions for goals (see Section 4.3.1).
However, for proving Theorem 5.1 it is sufficient to merely consider the set-theoretic rela-
tions. For this, the following table shows the definitions of the matching degrees between
two functional descriptions D1,D2 and their meaning in terms of set-theoretic criteria; we
define the plugin and the subsume degree to denote true subset relationships because we
always use the highest possible degree in order to precisely denote the actual relationship.

Degree Definition Meaning

exact(D1,D2) Ω? |= ∀β. φD1 ⇔ φD2 {T }D1 = {T }D2

plugin(D1,D2) Ω? |= ∀β. φD1 ⇒ φD2 {T }D1 ⊂ {T }D2

subsume(D1,D2) Ω? |= ∀β. φD1 ⇐ φD2 {T }D1 ⊃ {T }D2

intersect(D1,D2) ∃β.
∧

Ω? ∧ φDG ∧ φDW is satisfiable {T }D1 ∩ {T }D2 6= ∅
disjoint(D1,D2) ∃β.

∧
Ω? ∧ φDG ∧ φDW is unsatisfiable {T }D1 ∩ {T }D2 = ∅

264

B.1. Proof for Theorem 5.1 265

Proof. We commence with the similarity degree exact(G1, G2). This denotes that {T }G1 =
{T }G2 . Here, the usability of every Web service W is the same for G1 and G2: if exact(G1,W),
then {T }G1 = {T }W = {T }G2 so that also exact(G2,W), if plugin(G1,W) then {T }G1 ⊂
{T }W and hence also {T }G2 ⊂ {T }W so that plugin(G2,W); the same trivially holds for
subsume(G1,W), intersect(G1, W), and disjoint(G1,W). This proves the rules 1.1 – 1.5.

We now discuss the inference rules for the similarity degree plugin(G1, G2). This denotes
the situation where {T }G1 ⊂ {T }G2 . For the usability of a Web service W for G2 it holds:
〈1〉 every Web service W that is usable for G1 is also usable for G2 because if ∃T . T ∈
({T }G1∩{T }W) then also ∃T . T ∈ ({T }G2∩{T }W), i.e. whenever the usability degree of W

for G1 is either exact, plugin, subsume, or intersect so that the condition for match(G1,W)
is satisfied then also match(G2,W) holds because {T }G1 ⊂ {T }G2 .
〈2〉 exact(G1,W) defines that {T }G1 = {T }W . Because of {T }G1 ⊂ {T }G2 it holds that
{T }G2 ⊃ {T }W , and thus subsume(G2,W) is the only possible usability degree of W for
G2. There can not be any T ∈ {T }W and T 6∈ {T }G2 such that intersect(G2,W) can not
hold; also, disjoint(G2,W) can not hold because of 〈1〉. This proves rule 2.1.
〈3〉 subsume(G1,W) defines that {T }G1 ⊃ {T }W . Because then {T }W ⊂ {T }G1 ⊂ {T }G2 ,
the only possible usability degree of W for G2 is subsume(G2, W); this shows rule 2.2.
〈4〉 plugin(G1,W) defines that {T }G1 ⊂ {T }W . Here, the usability degree of W for G2 can
be either exact if {T }G2 = {T }W , plugin if {T }G2 ⊂ {T }W , subsume if {T }G2 ⊃ {T }W ,
or intersect if there exists a T such that T ∈ {T }W and T 6∈ {T }G2 ; it can not be disjoint
because of 〈1〉. This proves the rules under 2.3.
〈5〉 intersect(G1,W) defines that {T }G1 ∩ {T }W 6= ∅. Because {T }G1 ⊂ {T }G2 , it also
holds that {T }G2 ∩ {T }W 6= ∅. Here, the only possible usability degrees of W for G2 are
subsume if {T }G2 ⊃ {T }W , or intersect otherwise. It can not be exact or plugin because
then it would hold that T ∈ ({T }G1 ⊆ {T }W) – which contradicts the matching condition
for intersect(G1,W). This proves rule 2.4.
〈6〉 disjoint(G1,W) defines that {T }G1 ∩ {T }W = ∅. Under this similarity degree, we only
know that W can not provide any solution for G1. However, W might be able to provide a
solution for G2 such that ∃T ∈ {T }W ∩{T }G2 , but we can not infer the usability degree of
such a W from plugin(G1, G2) and disjoint(G1,W) This relates to clause 2.5.

Next, we discuss the rules under subsume(G1, G2) which denotes the situation where
{T }G1 ⊃ {T }G2 . Here, the following holds for inferring the usability of W for G2:
〈1〉 if exact(G1,W) such that {T }G1 = {T }W it holds that {T }W ⊃ {T }G2 . Hence, the only
possible usability degree of W for G2 is plugin(G2,W); it can neither be exact, subsume,
nor intersect because {T }W = {T }G1 , {T }G1 ⊃ {T }G2 , and thus also not disjoint. Analog,

266 Appendix B. Appendix for Chapter 5

if plugin(G1,W) then {T }W ⊃ {T }G1 ⊃ {T }G2 so that also here plugin(G2, W) is the only
possible usability degree. This proves the rules 3.1 and 3.2.
〈2〉 subsume(G1,W) defines that {T }G1 ⊇ {T }W . Because {T }W can be any subset of
{T }G1 , here all five usability degrees are possible for W and G2. In particular, W can be
not usable for G2 if ¬∃T ∈ ({T }G2 ∩ {T }W). This shows rule 3.3.
〈3〉 intersect(G1,W) denotes that ∃T1 ∈ ({T }G1 ∩ {T }W) but there can be a T2 ∈ {T }G1

but T2 6∈ {T }W as well as a T3 6∈ {T }G1 but T3 ∈ {T }W . The possible degrees under
which W is usable for G2 are plugin(G2,W) if {T }G2 ⊂ {T }W , or intersect(G2,W) if
∃T ∈ ({T }G2 ∩ {T }W). W might also be not usable, i.e. disjoint(G2,W), if the condition
for the intersect degree is not satisfied. However, the usability can not be subsume and
hence also not exact because this would require {T }W ⊆ {T }G2 ⊆ G1 – which contradicts
the condition of intersect(G1,W) under subsume(G1, G2). This proves rule 3.4.
〈4〉 if disjoint(G1,W) then also disjoint(G2,W) because {T }G1 ∩{T }W = ∅ and thus also
{T }G2 ∩ {T }W = ∅ because {T }G1 ⊃ {T }G2 . This proves rule 3.5.

We now turn towards the similarity degree intersect(G1, G2) which denotes that {T }G1∩
{T }G2 6= ∅ and that there are non-common solution for G1 and G2:
〈1〉 if exact(G1,W), then the only possible usability degree of W for G2 is intersect(G2,W)
because ∃T .T ∈ ({T }G1 ∩ {T }G2) and {T }G1 = {T }W . This proves rule 4.1.
〈2〉 if plugin(G1,W) such that {T }G1 ⊂ {T }W , then the only possible usability degrees of
W for G2 are plugin(G2,W) if {T }G2 ⊂ {T }W or intersect(G1,W) otherwise. It can not be
subsume(G2,W) and hence not exact(G2,W) because this would require {T }G2 ⊃ {T }W

which contradicts {T }G1 ⊂ {T }W under intersect(G1, G2) because there exists a T2 such
that T2 ∈ {T }G1 but T2 6∈ {T }G2 . This proves rule 4.2
〈3〉 if subsume(G1,W) such that {T }G1 ⊃ {T }W , then W can be usable for G2 under the
subsume degree if {T }G2 ⊃ {T }W , or under the intersect degree if there is a T such that
T ∈ {T }W but T ∈ {T }G2 ; otherwise, W is not usable so that disjoint(G2,W). However,
the usability degree of W for G2 can not be plugin and hence not exact because this
would require that {T }G2 ⊂ {T }W which contradicts subsume(G1,W) under the intersect
similarity degree. This proves rule 4.3.
〈4〉 under the intersect degree for both the similarity of G1 and G2 as well as for the usability
of W for G1, all five usability degrees are possible for W and G2. In particular, W might
not be usable for G2 if ¬∃T ∈ ({T }G2 ∩ {T }W). This relates to rule 4.4.
〈5〉 disjoint(G1, W) defines that {T }G1 ∩{T }W = ∅. However, W might be able to provide
a solution for G2 such that ∃T ∈ {T }W ∩ {T }G2 , but we can not infer the usability degree
of such a W for G2 from intersect(G1, G2) and disjoint(G1, W). This relates to rule 4.5.

B.1. Proof for Theorem 5.1 267

We finally discuss the implications of similarity degree disjoint(G1, G2) which denotes
the situation where G1 and G2) do not have a common solution, i.e. {T }G1 ∩ {T }G2 =
∅. If the usability of W for G1 is either subsume or exact, then {T }G1 ⊇ {T }W . As
disjoint(G1, G2) defines that {T }G1 ∩ {T }G2 = ∅, W can not be usable in these cases.
This proves the rules 5.1 and 5.2. Under all other usability degrees of W for G1, we can
not make any statement about the usability of W for G2 because there can always be a
T ∈ ({T }G2 ∩{T }W). This means that W might be usable for G2 if it is not usable for G1.
This relates to rules 5.3 – 5.5 and completes the proof.

268 Appendix B. Appendix for Chapter 5

B.2 Proof for Theorem 5.2

Theorem 5.2 in Section 5.2.3 states that the SDC graph SDC = (VG ∪ VW , Esim ∪ Euse)
over a set of goal templates G and a set of Web services W is inferentially complete and
minimal because:

(i) d(x, y) ∈ cl?(ASDC) if and only if d(x, y) is true for G ×W, and
(ii) for all d(x, y) ∈ ASDC : cl?(ASDC \ d(x, y)) ⊂ cl?(ASDC)

where

• ASDC = {d(x, y)|d ∈ {exact,plugin,subsume,intersect}, x ∈ G, y ∈ (G,W), (x, y) ∈
(Esim, Euse)} is the set of atoms defined in SDC

• cl?(ASDC) = {d(x, y)|ASDC ∧ IR |= d(x, y)} is the deductive closure of ASDC over
IR as the set of all inference rules defined in Theorem 5.1.

Proof. We commence with clause (i) which defines the inferential completeness of the SDC
graph. By definition, every atom d(x, y) ∈ ASDC is true for G × W because every arc
in SDC represents the result of semantic matchmaking on formal functional descriptions:
Esim defines the subsumption hierarchy of G in a redundance-free manner (cf. clause (iii) in
Definition 5.2), and Euse is the minimal set of arcs to denote all situations where d(G,W) 6=
disjoint (cf. clause (iv) in Definition 5.2). The deductive closure cl?(ASDC) is the set of all
atoms d(x, y) ∈ ASDC ∪{d?(x, y)} where {d?(x, y)} is the set of atoms that are not explicitly
defined in SDC but can be deduced from inference rules defined in Theorem 5.1.

Such an atom d?(x, y) is true for G × W when all IR rules hold under d?(x, y);
then, it must describe a correct relationship between a goal template and a Web service.
For the situation where a goal template G1 is a parent of G2 and there is a Web ser-
vice W whose usability degree for G1 is plugin, the following atoms are defined in SDC
graph: subsume(G1, G2), plugin(G1,W) ∈ ASDC . Rule 3.2 from Theorem 5.1 states that
subsume(G1, G2) ∧ plugin(G1,W) ⇒ plugin(G2,W), so that the atom plugin(G2,W) ∈
cl?(ASDC), and this is true for G ×W because it describes the correct usability degree of
W for G2. For this, also the opposite rule plugin(G2, G1)∧plugin(G2,W) ⇒ plugin(G1,W)
is true, so that clause (i) holds. In the situations where the IR rules do not allow us to
infer the precise usability degree of W for G2, this is by definition explicitly defined in the
SDC graph. For example, when the usability degree of W for G1 is intersect and G1 is a
parent of G2 in the SDC graph, then the possible usability degrees of W for G2 are plugin,
intersect, or disjoint (cf. rule 3.4 in Theorem 5.1). If this is not disjoint, then there must a
discovery cache arc (G2,W) that defines the precise usability degree (cf. clause (iv) in Def-
inition 5.2). Let us assume that this is intersect, so that the SDC graph defines the atoms

B.2. Proof for Theorem 5.2 269

subsume(G1, G2), intersect(G1,W), intersect(G2,W) ∈ ASDC . Given this, both relevant
inference rules are true: (3.4) subsume(G1, G2) ∧ intersect(G1,W) ⇒ plugin(G2,W) ∨
intersect(G2, W) ∨ disjoint(G2, W), and also (2.4) plugin(G2, G1) ∧ intersect(G2,W) ⇒
subsume(G1,W) ∨ intersect(G2,W) as the opposite one. These rules would allow us to
define the atoms plugin(G2,W), disjoint(G2,W), subsume(G1,W) ∈ cl?(ASDC). However,
non of these atoms is true for G ×W because we always use the highest possible degree to
denote the usability of W for a goal template G in accordance to Proposition 4.2.

The same holds analogously for the other situations where the IR rules do not allow us
to infer the precise usability degree. Thus, cl?(ASDC) defines the total set of atoms which
are true for G ×W: if there is a d?(x, y) which is true for G ×W, then by definition there
must be an arc in SDC from which this atom can be inferred, and any d?(x, y) that is
false for G × W will violate a IR rule. This shows that the SDC graph correctly keeps
all knowledge that is relevant for inferring the precise usability of every Web service for
each existing goal template, which we have defined as the requirement for the inferential
completeness.

We now turn towards clause (ii) which defines the inferential minimality of the SDC
graph. It states that if a single arc is removed from SDC , then its inferential completeness is
disabled because then the respective atom d(x, y) does not exist in ASDC , and in consequence
all the deducible atoms d?(x, y) do not exist in cl?(ASDC). If we remove a goal graph arc
(Gi, Gj) ∈ Esim, then we loose information on the semantic similarity of Gi and Gj and also
can no longer determine the usability of all Web services W for Gj for which the discovery
cache arcs are omitted in the SDC graph; if we remove a discovery cache (G,W) ∈ Euse,
then we loose all relevant knowledge about the usability degree of W for G. On the other
hand, if we add an arc that represents an atom d?(x, y) that can be deduced from the IR
rules and is true for G×W, then by definition this atom is already in the deductive closure
of the initial SDC graph so that cl?(ASDC ∪d(x, y)) = cl?(ASDC); thus, the additional arc is
redundant. This shows that the SDC graph defines all relevant knowledge in a redundance-
free manner, which we have defined as the requirement for the inferential minimality.

270 Appendix B. Appendix for Chapter 5

B.3 Documentation of the SDC Prototype

The following provides the detailed technical documentation of the SDC prototype imple-
mentation presented in Section 5.5.

In accordance to the general usage policy of the WSMX system, the SDC prototype
is implemented as open-source software. Technically, it consists of two Java packages: the
first one provides the implementations for the central components of the SDC technique,
and the second one provides the implementation of the used matchmaking techniques. The
following provides general information on the availability of the SDC prototype software,
and then explains the technical realization in more detail. We also refer to the actual
implementation and the additional documentation available on the accompanying CD-R.

Availability

SDC Homepage: http://www.michael-stollberg.de/phd/

Owner & Contact: Michael Stollberg, http://www.michael-stollberg.de

Nature: Java Application

Platform: JDK 1.5

Licensing: GNU Lesser General Public License (LGPL)

Copy Right: DERI Innsbruck 2007

Version: 1.3, date: 19 October 2007

Download: http://www.michael-stollberg.de//phd/prototype/SDCprototype.zip

Source Control: CVS of the WSMX project (http://wsmx.cvs.sourceforge.net)

Required Libraries: all included in the ”SDCstandalone.zip” archive

• WSMO4J – the WSMO API for Java (wsmo4j.sourceforge.net)

• Apache AXIS 2 – an open source SOAP engine (http://ws.apache.org/axis2)

• Apache Log4J – an open source API for inserting logging statements into Java
code (http://logging.apache.org/log4j).

http://www.michael-stollberg.de/phd/�
http://www.michael-stollberg.de�
http://www.michael-stollberg.de//phd/prototype/SDCprototype.zip�
http://wsmx.cvs.sourceforge.net�
wsmo4j.sourceforge.net�
http://ws.apache.org/axis2�
http://logging.apache.org/log4j�

B.3. Documentation of the SDC Prototype 271

Package: org.deri.wsmx.discovery.caching

This package contains the main classes of the SDC prototype, in particular the imple-
mentations of the three main components SDC Runtime Discoverer, SDC Graph Creator,
and Evolution Manager as defined in Figure 5.12 (see Section 5.5.1). Figure B.1 provides
comprehensive overview in form of a UML class diagram; it consists of the following classes:

SDCResourceManager loads and stores WSML descriptions (ontology, goal, and Web
service descriptions, as well as the SDC Graph Ontology); uses the WSMX Resource
Manager for storage in a file system on the local machine

SDCGraphManager provides the basic facilities for managing the SDC Graph Ontology,
including ontology instance management for SDC graph elements (goal templates,
intersection goal templates, goal graph arcs, discovery cache arcs) and routines for
handling the SDC Graph knowledge base

SDCGraphCreator implements the SDC Graph Creator component with the algorithm
specified in Section 5.3.1

SDCGraphCreatorHelper provides helper methods for the SDC Graph Creator

SDCGraphEvolutionManager implements the Evolution Manager component with the
algorithms specified in Section 5.3.3

GoalInstanceManager creation, management, and validation service for goal instances

GoalInstanceSDCDiscoverer implements SDC Runtime Discoverer component with
the algorithms specified in Section 5.4.

Package: org.deri.wsmx.discovery.caching.matchmaking

This package contains the implementation of the matchmaking techniques used by the SDC
prototype. Figure B.2 provides the UML class diagram, consisting of the following classes:

Matchmaker defines all semantic matchmaking needed for the SDC technique

• uses the Web service VampireInvoker to perform the matchmaking (see below)

• uses the POGenerator for generating the proof obligations (see below)

• the interface Matchmaker defines the method skeletons for all matchmaking
operations needed for the SDC technique; other implementations of this interface
may use different reasoning environments

272 Appendix B. Appendix for Chapter 5

POGenerator generates the TPTP proof obligations on the client side

• a proof obligation is a logical statement which defines a particular matchmaking
operation; this is to be proved by vampire (see Section 4.4)

• the interface POGenerator defines the method skeletons for all types of proof
obligations needed for the SDC technique

• the class POGenerator implements the interface methods and defines the map-
ping between the WSML specifications and the pre-defined TPTP descriptions

VampireInvoker Web service implementation class for invoking vampire on a remote
web server; this is a generic facility for invoking vampire for any proof obligation

• intermediately stores the TPTP proof obligation, invokes vampire for proving
it, and returns the result (as a boolean)

• the Web service is publicly available at http://138.232.65.138:8080/axis2/
services/VampireInvoker?wsdl; Listing B.1 shows the WSDL description that
has been generated with the Java2WSDL tool provided by Apache axis2

VampireInvokerStub client stub for the Web service (generated by Apache axis2).

< wsdl:definitions

xmlns:axis2=”http://matchmaking.caching.discovery.wsmx.deri.org”

xmlns:mime=”http://schemas.xmlsoap.org/wsdl/mime/”

xmlns:http=”http://schemas.xmlsoap.org/wsdl/http/”

xmlns:ns0=”http://matchmaking.caching.discovery.wsmx.deri.org/xsd”

xmlns:soap12=”http://schemas.xmlsoap.org/wsdl/soap12/”

xmlns:ns1=”http://org.apache.axis2/xsd”

xmlns:xs=”http://www.w3.org/2001/XMLSchema”

xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”

xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”

targetNamespace=”http://matchmaking.caching.discovery.wsmx.deri.org”>

<wsdl:documentation>runs a given proof obligation</wsdl:documentation><wsdl:types>

<xs:schema xmlns:ns=”http://matchmaking.caching.discovery.wsmx.deri.org/xsd”

attributeFormDefault=”qualified” elementFormDefault=”qualified”

targetNamespace=”http://matchmaking.caching.discovery.wsmx.deri.org/xsd”>

<xs:element name=”check”> <xs:complexType> <xs:sequence>

<xs:element name=”poContent” nillable=”true” type=”xs:string”/>

</xs:sequence> </xs:complexType> </xs:element>

<xs:element name=”checkResponse”> <xs:complexType> <xs:sequence>

<xs:element name=”return” nillable=”true” type=”xs:boolean”/>

</xs:sequence> </xs:complexType> </xs:element>

</xs:schema></wsdl:types>

<wsdl:message name=”checkMessage”> <wsdl:part name=”part1” element=”ns0:check”/></wsdl:message>

<wsdl:message name=”checkResponse”>

http://138.232.65.138:8080/axis2/services/VampireInvoker?wsdl�
http://138.232.65.138:8080/axis2/services/VampireInvoker?wsdl�

B.3. Documentation of the SDC Prototype 273

<wsdl:part name=”part1” element=”ns0:checkResponse”/></wsdl:message>

<wsdl:portType name=”VampireInvokerPortType”>

<wsdl:operation name=”check”>

<wsdl:input xmlns:wsaw=”http://www.w3.org/2006/05/addressing/wsdl”

message=”axis2:checkMessage” wsaw:Action=”urn:check”/>

<wsdl:output message=”axis2:checkResponse”/>

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name=”VampireInvokerSOAP11Binding” type=”axis2:VampireInvokerPortType”>

<soap:binding transport=”http://schemas.xmlsoap.org/soap/http” style=”document”/>

<wsdl:operation name=”check”>

<soap:operation soapAction=”urn:check” style=”document”/>

<wsdl:input><soap:body use=”literal”/></wsdl:input>

<wsdl:output><soap:body use=”literal”/></wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:binding name=”VampireInvokerSOAP12Binding” type=”axis2:VampireInvokerPortType”>

<soap12:binding transport=”http://schemas.xmlsoap.org/soap/http”

style =”document”/>

<wsdl:operation name=”check”>

<soap12:operation soapAction=”urn:check” style=”document”/>

<wsdl:input> <soap12:body use=”literal”/> </wsdl:input>

<wsdl:output> <soap12:body use=”literal”/> </wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:binding name=”VampireInvokerHttpBinding” type=”axis2:VampireInvokerPortType”>

<http:binding verb=”POST”/>

<wsdl:operation name=”check”>

<http:operation location=”check”/>

<wsdl:input><mime:content type=”text/xml”/> </wsdl:input>

<wsdl:output><mime:content type=”text/xml”/> </wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:service name=”VampireInvoker”>

<wsdl:port name=”VampireInvokerSOAP11port http”

binding=”axis2:VampireInvokerSOAP11Binding”>

<soap:address location=”http://138.232.65.138:8080/axis2/services/VampireInvoker”/>

</wsdl:port>

<wsdl:port name=”VampireInvokerSOAP12port http”

binding=”axis2:VampireInvokerSOAP12Binding”>

<soap12:address location=”http://138.232.65.138:8080/axis2/services/VampireInvoker”/>

</wsdl:port>

<wsdl:port name=”VampireInvokerHttpport1”

binding=”axis2:VampireInvokerHttpBinding”>

<http:address location=”http://138.232.65.138:8080/axis2/rest/VampireInvoker”/>

</wsdl:port>

</wsdl:service>

</ wsdl:definitions >

Listing B.1: WSDL Description of vampire Invoker Web Service

274 Appendix B. Appendix for Chapter 5

Figure B.1: UML Class Diagram of SDC Prototype

B.3. Documentation of the SDC Prototype 275

Figure B.2: UML Class Diagram of Matchmaker used in SDC Prototype

Appendix C

Appendix for Chapter 6

C.1 Resource Descriptions in WSML

The following provides the complete specifications of the domain ontologies as well as the
descriptions of the goal templates and the Web services for the shipment scenario, which
serves as the use case for the performance analysis presented in Section 6.1.

We use WSML FOL as the ontology specification language supported by the SDC proto-
type implementation. The functional descriptions of goals and Web services are here defined
as WSMO capabilities using WSML FOL; we refer to Section 5.5.1 for the translation to
the TPTP representation that is used by vampire for the matchmaking.

Domain Ontologies

The following specifies the two domain ontologies used for describing the goals and Web ser-
vices in the shipment scenario. Listing C.1 shows the location ontology which describes
continents, countries, and cities; below, Listing C.2 shows the shipment ontology.

wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−full”

namespace { ”http://members.deri.org/˜michaels/sdc/swsc−shipment#”,

dc ”http://purl .org/dc/elements/1.1#”,

wsml ”http://www.wsmo.org/wsml/wsml−syntax#” }
ontology ”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/location.wsml”

nonFunctionalProperties

dc#title hasValue ”Location Ontology”

dc#contributor hasValue {”Holger Lausen”, ”Adina Sirbu”,”Michael Stollberg ”}
dc#date hasValue date(2007,03,08)

endNonFunctionalProperties

276

C.1. Resource Descriptions in WSML 277

/∗∗ CONCEPTS ∗∗/

concept Location

nfp

dc#description hasValue ”a location is a physical defined by longitude , latitude , and altitude .”

endnfp

locatedIn impliesType GeographicalArea

concept GeographicalArea

nfp

dc#description hasValue ”a geographical area is a larger area such as a state or country.”

endnfp

name impliesType string

containsLocation impliesType Location

concept Continent subConceptOf GeographicalArea

concept Region subConceptOf GeographicalArea

concept Country subConceptOf GeographicalArea

concept State subConceptOf GeographicalArea

concept City subConceptOf GeographicalArea

/∗∗ AXIOMS ∗∗/

axiom transitivityLocatedIn

nfp

dc#description hasValue ”defines the transitivity of the locatedIn attribute ”

endnfp

definedBy forAll (?L1,?L2,?L2).

?L1[locatedIn hasValue ?L2] and ?L2[locatedIn hasValue ?L3] implies ?L1[locatedIn hasValue ?L3].

axiom locationsInContinentsAreDistinct

nfp

dc#description hasValue ”locations in different continents are disjoint ”

endnfp

definedBy forAll (?C1,?C2,?L).

?C1 memberOf continent and ?C2 memberOf continent and L[locatedIn hasValue ?C1]

implies neg ?L[locatedIn hasValue ?C2].

axiom countryConstraint

nfp

dc#description hasValue ”each country is located in exactly one continent or region (constraint)”

endnfp

definedBy forAll (?C,?X,?Y).

?C memberOf country and ?C[locatedIn hasValue ?X] and ?C[locatedIn hasValue ?Y] implies ?X = ?Y.

axiom cityConstraint

nfp

dc#description hasValue ”each city is located in exactly one country (constraint)”

endnfp

definedBy forAll (?C,?X,?Y).

?C memberOf city and ?C[locatedIn hasValue ?X] and ?X memberOf country and

?C[locatedIn hasValue ?Y] and ?Y memberOf country implies ?X = ?Y.

278 Appendix C. Appendix for Chapter 6

/∗∗ CONTINENTS & REGIONS ∗∗/

instance world memberOf Region

instance africa memberOf Continent

name hasValue ”Africa”

locatedIn hasValue world

instance antarctica memberOf Continent

name hasValue ”Antarctica”

locatedIn hasValue world

instance asia memberOf Continent

name hasValue ”Asia”

locatedIn hasValue world

instance australia memberOf Continent

name hasValue ”Australia”

locatedIn hasValue world

instance europe memberOf Continent

name hasValue ”Europe”

locatedIn hasValue world

instance northAmerica memberOf Continent

name hasValue ”North America”

locatedIn hasValue world

instance southAmerica memberOf Continent

name hasValue ”South America”

locatedIn hasValue world

instance oceania memberOf Region

name hasValue ”Oceania”

locatedIn hasValue world

containsLocation hasValue australia

/∗∗ COUNTIES & STATES (we only list those ones used within the running examples) ∗∗/

instance usa memberOf Country

name hasValue ”United States of America”

locatedIn hasValue northAmerica

instance california memberOf State

name hasValue ”California”

locatedIn hasValue usa

instance germany memberOf Country

name hasValue ”Germany”

locatedIn hasValue europe

instance austria memberOf Country

name hasValue ”Austria”

locatedIn hasValue europe

instance switzerland memberOf Country

name hasValue ”Switzerland”

locatedIn hasValue europe

instance unitedKingdom memberOf Country

name hasValue ”United Kingdom”

locatedIn hasValue europe

instance netherlands memberOf Country

C.1. Resource Descriptions in WSML 279

name hasValue ”Netherlands”

locatedIn hasValue europe

instance luxembourg memberOf Country

name hasValue ”Luxembourg”

locatedIn hasValue europe

instance algeria memberOf Country

name hasValue ”Alegria”

locatedIn hasValue africa

instance ecuador memberOf Country

name hasValue ”Ecuador”

locatedIn hasValue southAmerica

instance china memberOf Country

name hasValue ”China”

locatedIn hasValue asia

/∗∗ CITIES (we only list those ones used within the running examples) ∗∗/

instance sanFrancisco memberOf City

name hasValue ”sanFrancisco”

locatedIn hasValue california

instance newYorkCity memberOf City

name hasValue ”New York City”

locatedIn hasValue usa

instance berlin memberOf City

name hasValue ”Berlin”

locatedIn hasValue germany

instance bristol memberOf City

name hasValue ”Bristol”

locatedIn hasValue unitedKingdom

instance amsterdam memberOf City

name hasValue ”Amsterdam”

locatedIn hasValue netherlands

instance luxembourgCity memberOf City

name hasValue ”Luxembourg”

locatedIn hasValue luxembourg

instance sydney memberOf City

name hasValue ”Sydney”

locatedIn hasValue australia

instance tunis memberOf City

name hasValue ”Tunis”

locatedIn hasValue algeria

instance quito memberOf City

name hasValue ”Quito”

locatedIn hasValue ecuador

instance beijing memberOf City

name hasValue ”Bejing”

locatedIn hasValue china

Listing C.1: Location Ontology

280 Appendix C. Appendix for Chapter 6

wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−full”

namespace { ”http://members.deri.org/˜michaels/sdc/swsc−shipment#”,

dc ”http://purl .org/dc/elements/1.1#”,

loc ”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/location.wsml#”,

wsml ”http://www.wsmo.org/wsml/wsml−syntax#” }
ontology ”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/shipment.wsml”

importsOntology { ”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/location.wsml”}
nonFunctionalProperties

dc#title hasValue ”Shipment Ontology”

dc#contributor hasValue {”Michael Stollberg”}
dc#date hasValue date(2007,03,08)

endNonFunctionalProperties

/∗∗ CONCEPTS ∗∗/

concept Package

weight impliesType WeightClass

size impliesType Size

concept Sender

address impliesType loc#Location

concept Receiver

address impliesType loc#Location

concept shipmentOrder

from impliesType Sender

to impliesType Receiver

item impliesType Package

price impliesType Price

concept Price

amount impliesType wsml#float

currency impliesType Currency

concept Currency

name impliesType wsml#string

symbol impliesType wsml#string

concept WeightClass

nfp

dc#description hasValue ”weights are distinguished in classes of 10 kg. This is a sufficient

abstraction for the intended usage.”

endnfp

includedIn impliesType WeightClass

/∗∗ AXIOMS ∗∗/

axiom transitiveWeightClassInclusion

nfp

dc#description hasValue ”defines the relationship of weight classes ”

endnfp

definedBy forAll (?W1,?W2,?W3).

?W1 memberOf WeightClass and ?W2 memberOf WeightClass and ?W3 memberOf WeightClass

and ?W1[includedIn hasValue ?W2] and ?W2[includedIn hasValue ?W3]

implies ?W1[includedIn hasValue ?W3].

C.1. Resource Descriptions in WSML 281

/∗∗ INSTANCES ∗∗/

instance USD memberOf Currency

name hasValue ”US Dollar”

symbol hasValue ”USD”

instance heavy memberOf WeightClass

includedIn hasValue heavy

instance weightClass70kg memberOf WeightClass

includedIn hasValue heavy

instance weightClass60kg memberOf WeightClass

includedIn hasValue weightClass70kg

instance weightClass70kg memberOf WeightClass

includedIn hasValue weightClass60kg

instance weightClass40kg memberOf WeightClass

includedIn hasValue weightClass50kg

instance weightClass30kg memberOf WeightClass

includedIn hasValue weightClass40kg

instance weightClass20kg memberOf WeightClass

includedIn hasValue weightClass30kg

instance light memberOf WeightClass

includedIn hasValue weightClass20kg

includedIn hasValue light

Listing C.2: Shipment Ontology

Goal Templates

The following shows the functional descriptions of goal templates in the form of WSMO
capability descriptions for goals. We here content ourselves with three goal templates; the
other ones used for the performance analysis tests are defined analog.

wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−full”

namespace { ”http://members.deri.org/˜michaels/sdc/swsc−shipment#”,

dc ”http://purl .org/dc/elements/1.1#”,

wsml ”http://www.wsmo.org/wsml/wsml−syntax/#”,

sho ”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/shipment.wsml#”,

loc ”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/location.wsml#” }
goal ”http://members.deri.org/˜michaels/sdc/swsc−shipment/goals/goaltemplates/gtRoot.wsml”

nfp

dc#title hasValue ”Goal Template gtRoot”

dc#description hasValue ”package shipment from anywhere to anywhere with any weight”

dc#relation hasValue ”http://sws−challenge.org/wiki/index.php/Scenario: Shipment Discovery”

dc#contributor hasValue {”Michael Stollberg”}
endnfp

importsOntology { ”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/shipment.wsml#”,

”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/location.wsml#”}

282 Appendix C. Appendix for Chapter 6

capability gtRootCapability

sharedVariables {?SendLoc,?RecLoc,?Package,?Weight}
precondition definedBy

forAll (?Sender,?Receiver) .

?Sender[address hasValue ?SendLoc] memberOf sho#Sender and

?SendLoc[locatedIn hasValue loc#world] memberOf loc#Location and

?Receiver [address hasValue ?RecLoc] memberOf sho#Receiver and

?RecLoc[locatedIn hasValue loc#world] memberOf loc#Location and

?Package[weight hasValue ?Weight] memberOf sho#Package and

?Weight[includedIn hasValue sho#heavy].

postcondition definedBy

forAll (?O). ?O [from hasValue ?SendLoc,

to hasValue ?RecLoc,

item hasValue ?Package,

price hasValue thePrice] memberOf sho#shipmentOrder.

Listing C.3: WSMO Description of Goal Template gtRoot

wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−full”

namespace { ”http://members.deri.org/˜michaels/sdc/swsc−shipment#”,

dc ”http://purl .org/dc/elements/1.1#”,

wsml ”http://www.wsmo.org/wsml/wsml−syntax/#”,

sho ”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/shipment.wsml#”,

loc ”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/location.wsml#” }
goal ”http://members.deri.org/˜michaels/sdc/swsc−shipment/goals/goaltemplates/gtUS2EU.wsml”

nfp

dc#title hasValue ”Goal Template gtUS2EU”

dc#description hasValue ”package shipment from USA to Europe with any weight”

dc#relation hasValue ”http://sws−challenge.org/wiki/index.php/Scenario: Shipment Discovery”

dc#contributor hasValue {”Michael Stollberg”}
endnfp

importsOntology { ”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/shipment.wsml#”,

”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/location.wsml#”}
capability gtUS2worldCapability

sharedVariables {?SendLoc,?RecLoc,?Package,?Weight}
precondition definedBy

forAll (?Sender,?Receiver) .

?Sender[address hasValue ?SendLoc] memberOf sho#Sender and

?SendLoc[locatedIn hasValue loc#usa] memberOf loc#Location and

?Receiver [address hasValue ?RecLoc] memberOf sho#Receiver and

?RecLoc[locatedIn hasValue loc#europe] memberOf loc#Location and

?Package[weight hasValue ?Weight] memberOf sho#Package and

?Weight[includedIn hasValue sho#heavy].

postcondition definedBy

forAll (?O). ?O[from hasValue ?SendLoc,

to hasValue ?RecLoc,

item hasValue ?Package,

price hasValue thePrice] memberOf sho#shipmentOrder.

Listing C.4: WSMO Description of Goal Template gtUS2EU

C.1. Resource Descriptions in WSML 283

wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−full”

namespace { ”http://members.deri.org/˜michaels/sdc/swsc−shipment/#”,

dc ”http://purl .org/dc/elements/1.1#”,

wsml ”http://www.wsmo.org/wsml/wsml−syntax/#”,

sho ”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/shipment.wsml#”,

loc ”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/location.wsml#” }
goal ”http://members.deri.org/˜michaels/sdc/swsc−shipment/goals/goaltemplates/gtUS2EUlight.wsml”

nfp

dc#title hasValue ”Goal Template gtUS2EUlight”

dc#description hasValue ”package shipment from USA to Europe with light weight”

dc#relation hasValue ”http://sws−challenge.org/wiki/index.php/Scenario: Shipment Discovery”

dc#contributor hasValue {”Michael Stollberg”}
endnfp

importsOntology { ”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/shipment.wsml#”,

”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/location.wsml#”}
capability gtUS2worldCapability

sharedVariables {?SendLoc,?RecLoc,?Package,?Weight}
precondition definedBy

forAll (?Sender,?Receiver) .

?Sender[address hasValue ?SendLoc] memberOf sho#Sender and

?SendLoc[locatedIn hasValue loc#usa] memberOf loc#Location and

?Receiver [address hasValue ?RecLoc] memberOf sho#Receiver and

?RecLoc[locatedIn hasValue loc#europe] memberOf loc#Location and

?Package[weight hasValue ?Weight] memberOf sho#Package and

?Weight[includedIn hasValue sho#light].

postcondition definedBy

forAll (?O). ?O[from hasValue ?SendLoc,

to hasValue ?RecLoc,

item hasValue ?Package,

price hasValue thePrice] memberOf sho#shipmentOrder.

Listing C.5: WSMO Description of Goal Template gtUS2EUlight

Web Services

The following defines the WSMO capability descriptions of the five Web services in accor-
dance to the the original scenario description of the SWS challenge shipment scenario.

wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−full”

namespace { ”http://members.deri.org/˜michaels/sdc/swsc−shipment#”,

dc ”http://purl .org/dc/elements/1.1#”,

wsml ”http://www.wsmo.org/wsml/wsml−syntax/#”,

sho ”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/shipment.wsml#”,

loc ”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/location.wsml#” }
webService ”http://members.deri.org/˜michaels/sdc/swsc−shipment/webservices/wsMuller.wsml”

nfp

dc#title hasValue ”Muller Shipment Web Service”

284 Appendix C. Appendix for Chapter 6

dc#relation hasValue ”http://sws−challenge.org/wiki/index.php/Scenario: Shipment Discovery#Muller”

dc#contributor hasValue {”Michael Stollberg”}
endnfp

importsOntology { ”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/shipment.wsml#”,

”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/location.wsml#”}
capability wsMullerCapability

sharedVariables {?SendLoc,?RecLoc,?Package,?Weight}
precondition definedBy

forAll (?Sender,?Receiver) .

?Sender[address hasValue ?SendLoc] memberOf sho#Sender and

?SendLoc[locatedIn hasValue loc#usa] memberOf loc#Location and

?Receiver [address hasValue ?RecLoc] memberOf sho#Receiver and

(?RecLoc[locatedIn hasValue loc#africa] memberOf loc#Location or

?RecLoc[locatedIn hasValue loc#europe] memberOf loc#Location or

?RecLoc[locatedIn hasValue loc#northAmerica] memberOf loc#Location or

?RecLoc[locatedIn hasValue loc#asia] memberOf loc#Location) and

?Package[weight hasValue ?Weight] memberOf sho#Package and

?Weight[includedIn hasValue sho#w50lq].

postcondition definedBy

forAll (?O). ?O[from hasValue ?SendLoc,

to hasValue ?RecLoc,

item hasValue ?Package,

price hasValue thePrice] memberOf sho#shipmentOrder.

Listing C.6: WSMO Description of Web Service Muller

wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−full”

namespace { ”http://members.deri.org/˜michaels/sdc/swsc−shipment#”,

dc ”http://purl .org/dc/elements/1.1#”,

wsml ”http://www.wsmo.org/wsml/wsml−syntax/#”,

sho ”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/shipment.wsml#”,

loc ”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/location.wsml#” }
webService ”http://members.deri.org/˜michaels/sdc/swsc−shipment/webservices/wsRacer.wsml”

nfp

dc#title hasValue ”Racer Shipment Web Service”

dc#relation hasValue ”http://sws−challenge.org/wiki/index.php/Scenario: Shipment Discovery#Racer”

dc#contributor hasValue {”Michael Stollberg”}
endnfp

importsOntology { ”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/shipment.wsml#”,

”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/location.wsml#”}
capability wsRacerCapability

sharedVariables {?SendLoc,?RecLoc,?Package,?Weight}
precondition definedBy

forAll (?Sender,?Receiver) .

?Sender[address hasValue ?SendLoc] memberOf sho#Sender and

?SendLoc[locatedIn hasValue loc#usa] memberOf loc#Location and

?Receiver [address hasValue ?RecLoc] memberOf sho#Receiver and

(?RecLoc[locatedIn hasValue loc#africa] memberOf loc#Location or

?RecLoc[locatedIn hasValue loc#europe] memberOf loc#Location or

?RecLoc[locatedIn hasValue loc#northAmerica] memberOf loc#Location or

C.1. Resource Descriptions in WSML 285

?RecLoc[locatedIn hasValue loc#southAmerica] memberOf loc#Location or

?RecLoc[locatedIn hasValue loc#asia] memberOf loc#Location or

?RecLoc[locatedIn hasValue loc#oceania] memberOf loc#Location) and

?Package[weight hasValue ?Weight] memberOf sho#Package and

?Weight[includedIn hasValue sho#w70lq].

postcondition definedBy

forAll (?O). ?O[from hasValue ?SendLoc,

to hasValue ?RecLoc,

item hasValue ?Package,

price hasValue thePrice] memberOf sho#shipmentOrder.

Listing C.7: WSMO Description of Web Service Racer

wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−full”

namespace { ”http://members.deri.org/˜michaels/sdc/swsc−shipment#”,

dc ”http://purl .org/dc/elements/1.1#”,

wsml ”http://www.wsmo.org/wsml/wsml−syntax/#”,

sho ”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/shipment.wsml#”,

loc ”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/location.wsml#” }
webService ”http://members.deri.org/˜michaels/sdc/swsc−shipment/webservices/wsRunner.wsml”

nfp

dc#title hasValue ”Runner Shipment Web Service”

dc#relation hasValue ”http://sws−challenge.org/wiki/index.php/Scenario: Shipment Discovery#Runner”

dc#contributor hasValue {”Michael Stollberg”}
endnfp

importsOntology { ”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/shipment.wsml#”,

”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/location.wsml#”}
capability wsRunnerCapability

sharedVariables {?SendLoc,?RecLoc,?Package,?Weight}
precondition definedBy

forAll (?Sender,?Receiver) .

?Sender[address hasValue ?SendLoc] memberOf sho#Sender and

?SendLoc[locatedIn hasValue loc#usa] memberOf loc#Location and

?Receiver [address hasValue ?RecLoc] memberOf sho#Receiver and

(?RecLoc[locatedIn hasValue loc#africa] memberOf loc#Location or

?RecLoc[locatedIn hasValue loc#europe] memberOf loc#Location or

?RecLoc[locatedIn hasValue loc#northAmerica] memberOf loc#Location or

?RecLoc[locatedIn hasValue loc#southAmerica] memberOf loc#Location or

?RecLoc[locatedIn hasValue loc#asia] memberOf loc#Location or

?RecLoc[locatedIn hasValue loc#oceania] memberOf loc#Location) and

?Package[weight hasValue ?Weight] memberOf sho#Package and

?Weight[includedIn hasValue sho#heavy].

postcondition definedBy

forAll (?O). ?O[from hasValue ?SendLoc,

to hasValue ?RecLoc,

item hasValue ?Package,

price hasValue thePrice] memberOf sho#shipmentOrder.

Listing C.8: WSMO Description of Web Service Runner

286 Appendix C. Appendix for Chapter 6

wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−full”

namespace { ”http://members.deri.org/˜michaels/sdc/swsc−shipment#”,

dc ”http://purl .org/dc/elements/1.1#”,

wsml ”http://www.wsmo.org/wsml/wsml−syntax/#”,

sho ”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/shipment.wsml#”,

loc ”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/location.wsml#” }
webService ”http://members.deri.org/˜michaels/sdc/swsc−shipment/webservices/wsWalker.wsml”

nfp

dc#title hasValue ”Walker Shipment Web Service”

dc#relation hasValue ”http://sws−challenge.org/wiki/index.php/Scenario: Shipment Discovery#Walker”

dc#contributor hasValue {”Michael Stollberg”}
endnfp

importsOntology { ”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/shipment.wsml#”,

”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/location.wsml#”}
capability wsWalkerCapability

sharedVariables {?SendLoc,?RecLoc,?Package,?Weight}
precondition definedBy

forAll (?Sender,?Receiver) .

?Sender[address hasValue ?SendLoc] memberOf sho#Sender and

?SendLoc[locatedIn hasValue loc#usa] memberOf loc#Location and

?Receiver [address hasValue ?RecLoc] memberOf sho#Receiver and

(?RecLoc[locatedIn hasValue loc#africa] memberOf loc#Location or

?RecLoc[locatedIn hasValue loc#europe] memberOf loc#Location or

?RecLoc[locatedIn hasValue loc#northAmerica] memberOf loc#Location or

?RecLoc[locatedIn hasValue loc#southAmerica] memberOf loc#Location or

?RecLoc[locatedIn hasValue loc#asia] memberOf loc#Location or

?RecLoc[locatedIn hasValue loc#oceania] memberOf loc#Location) and

?Package[weight hasValue ?Weight] memberOf sho#Package and

?Weight[includedIn hasValue sho#w50lq].

postcondition definedBy

forAll (?O). ?O[from hasValue ?SendLoc,

to hasValue ?RecLoc,

item hasValue ?Package,

price hasValue thePrice] memberOf sho#shipmentOrder.

Listing C.9: WSMO Description of Web Service Walker

wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−full”

namespace { ”http://members.deri.org/˜michaels/sdc/swsc−shipment#”,

dc ”http://purl .org/dc/elements/1.1#”,

wsml ”http://www.wsmo.org/wsml/wsml−syntax/#”,

sho ”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/shipment.wsml#”,

loc ”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/location.wsml#” }
webService ”http://members.deri.org/˜michaels/sdc/swsc−shipment/webservices/wsWeasel.wsml”

nfp

dc#title hasValue ”Weasel Shipment Web Service”

dc#relation hasValue ”http://sws−challenge.org/wiki/index.php/Scenario: Shipment Discovery#Weasel”

dc#contributor hasValue {”Michael Stollberg”}
endnfp

C.1. Resource Descriptions in WSML 287

importsOntology { ”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/shipment.wsml#”,

”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/location.wsml#”}
capability wsWeaselCapability

sharedVariables {?SendLoc,?RecLoc,?Package,?Weight}
precondition definedBy

forAll (?Sender,?Receiver) .

?Sender[address hasValue ?SendLoc] memberOf sho#Sender and

?SendLoc[locatedIn hasValue loc#usa] memberOf loc#Location and

?Receiver [address hasValue ?RecLoc] memberOf sho#Receiver and

?RecLoc[locatedIn hasValue loc#usa] and

?Package[weight hasValue ?Weight] memberOf sho#Package and

?Weight[includedIn hasValue sho#heavy].

postcondition definedBy

forAll (?O). ?O[from hasValue ?SendLoc,

to hasValue ?RecLoc,

item hasValue ?Package,

price hasValue thePrice] memberOf sho#shipmentOrder.

Listing C.10: WSMO Description of Web Service Weasel

288 Appendix C. Appendix for Chapter 6

C.2 SDC Graph Management Evaluation

The following provides information on the technical realization of the evaluation tests for
the SDC graph management techniques presented in Section 6.1.3.

The tests have been performed with the SDC prototype implementation. In particular, we
tested the SDC Graph Creator component and the Evolution Manager component (see
Appendix B.3 for technical details). The following lists the implementations of the individ-
ual tests, the actually generated SDC graphs, and the log-files of the test runs; all these
resources are available on the accompanying CD-R.

SDC Graph Creation - Top-Down

• Implementation Class (JUnit Test): SDCGraphCreationTestTopDown.java

• created SDC graph (WSML Knowledge Base): sdcGraphOntology-complete.wsml

• log-file: SDCgraphCreation.log

SDC Graph Creation - Other Insertion Order

• Implementation Class (JUnit Test): SDCGraphCreationTestOtherOrder.java

• stepwise created SDC graphs (WSML Knowledge Base): sdcGraph-partial-1.wsml,
sdcGraph-partial-2.wsml, sdcGraph-partial-3.wsml

• log-file: SDCgraphCreationOtherOrder.log

SDC Graph Maintenance

• Implementation Class (JUnit Test): SDCGraphMaintenanceTest.java

• updated SDC graphs (WSML Knowledge Base):
sdcGraphOntology-afterGTremoval.wsml,

sdcGraphOntology-afterGTremoval2.wsml,

sdcGraphOntology-afterWSremoval.wsml,

sdcGraphOntology-afterWSinsertion.wsml

• log-file: SDCgraphMaintenance.log

Below, Listing C.11 provides the complete SDC graph ontology that has been generated for
the SDC graph management tests discussed in Section 6.1.3. This represents the SDC graph
in form of a WSML knowledge base on the basis of the SDC Graph Ontology specified as
specified in Listing 5.19 (see Section 5.5.1).

C.2. SDC Graph Management Evaluation 289

wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−core”

namespace { ”http://members.deri.org/˜michaels/sdc/swsc−shipment#”,

sdc ”http://members.deri.at/˜michaels/ontologies/SDContology.wsml#” ,

goalTemplates ”http://members.deri.org/˜michaels/sdc/swsc−shipment/goals/goaltemplates/”,

webServices ”http://members.deri.org/˜michaels/sdc/swsc−shipment/webservices/”,

dc ”http://purl .org/dc/elements/1.1#”,

wsml ”http://www.wsmo.org/wsml/wsml−syntax#” }

ontology ”http://members.deri.org/˜michaels/sdc/swsc−shipment/SDCgraphOntology.wsml”

nonFunctionalProperties

dc#description hasValue ”SDC Graph Ontology for SWSC shipment scenario”

dc#creator hasValue ”generated by org. deri .wsmx.discovery.caching.SDCGraphCreator”

dc#date hasValue date(2007,10,11)

endNonFunctionalProperties

instance goalTemplate1 memberOf sdc#goalTemplate

description hasValue goalTemplates#gtRoot

instance dcArc1 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtRoot

targetWS hasValue webServices#wsMuller

usability hasValue sdc#subsume

instance dcArc2 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtRoot

targetWS hasValue webServices#wsRacer

usability hasValue sdc#subsume

instance dcArc3 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtRoot

targetWS hasValue webServices#wsRunner

usability hasValue sdc#subsume

instance dcArc4 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtRoot

targetWS hasValue webServices#wsWalker

usability hasValue sdc#subsume

instance dcArc5 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtRoot

targetWS hasValue webServices#wsWeasel

usability hasValue sdc#subsume

instance goalTemplate2 memberOf sdc#goalTemplate

description hasValue goalTemplates#gtUS2world

instance ggArc1 memberOf sdc#goalGraphArc

sourceGT hasValue goalTemplates#gtRoot

targetGT hasValue goalTemplates#gtUS2world

instance dcArc6 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtUS2world

targetWS hasValue webServices#wsMuller

usability hasValue sdc#subsume

instance dcArc7 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtUS2world

290 Appendix C. Appendix for Chapter 6

targetWS hasValue webServices#wsRacer

usability hasValue sdc#subsume

instance dcArc8 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtUS2world

targetWS hasValue webServices#wsRunner

usability hasValue sdc#subsume

instance dcArc9 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtUS2world

targetWS hasValue webServices#wsWalker

usability hasValue sdc#subsume

instance dcArc10 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtUS2world

targetWS hasValue webServices#wsWeasel

usability hasValue sdc#subsume

instance goalTemplate3 memberOf sdc#goalTemplate

description hasValue goalTemplates#gtUS2AF

instance ggArc2 memberOf sdc#goalGraphArc

sourceGT hasValue goalTemplates#gtUS2world

targetGT hasValue goalTemplates#gtUS2AF

instance dcArc11 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtUS2AF

targetWS hasValue webServices#wsMuller

usability hasValue sdc#intersect

instance dcArc12 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtUS2AF

targetWS hasValue webServices#wsRacer

usability hasValue sdc#intersect

instance dcArc13 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtUS2AF

targetWS hasValue webServices#wsWalker

usability hasValue sdc#intersect

instance goalTemplate4 memberOf sdc#goalTemplate

description hasValue goalTemplates#gtUS2AS

instance ggArc3 memberOf sdc#goalGraphArc

sourceGT hasValue goalTemplates#gtUS2world

targetGT hasValue goalTemplates#gtUS2AS

instance dcArc14 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtUS2AS

targetWS hasValue webServices#wsMuller

usability hasValue sdc#intersect

instance dcArc15 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtUS2AS

targetWS hasValue webServices#wsRacer

usability hasValue sdc#intersect

instance dcArc16 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtUS2AS

targetWS hasValue webServices#wsRunner

usability hasValue sdc#plugin

instance dcArc17 memberOf sdc#discoveryCacheArc

C.2. SDC Graph Management Evaluation 291

sourceGT hasValue goalTemplates#gtUS2AS

targetWS hasValue webServices#wsWalker

usability hasValue sdc#intersect

instance goalTemplate5 memberOf sdc#goalTemplate

description hasValue goalTemplates#gtUS2EU

instance ggArc4 memberOf sdc#goalGraphArc

sourceGT hasValue goalTemplates#gtUS2world

targetGT hasValue goalTemplates#gtUS2EU

instance dcArc18 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtUS2EU

targetWS hasValue webServices#wsMuller

usability hasValue sdc#intersect

instance dcArc19 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtUS2EU

targetWS hasValue webServices#wsRacer

usability hasValue sdc#intersect

instance dcArc20 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtUS2EU

targetWS hasValue webServices#wsRunner

usability hasValue sdc#plugin

instance dcArc21 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtUS2EU

targetWS hasValue webServices#wsWalker

usability hasValue sdc#intersect

instance goalTemplate6 memberOf sdc#goalTemplate

description hasValue goalTemplates#gtUS2EUlight

instance ggArc5 memberOf sdc#goalGraphArc

sourceGT hasValue goalTemplates#gtUS2EU

targetGT hasValue goalTemplates#gtUS2EUlight

instance dcArc22 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtUS2EUlight

targetWS hasValue webServices#wsMuller

usability hasValue sdc#plugin

instance dcArc23 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtUS2EUlight

targetWS hasValue webServices#wsRacer

usability hasValue sdc#plugin

instance dcArc24 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtUS2EUlight

targetWS hasValue webServices#wsWalker

usability hasValue sdc#plugin

instance goalTemplate7 memberOf sdc#goalTemplate

description hasValue goalTemplates#gtUS2NA

instance ggArc6 memberOf sdc#goalGraphArc

sourceGT hasValue goalTemplates#gtUS2world

targetGT hasValue goalTemplates#gtUS2NA

instance dcArc25 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtUS2NA

292 Appendix C. Appendix for Chapter 6

targetWS hasValue webServices#wsMuller

usability hasValue sdc#intersect

instance dcArc26 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtUS2NA

targetWS hasValue webServices#wsRacer

usability hasValue sdc#intersect

instance dcArc27 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtUS2NA

targetWS hasValue webServices#wsWalker

usability hasValue sdc#intersect

instance dcArc28 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtUS2NA

targetWS hasValue webServices#wsWeasel

usability hasValue sdc#subsume

instance goalTemplate8 memberOf sdc#goalTemplate

description hasValue goalTemplates#gtUS2SA

instance ggArc7 memberOf sdc#goalGraphArc

sourceGT hasValue goalTemplates#gtUS2world

targetGT hasValue goalTemplates#gtUS2SA

instance dcArc29 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtUS2SA

targetWS hasValue webServices#wsRacer

usability hasValue sdc#intersect

instance dcArc30 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtUS2SA

targetWS hasValue webServices#wsRunner

usability hasValue sdc#plugin

instance dcArc31 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtUS2SA

targetWS hasValue webServices#wsWalker

usability hasValue sdc#intersect

instance goalTemplate9 memberOf sdc#goalTemplate

description hasValue goalTemplates#gtUS2OC

instance ggArc8 memberOf sdc#goalGraphArc

sourceGT hasValue goalTemplates#gtUS2world

targetGT hasValue goalTemplates#gtUS2OC

instance dcArc32 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtUS2OC

targetWS hasValue webServices#wsRacer

usability hasValue sdc#intersect

instance dcArc33 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtUS2OC

targetWS hasValue webServices#wsRunner

usability hasValue sdc#plugin

instance dcArc34 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtUS2OC

targetWS hasValue webServices#wsWalker

usability hasValue sdc#intersect

C.2. SDC Graph Management Evaluation 293

instance goalTemplate10 memberOf sdc#goalTemplate

description hasValue goalTemplates#gtNA2NAlight

instance ggArc9 memberOf sdc#goalGraphArc

sourceGT hasValue goalTemplates#gtRoot

targetGT hasValue goalTemplates#gtNA2NAlight

instance dcArc39 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtNA2NAlight

targetWS hasValue webServices#wsMuller

usability hasValue sdc#intersect

instance dcArc40 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtNA2NAlight

targetWS hasValue webServices#wsRacer

usability hasValue sdc#intersect

instance dcArc41 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtNA2NAlight

targetWS hasValue webServices#wsWalker

usability hasValue sdc#intersect

instance dcArc42 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplates#gtNA2NAlight

targetWS hasValue webServices#wsWeasel

usability hasValue sdc#intersect

instance goalTemplate11 memberOf sdc#intersectionGoalTemplate

parent1 hasValue goalTemplates#gtNA2world

parent2 hasValue goalTemplates#gtNA2NAlight

instance ggArc11 memberOf sdc#goalGraphArc

sourceGT hasValue goalTemplates#gtNA2NAlight

targetGT hasValue goalTemplate11

instance ggArc12 memberOf sdc#goalGraphArc

sourceGT hasValue goalTemplates#gtUS2NA

targetGT hasValue goalTemplate11

instance dcArc35 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplate11

targetWS hasValue webServices#wsWeasel

usability hasValue sdc#intersect

instance dcArc36 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplate11

targetWS hasValue webServices#wsMuller

usability hasValue sdc#plugin

instance dcArc37 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplate11

targetWS hasValue webServices#wsRacer

usability hasValue sdc#plugin

instance dcArc38 memberOf sdc#discoveryCacheArc

sourceGT hasValue goalTemplate11

targetWS hasValue webServices#wsWalker

usability hasValue sdc#plugin

Listing C.11: Complete SDC Graph for Shipment Scenario (WSML Knowledge Base)

294 Appendix C. Appendix for Chapter 6

C.3 Runtime Web Service Discovery Evaluation

This appendix provides information of the technical realization of the evaluation test for
the runtime Web service discovery presented in Section 6.1.3 as well as the statistically
prepared results of the comparison tests. The software as well as the original test data are
provided on the accompanying CD-R.

The evaluation tests have been performed with the SDC Runtime Discoverer component
of the SDC prototype implementation that implements the optimized discovery algorithms
as specified in Section 5.4 (see Appendix B.3 for the technical specification). The following
lists the implementations of the comparison engines and of the comparison tests as well as
the respective log-files. Below, we provide the detailed results of each test.

SDC vs. Naive, Single Web Service Discovery:

• Naive Discovery Engine Implementation: SDCNaiveComparison.java

• Test Impl. (JUnit Test): RuntimeDiscoverySingleWSComparisonTester.java

• log-file: RunTimeDiscoverySingleWStest.log

SDC vs. Naive, All Web Service Discovery:

• Naive Discovery Engine Implementation: SDCNaiveComparisonAllWS.java

• Test Impl. (JUnit Test): RuntimeDiscoveryAllWSComparisonTester.java

• log-file: RunTimeDiscoveryAllWStest.log

SDCfull vs. SDClight:

• SDClight Implementation: SDCRuntimeDiscoverer.java

• Test Impl. (JUnit Test): ComparisonSDClightExtendedScenario.java

• log-file: ComparisonTest-SDCvsSDClight.log

The creation and management of goal instances in handled by the Goal Instance

Manager component of the SDC prototype. Although goal instances as the runtime data
are not stored in our system, we have defined the 10 goal instances that serve as the
test data for the runtime comparison tests in form of a WSML knowledge base (filename:
goalInstances4SWSC.wsml). From this, we load the goal instances into the test implemen-
tations in order to actually run the comparison tests. Listing C.12 below shows the goal
instance knowledge base, which extends the SDC graph ontology with a concept for goal
instance in accordance to the conceptual model presented in Section 3.2.1.

C.3. Runtime Web Service Discovery Evaluation 295

wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−core”

namespace { ”http://members.deri.org/˜michaels/sdc/swsc−shipment#”,

loc ”http://members.deri.org/˜michaels/sdc/swsc−shipment/ontologies/location.wsml#”,

sdc ”http://members.deri.at/˜michaels/ontologies/SDContology.wsml#” ,

goalTemplates ”http://members.deri.org/˜michaels/sdc/swsc−shipment/goals/goaltemplates/”,

dc ”http://purl .org/dc/elements/1.1#”,

wsml ”http://www.wsmo.org/wsml/wsml−syntax#” }
ontology ”http://members.deri.org/˜michaels/sdc/swsc−shipment/goalinstances.wsml”

nonFunctionalProperties

dc#description hasValue ”Goal Instances for SWS Shipment Scenario”

dc#creator hasValue ”generated by org. deri .wsmx.discovery.caching.GoalInstanceManager”

dc#date hasValue date(2007,03,04)

endNonFunctionalProperties

concept goalInstance

correspondingGoalTemplate impliesType goalTemplate

inputs impliesType wsml#datatype

instance goalInstance1 memberOf goalInstance

correspondingGoalTemplate hasValue goalTemplates#gtUS2AF

inputs hasValue {loc#california , loc#tunis, 1.0}
instance goalInstance2 memberOf goalInstance

correspondingGoalTemplate hasValue goalTemplates#gtRoot

inputs hasValue {loc#california , loc#luxembourgCity, 1.5}
instance goalInstance3 memberOf goalInstance

correspondingGoalTemplate hasValue goalTemplates#gtUS2world

inputs hasValue {loc#california , loc#tunis, 50.5}
instance goalInstance4 memberOf goalInstance

correspondingGoalTemplate hasValue goalTemplates#gtUS2EU

inputs hasValue {loc#california , loc#bristol , 4.3}
instance goalInstance5 memberOf goalInstance

correspondingGoalTemplate hasValue goalTemplates#gtUS2NA

inputs hasValue {loc#california , loc#newYorkCity, 5.5}
instance goalInstance6 memberOf goalInstance

correspondingGoalTemplate hasValue goalTemplates#gtUS2world

inputs hasValue {loc#california , loc#berlin , 60}
instance goalInstance7 memberOf goalInstance

correspondingGoalTemplate hasValue goalTemplates#gtUS2world

inputs hasValue {loc#california , loc#sydney, 17.3}
instance goalInstance8 memberOf goalInstance

correspondingGoalTemplate hasValue goalTemplates#gtUS2SA

inputs hasValue {loc#california , loc#quito, 7.5}
instance goalInstance9 memberOf goalInstance

correspondingGoalTemplate hasValue goalTemplates#gtUS2AS

inputs hasValue {loc#california , loc#beijing , 57.8}
instance goalInstance10 memberOf goalInstance

correspondingGoalTemplate hasValue goalTemplates#gtUS2EUlight

inputs hasValue {loc#california , loc#amsterdam, 9.99}

Listing C.12: Goal Instances for Shipment Scenario (WSML Knowledge Base)

296 Appendix C. Appendix for Chapter 6

SDC vs. Naive (Single Web Service Discovery)

The following provides the evaluation data of the comparison test between the SDC Runtime

Discoverer and the naive engine for the discovery of a single Web service. We already
provided the aggregated test results in Table 6.9 (see Section 6.1.3). As the most relevant
information for this comparison test, the following shows the performance comparison charts
for all 10 goal instances with respect to the median time and the coefficient of variation.
Below, we provide the statistically prepared test results for the individual goal instances.

C.3. Runtime Web Service Discovery Evaluation 297

298 Appendix C. Appendix for Chapter 6

C.3. Runtime Web Service Discovery Evaluation 299

300 Appendix C. Appendix for Chapter 6

C.3. Runtime Web Service Discovery Evaluation 301

302 Appendix C. Appendix for Chapter 6

SDC vs. Naive (All Web Service Discovery)

The following provides the evaluation data of the comparison test between the SDC Runtime

Discoverer and the naive engine for the discovery of all usable Web services. We already
provided the aggregated test results in Table 6.10 (see Section 6.1.3). As the most relevant
information for this comparison test, the following shows the overall performance compari-
son chart. We also provide a comprehensive overview of the naive engine which shows that
its behavior is actually independent of the actual goal instance because it always needs to
inspect all available Web services. Below, we provide the statistically prepared test results
for the individual goal instances.

C.3. Runtime Web Service Discovery Evaluation 303

304 Appendix C. Appendix for Chapter 6

C.3. Runtime Web Service Discovery Evaluation 305

306 Appendix C. Appendix for Chapter 6

C.3. Runtime Web Service Discovery Evaluation 307

308 Appendix C. Appendix for Chapter 6

SDCfull vs. SDClight

The following provides additional information for the comparison test between the full SDC
Runtime Discoverer and the SDClight engine.

SDClight Specification. Listing C.13 shows the runtime discovery algorithms which
are implemented in the SDClight engine. Essentially, these are exactly the same as the
ones used by the SDC Runtime Discoverer but without the refinement-method. We refer
to Section 5.4.1 for the detailed specification of the SDC runtime discovery algorithms.
The SDClight light engine is implemented as an extension of the SDC Runtime Discoverer

component in the SDC prototype implementation.

discoverSingleWS−light(GI(G,b)) {
if (instantiationCheck (GI(G,b)) = false) then return ” invalid goal instantiation ”;

if (lookup(G) = W) then return W;

if (checkOtherWS(G,b) = W) then return W;

else { return ”no Web service found”; }
}
discoverAllWS−light(GI(G,b)) {

if (instantiationCheck (GI(G,b)) = false) then return ” invalid goal instantiation ”;

result = lookupAllWS(G);

forall ((G,W) in discoverycache and degree(G,W) = subsume) {
if (satisfiable (W,b)) then result = + W; }

forall ((G,W) in discoverycache and degree(G,W) = intersect) {
if (satisfiable (G,W,b)) then result = + W; }

if (result = empty) then return ”no Web service found”;

else return result ;

}

Listing C.13: Discovery Algorithms for SDClight

Extended Shipment Scenario. For the comparison test, we use an extended version
of the shipment scenario for the comparison test with defines 10 additional Web services
and 4 additional goal templates (see Table 6.11 in Section 6.1.3). We have created the SDC
graph for this with the SDC Graph Creator component of our prototype. The below figure
shows the graphical representation of the created SDC graph, which correctly defines the
relevant relations in accordance to Figure 6.7. The relevant technical sources are:

• SDC Graph Creation Class: SDCGraphGenerationExtendedSWSCscenario.java

• created SDC graph (WSML Knowledge Base): sdcGraph4extendedSWSC.wsml

• log-file: SDCGraphGenerationShipmentSceanrioExtended.log

C.3. Runtime Web Service Discovery Evaluation 309

310 Appendix C. Appendix for Chapter 6

The above table shows the 10 goal instances that we use for the comparison test. These
are the same as defined in Table 6.3 (see Section 6.1.2), i.e. the ones that we also used for
the comparison test of the SDC Runtime Discoverer with the naive discovery engine. We
have defined the additional Web services such that none of them is actually usable for any
of the goal instances In consequence, also the usable Web services for each goal instance are
exactly the same as before; the mere difference is that for goal instances gi1 and gi8 now
the most appropriate corresponding goal template is one of the additionally defined ones.

Comparison Test Results. Below, we provide the the statistically prepared results
of 100 repetitive test runs for both flavors of runtime Web service discovery. We here show
the arithmetic mean and the median times, the standard deviation and variation coefficient
measured for the individual goal instance as well as the aggregated data for all of them.

C.3. Runtime Web Service Discovery Evaluation 311

