
FRED Whitepaper  

FRED Whitepaper 

ABSTRACT  

This paper presents the FRED system, a development environment for agent-based 

applications that utilize Semantic Web resources. The FRED system consists of an agent 

runtime environment based on ontologies as the underlying data model and offers a tool suite 

for application development. It uses progressive technologies for task-service-resolution that 

detect suitable problem solving implementations to solve tasks assigned to agents. 

Furthermore, FRED allows integration of external Semantic Web Services into the system, 

thus admitting the assimilation of key technologies which is compulsory for creating 

Semantic Web applications. We give an overall description of the FRED system by 

describing its technological solutions, explain the system functionalities and relate this to 

contemporary approaches. The aim of this paper is to expose requirements on agent platforms 

for the Semantic Web and to show how these are attained in the FRED system.  

TABLE OF CONTENTS  

ABSTRACT ..........................................................................................................................................................1 
TABLE OF CONTENTS .....................................................................................................................................1 
1. INTRODUCTION.......................................................................................................................................3 
2. THE FRED PLATFORM ..........................................................................................................................5 

2.1 Objectives and Design Principles ............................................................................5 
2.2 Architecture..............................................................................................................7 

2.2.1 FredBase ............................................................................................................7 
2.2.2 FredBase Control ...............................................................................................9 

2.2.2.1 Meeting Rooms..............................................................................................9 
2.2.2.2 Selection Engines.........................................................................................10 

2.2.3 Interfaces..........................................................................................................11 
2.3 FRED Development Kit.........................................................................................12 

3. SMART OBJECTS...................................................................................................................................14 
3.1 The concept of Smart Objects................................................................................15 

3.1.1 Types of Smart Objects....................................................................................15 
3.1.2 Fred Universe...................................................................................................16 

3.2 Smart Objects Compilation....................................................................................18 
3.2.1 Smart Objects Generation ................................................................................18 
3.2.2 Generation of Other Components ....................................................................19 

3.3 Expressiveness .......................................................................................................20 
3.3.1 OOIs – Ontology Object Instances ..................................................................21 

  1 



FRED Whitepaper  

3.3.2 OOCs – Ontology Object Constraints..............................................................22 
3.4 Smart Objects Management...................................................................................24 

3.4.1 Ontology Tower ...............................................................................................25 
3.4.2 Persistent Storage of Smart Objects.................................................................26 
3.4.3 Smart Objects Mediation .................................................................................28 

4. TASK-SERVICE-RESOLUTION...........................................................................................................29 
4.1 The concept of Goal-Driven Resolution ................................................................30 
4.2 Goals and Plans......................................................................................................31 

4.2.1 Goal, Plan and Plan Modules Description .......................................................32 
4.2.2 Deployment of External Web Services............................................................33 

4.3 Goals and Processes...............................................................................................35 
4.3.1 Process approach in FRED ..............................................................................36 
4.3.2 Process Ontology and Process Engine.............................................................37 
4.3.3 Process Specification and Execution ...............................................................39 

4.3.3.1 Process Composer........................................................................................39 
4.3.3.2 Activity Management System......................................................................41 

4.4 Goal Resolution .....................................................................................................42 
4.4.1 Meeting Creation .............................................................................................42 
4.4.2 Service Discovery ............................................................................................43 
4.4.3 Execution Handling .........................................................................................44 

5. FRED AS MEDIATION PLATFORM FOR THE SEMANTIC WEB................................................44 
5.1 Next Generation Mediation Systems .....................................................................45 

5.1.1 Plan Level Mediation.......................................................................................47 
5.1.2 Process Level Mediation..................................................................................48 

5.2 FRED as Mediation Platform in DIP .....................................................................49 
6. RELATED WORK ...................................................................................................................................49 

6.1 Related Agent Technologies ..................................................................................49 
6.2 Comparison with Semantic Web technologies ......................................................51 

6.2.1 Ontology Technology ......................................................................................51 
6.2.2 Semantic Web Service technologies................................................................53 

7. APPLICATIONS AND FUTURE DIRECTIONS .................................................................................54 
7.1 Existing Applications.............................................................................................54 
7.2 Future Developments .............................................................................................56 

7.2.1 Smart Objects...................................................................................................56 
7.2.2 Task-Service Resolution ..................................................................................57 
7.2.3 Mediation Technology.....................................................................................57 

8. CONCLUSIONS .......................................................................................................................................57 
REFERENCES ...................................................................................................................................................60 
 

  2 



FRED Whitepaper  

1. INTRODUCTION  

In (Berners-Lee et al., 2001), an example is used to introduce the idea of the Semantic Web 

wherein Pete and Lucy’s agents automatically perform assignments for every day’s life 

problems. For such Semantic Web driven applications, different technologies have to be 

conjoint, as stated later in that article. In this sense, the key technologies identified for the 

Semantic Web are intended to fulfill distinctive purposes: ontologies provide highly 

expressive, machine-readable semantics and thus allow semantically correct information 

interchange between Semantic Web enabled applications. In the example, the parties 

involved can exchange information because they rely on a common ontology. Via Semantic 

Web Services, implemented functionality can be accessed and invoked remotely over the 

Internet, like the appointment arrangement carried out by Pete and Lucy’s agents with the 

doctor’s service in the refereed example. The agents perform tasks assigned by their owners 

automatically by invoking services and cooperating with other agents as illustrated copiously 

in the example.   

This example indicates that agents constitute the interface between their owners, which can 

be humans as well as machines, and existing services offered for solving a problem. With 

respect to the quality of tasks that agents shall be able to solve, exceeding requirements arise 

for agent-based systems which operate on the Semantic Web. In general, an agent platform 

comprises a run time environment where agents can interact and techniques for resolving 

assigned tasks to agents with the services existing. In the context of the Semantic Web, an 

agent platform additionally has to support Semantic Web technologies in order to facilitate 

information exchange and interoperability with other Semantic Web applications. More 

precisely, an agent platform for the Semantic Web has to be able to process ontology data for 

semantically enhanced information interchange and it has to support discovery, invocation, 

and execution of web services as well as their integration into its task-service-resolution 

technology. In doing so, the ontologies and the web services required for an application can 

be assembled and then be utilized by the agents in a system.  

The FRED system realizes this concept and thus is applicable as a mediation platform for 

agent-based Semantic Web applications. It provides a stable and scalable run time 

environment for agents and advanced techniques for task-service-resolution similar to 

approaches followed in Semantic Web Services research at present. Ontologies are employed 

as the underlying data model throughout the entire system, and the Smart Objects technology 

  3 



FRED Whitepaper  

has been developed to handle ontology instance data. Thereby, the expressiveness of 

ontologies is transmitted into the system on the one hand, and, on the other, existing 

ontologies required for a specific application can easily be imported into the system. 

Furthermore, the FRED system allows invocation and integration of external web services as 

problem solving services into the system. In order to expose how the FRED system can serve 

as a mediator platform for agent-based Semantic Web applications, we present the technical 

components of the FRED system in detail and explicate the goal-driven approach followed 

for resolving tasks. We also relate these solutions to the state of the art in Semantic Web 

driven applications and depict future developments planned for improvements and further 

extensions of the FRED technology.  

The FRED system is developed by Net Dynamics1, a SME based in Vienna and run by 

experienced Software Engineers. Net Dynamics was founded in 2000, immediately starting to 

develop the FRED system. Net Dynamics has received awards for their innovative work 

around the FRED platform, namely the Mercur Award 2 in 2002 and Constantinus Award 3 in 

2003.  

The paper is structured as follows. Section 2 introduces the FRED agent runtime environment 

and the tool suite for application development; section 3 presents Smart Object, the solution 

developed for managing and handling ontology data in the FRED system; section 4 describes 

the task-service resolution techniques of the FRED system and the underlying concepts of 

Goals, Plans, and Processes; section 5 discusses the usability of the FRED system as a 

mediator platform for Semantic Web applications; section 6 depicts related work in agent 

systems as well as in ontology and Semantic Web Service technologies; section 7 presents 

existing applications built upon the FRED system and points out directions for future 

developments; finally section 8 concludes the paper.  

____________ 

1 Net Dynamics Internet Technologies GmbH & Co KG, see: www.netdynamics-tech.com.  

2 Every year the Chamber of Commerce awards companies in Austria that develop superior innovative products and 

methods. Net Dynamics has achieved this award for it's "Fred Platform" product. 

3 The Constantinus Award is an important and well known award for consulting- and IT projects in Austria. Every year, 

the most outstanding projects, performed by the consulting companies together with their customers, are awarded. Net 

Dynamics, together with Wiener Stadtwerke have achieved this Award for the eCoach project. 

  4 

http://www.netdynamics-tech.com/


FRED Whitepaper  

2. THE FRED PLATFORM  

This section presents the general architecture of the FRED agent platform and denotes the 

main building blocks of the system. We first explain the objectives underlying the design of 

the system and expose related approaches. Then we depict the system architecture with 

special attention to the runtime environment as the heart of the FRED system and the 

interfaces provided for connections to external systems. Finally, we present the tool suite 

offered by the FRED system for application development. The terms and notions introduced 

in the following will be referred to for the more detailed investigations in the subsequent 

sections.  

2.1 Objectives and Design Principles  

The main objective persecuted with developing the FRED system is to create a generic 

platform as a foundation for agent-driven applications that enable automation for different 

use case scenarios. The elementary functionality of the system is to allow users, which can be 

either humans or machines, defining an agent as an electronic representative that performs 

assigned tasks automatically on behalf of its owner.  

These agents, called Freds in the system, can be defined for any purpose, from simple 

arithmetic calculations up to complex procedures like booking flights. In order to resolve 

such a task, there has to be an implemented functionality available which a Fred can invoke. 

The FRED system realizes a goal-driven approach for this detection of suitable existing 

services for a given tasks. Therefore, Goals are specified which are general descriptions of 

problems that can be assigned to Freds for automated solving. The task-resolving services are 

called Plans which encompass several problem solving services, from single programs in so-

called Plan Modules over combinations of them up to invocation of external Web Services. 

Further, more complex workflows can be specified in so-called Processes which can also be 

invoked to solve a Goal. The FredBase is the agent runtime environment of the system 

wherein Freds can interact to solve their Goals. When a Fred has been assigned with a Goal, a 

Meeting is called in the FredBase with another Fred that has a corresponding Goal. For 

example, a Fred A has been assigned with the Goal ´add 3 and 7´ and a Fred B carries a 

Goal ´add(x,y)´, A and B will have a meeting wherein A’s Goal is solved.  

Upon this basic functionality, the intended purpose of the FRED system is to serve as a 

development environment for agent-based applications that allow delegation of tasks to 

  5 



FRED Whitepaper  

electronic representatives. Such solutions can be beneficial in several fields wherein 

automated task delegation provides surplus value for users. Given the capabilities of the 

FRED system in managing a given task autonomously by using the capabilities of semantics 

for “Intelligence” and the management power of agents, the potential applications areas can 

be divided into the following: 

Table 1: FRED Application Areas 

 Collaborative Process 
Automation  

Mediation-based 
Integration 

Reuse of Process 
Knowledge  

Companies  Business processes 
which demand high 
flexibility and supervision 

Demand driven 
Enterprise Application 
Integration 

Business Process 
standardization and 
reuse 

Single Users User centric active 
process support which 
lead to simplified usage 

One Stop Service tasks 
which benefit from 
Semantic Web Services 
Integration 

Coach based Services 
like Competency 
Knowledge Management 

 

Thereby, the delegation paradigm inherent in the FRED system provides benefits in the 

simplification and therefore significant cost saving for a lot of business problems of today. 

The functionalities of the FRED system, in particular automation of task execution and 

integration of external resources, facilitate much more advanced support than recent technical 

solutions. Existing applications are presented in section 7.1.  

The technical design objectives of the FRED system are to establish an agent platform for 

effective and scalable collaboration of Freds and a suitable tool suite for application 

developers. With respect to the usage objectives of the FRED system illustrated, the 

requirements listed in  have determined the technical design of the system.  Table 2

Table 2: FRED System Design Principles 

Requirement Description FRED Component 

Stable & Scalable 
Agent Runtime 
Environment 

A runtime environment is the core component of 
agent-based systems for task automation. The 
major requirements for this are support and 
utilization of standardized technologies for agent 
interaction, as well as a framework for stability and 
scalability for sizable application support. 

FredBase 
section 2.2 

Connectability to 
External Systems  

A major requirement for modern applications, 
especially for Semantic Web driven applications, is 
information interchange between diverse systems. 
Therefore, a reasonable development environment 

Fred Location 
Interfaces  
see section 2.2.3 

  6 



FRED Whitepaper  

should provide interfaces for standard technologies 
to allow connection, interoperability, and integration 
of existing information and external systems.  

Tool Support for 
Application 
Development  

In order to support application development on top 
of the platform in a sophisticated manner, tools 
should be provided that allow creation and 
management of the essential system technologies.  

Development Tool 
Suite 
section 2.3 

Ontologies as Data 
Model  
 

Ontologies are the state-of-the-art knowledge 
representation technology and thus should be used 
as the underlying data model in the system to 
exploit their benefits in terms of expressiveness and 
information processing. A supplementary functional 
profit is that existing ontologies can be uploaded 
into the FRED system, thus allowing reuse of 
ontologies.  

Smart Objects  
section 3 

Goal-Driven Task-
Service-Resolution 

The most important and most challenging feature of 
agent platforms is the resolution of tasks and 
services, i.e. how a task assigned to an agent can 
be solved by services available in the system. The 
FRED system therefore realizes a goal-driven 
approach wherein information on solvable tasks and 
the corresponding solving services are described in 
Goal, Plans, and Processes. These can be 
combined to solve a concrete task assigned to an 
agent, thus enabling reuse to a very high extent. Á 
similar approach is applied for discovery and 
composition of Semantic Web Services.  

Goals, Plans, 
Processes  
section 4.2, 4.3  
Goal Resolution 
section 4.4 

Support and 
mediation facilities 
for Semantic Web 
applications   

To support Semantic Web applications, techniques 
for integrating ontologies and Web Services have to 
be provided. Furthermore, the platform needs to 
ensure that invoked resources are interoperable in 
order to allow automated task execution.  

Smart Objects  
section 3 
WSDLExecutorPlan 
section 4.2.2  
Mediation Facilities 
section 5.1 

2.2 Architecture  

In the following we describe the agent runtime environment of the FRED system. A complete 

FRED system consists of a FredBase which holds the components of the agent platform and 

several interfaces for accessing the system as well as for connection to external systems. 

Here, we only introduce the most important building blocks which are referred to in the 

subsequent sections.  

2.2.1 FredBase  

The FredBase is the place where Freds, i.e. the agents in the system, interact to solve the 

tasks they have been assigned. A FRED-application may consist of several different Freds, 

and each one may fulfill a different purpose. So, a Fred A may hold the functionality that a 

Fred B needs to solve his task. For this interaction, Freds act together in so-called Meeting 

  7 



FRED Whitepaper  

Rooms (see below). Figure 1 shows a physical overview of the FredBase architecture with 

further explanations below. 

Meeting Room 
Meeting Room 

Meeting Room 

Fredbase Server 

Meeting Room 
Manager Fredbase Control 

Application Server 

SMTP 
Server 

Maintenance 
Programs 

Application Server 
(Web component) 

Fred Database  

Fredbase 
Developer Client 

(Windows) 

Fredbase 
Control Client 
(Windows) 

Customer Databases 

Fred Visualizer User 
Interface - Browser 

TCP/IP TCP/IP 

JDBC 

 

Figure 1: FredBase Architecture 

The FredBase Server is the place where the FredBase Control, which manages interaction 

between Freds, is installed physically. The FredBase Server also comprises one or more 

Meeting Rooms Manager that maintains meetings between Freds (i.e. task execution, 

collaborations, etc. between the existing agents). The Fred Database, an conventional RDBS 

accessible via JDBC, stores Freds and all information related to them, i.e. the Smart Objects 

as the application information and customer related data. The Application Server 

implements the ´Fred Tools Connect´- interface and optionally connects to the Customer 

Databases and to an SMTP-Server for user interaction. The Application Server (Web 

Component) implements the user interface connection via the ‘FredInform’ interface (see 

section 2.2.3).  

The FRED system is implemented in JAVA, making use of its functional benefits one the one 

hand and, on the other, to achieve technological consistence throughout the system. C++ is 

used in the FredBase Control and Visual Basic is used for User Interface implementations for 

  8 



FRED Whitepaper  

reasons of its particular technical benefits. In the following we explain the technical buildings 

blocks for execution and control of the FredBase in more detail.  

2.2.2 FredBase Control  

While transactions or dialogue oriented applications are usually started by user intervention, 

Freds are active all the time and can be invoked automatically. The management of agent 

interactions is performed by the FredBase Control. It provides the runtime environment 

which calls Freds into a meeting room whenever they need to interact top solve their assigned 

tasks and capabilities, ensures that Freds are withdrawn for the FredBase when they are not 

needed, and it provides a selection mechanism to determine those Freds out of potentially 

millions which are ready for meaningful processing. So the FredBase Control is the 

component which ensures stableness and scalability of the agent platform.  

2.2.2.1 Meeting Rooms  

A Meeting Room is the place where agents interact, more precisely the environment where 

Freds called for a meeting exchange information in order to solve the Goals they have been  

assigned.  

Goals are solved by executing the corresponding Plan or Process. The Meeting Room 

therefore provides the computational environment, consisting of two major elements. First it 

holds all services required for execution, for example a JVM for JAVA implementations and 

connections to the data repository to run Plans, or access to the Process Engine for execution 

of Processes. Second it provides the basic communication infrastructure through which 

agents exchange messages and information, called a Message Channel. The communication 

behavior of Freds is predefined in the Plan or Process that are to be executed, and the 

Message Channel is the environment for agent communication. While these components 

provide the technical environment needed to run a meeting, the Meeting Room Manager 

controls the execution procedure. It initiates a meeting by invoking the Plan or Process to be 

executed, returns the computational results to the meeting participants and releases the Freds 

after successful completion of the meeting. Furthermore, the Meeting Room Manager 

provides a moderation framework for meetings that handles exceptions in Plan or Process 

execution and solves contentions on interactions among the participating agents. It also 

ensures that all meetings in a FredBase are running logically completely independent of each 

other. 

  9 



FRED Whitepaper  

With regard to performance and scalability mandatory for real world applications, design 

principles for Meeting Rooms and affectionate elements are defined. In general, Meeting 

Rooms are designed for meetings with many Freds, so-called multiple-chair meetings. As 

most meetings are only with one or two participants and the rest of the chairs would be 

wasted, a Meeting Room can be spilt up and used contemporarily for as many meetings as 

chairs are available at a time. If a Fred does not hold a meeting at a time, it is withdrawn from 

the FredBase and serialized in the Fred Database. So only those Freds who actually interact at 

certain a time are hold in the FredBase which improves the scalability of the Fred system. A 

further convention is that a Plan should be written in a way that its execution in a meeting 

only occupies the Meeting Room for a short time, i.e. in the range of milliseconds. If a 

meeting is interrupted, for instance because user input required, it should be ended and re-

scheduled for later.  

2.2.2.2 Selection Engines 

The decision which Freds are sent into a meeting is realized by several mechanisms, so-called 

Selection Engines. Common to all the mechanisms is that they select one or more Freds from 

the database, create a meeting suggestion, and then hand over this meeting suggestion to the 

scheduler mechanism for the Meeting Rooms. The technical operations mode of these 

engines relies on rules and heuristic patterns for detection of potential meeting partners. In 

order to allow developers to customize the selection functionality, the design of the FredBase 

allows adding and removing mechanisms for meeting selection dynamically. Table 3 shows 

the Selection Engines currently available in the FRED system.  

Table 3: FRED Selection Engines 

Selection Engine Description 

Seleng This is the primary Selection Engine which selects Freds for a meeting. 
From a Fred’s point of view, the meeting takes place by accident. 

Event Manager Event-driven selection of meetings. Triggering events can be timer 
events or external events.  

Meeting List Manager Creation of meetings as requested by invitations of Freds by a Plan or 
Process. That is, when a Fred holds a certain capability he might be 
called into a meeting to solve a Goal that requires this capability.  

 

The employment and the operation mode of the Selection Engines will be investigated in 

detail in section 4.3 after the underlying technologies will have been introduced.  

  10 



FRED Whitepaper  

2.2.3 Interfaces  

The FRED system provides two components to support the connectability to external systems 

and information sources requested for modern development platforms. These interfaces are 

not simple connection points for external systems but are designed as integrated units for 

managing data interchange between internal and external components.  

The Fred Tools Connect enables access to external resources. It consists of JAVA-APIs and 

standard technology interface for access to Fred application databases, external customer 

databases, and other external systems like internet resources, eMail and SMS servers. These 

resources can be directly used in Meeting Rooms or the Process Engine (see section 4.3.2) 

via the Fred Tools Connect API. The Fred Visualizer is the central component for user 

interface management, comprised of components for driving user interfaces either server 

based (web application or browser) or client based (server functions for fat clients). The 

Visualizer allows concurrent support for several, possibly remote user interfaces to a FRED 

application. The application state is controlled centrally and then sent via SOAP (Mitra, 

2003) to particular user interfaces, thus employing web services technology to ensure 

information consistency. Furthermore, a Validation Framework is attached to the Visualizer 

which is generated from ontology definition and constraint definitions (see section 3.2) to 

check a user’s input against the specified constraints.  

The Fred Visualizer components use Fred Tools Connect components as the Model for 

receiving the application state according to the Model–View-Control paradigm. Figure 2 

shows the architectural configuration of the Fred Tools Connect and the Fred Visualizer. 

  11 



FRED Whitepaper  

 

Application Server 

 

 
W

eb
 

A
pp

lic
at

ion
 

Session 
Service 

Session 
Component 

W
eb

 S
er

vic
e 

(S
O

A
P)

 

Fred Visualizer 

 

Business 
Components 

Fred Tools Connect 

Generic 
Components 

Application 
specif ic 

Components Fr
ed

 T
oo

ls 
Co

nn
ec

t A
PI

s 

 

Java VM 

 

Meeting 
Room 

Pl
an

 

 

Process 
Engine 

Pr
oc

es
s 

 

Visual 
Basic -
Client 

 

Browser 

Java 
Libraries 

Common 
Libraries 

Application 
Libraries 

 Compiled 
Ontologies 

Application Server Components and Java Applications 

Access Layer Subsystems and Libraries 

Fredbase Component 

 

Figure 2: FRED Interfaces Architecture  

Another interface provided by the FRED system is the so-called Fred Link Interface for 

interconnecting several FRED systems. This allows exchanging all kinds of FRED-specific 

information like Freds, Smart Objects, Goals or Plans in between various FRED applications 

without sumptuous transformation or loss of information. Thus, a ‘virtual Fred World’ can be 

created, following the concept of nested and interoperating system which is the general idea 

of Semantic Web driven applications.  

2.3 FRED Development Kit  

For application development, a Fred Application Programming Interface (FAPI) is available 

which wraps the Agent API (for manipulation of Freds), the Ontology API (for accessing and 

managing Fred’s data), the Goal API (manipulation of goals) and transaction services for an 

interface programmer. Moreover, graphical development tools are provided to support 

application developers in building application upon the FRED system. They support control 

  12 



FRED Whitepaper  

of the FredBase, edition of Freds, Smart Objects (the knowledge basis), Goals and Plans as 

well as assignment of goals and plans for testing purpose. Here, these tools are listed and 

explained briefly while the underlying technologies will be investigated in more detail in the 

following sections.  

Fred Control Client 

This is the control client for the FredBase of a Fred Location. It allows starting and stopping 

a FredBase and provides information of the current state of a FredBase, i.e. how many 

meeting rooms are running, how many Freds they contain and the state of each Fred in the 

system.  

Smart Objects Browser 

The Smart Object Browser allows browsing and editing the Smart Objects of a Fred. A Smart 

Object is generated from an ontology as the knowledge structure definition on the concept 

level and holds ontology data at the instance level. All knowledge of Freds is based on Smart 

Objects. Smart Objects will be further investigated in section 3.  

Goal Editor 

In the FRED system, a ‘Goal’ is a task that a Fred shall fulfill. Goals are also based on Smart 

Objects. The Goal Editor assigns existing Goal Descriptions to a Fred for testing and problem 

verification during development. Before a Goal can be assigned to a Fred with the Goal 

Editor, the Goal Description as well as a corresponding Plan Description need to be created 

using the Description Editor. The goal-driven approach for task-service resolution will be 

further investigated in section 4.1. 

Plan Editor 

In the task-service-resolution technique of the FRED system, an implementation for problem 

solving can be a Plan. A Plan consists of one or more Plan Modules which are the elementary 

functional building blocks. A Plan Module consists of the problem solving implementation 

(which can be an internal implementation as well as an external service) and specifies the 

communication behavior necessary for the Freds to access and execute the Plan Module. 

Plans and Plan Modules will be examined in detail in section 4.2. The Plan Editor provides 

pre-defined JAVA code elements and templates for supporting Plan Module development.  

Description Editor  

  13 



FRED Whitepaper  

This development tool is a graphical editing environment for Goals- and Plan Descriptions. 

These descriptions contain all necessary information (naming, versioning, functional and 

non-functional information) that are required to make Plans and Goals usable for Freds. 

These descriptions are specified in XML. A detailed explanation of the description language 

for Goals and Plans is provided in section 4.2.1. 

Policy Browser  

The Policy Browser allows defining security and privacy rules for Smart Objects. The idea 

behind this is that not everybody, i.e. not every Fred, should be allowed to read, write or 

change the Smart Objects of another Fred in terms of privacy and data security. The policy 

rules are directly defined on the properties of the Smart Objects in order to avoid unintended 

access to secure information. Policies can be defined on five different levels, starting from 

policies for the whole FredBase via policies for particular Goals and Applications up to 

restrictions for special meetings.  

Process Composer 

This tool supports workflow specification, called ‘Processes’ in Fred terminology. Processes 

are procedural definitions for the execution order of tasks (called ‘Activities’ in Fred). An 

Activity is a superordinate term which covers plans, external services, and non-automated 

actions that have to be performed by the user. Each Activity is described by input and output 

parameters which are based on Smart Objects and which determine possible activity 

compositions. The Process concept in Fred will be further explained in section 4.3.  

3. SMART OBJECTS 

In this section we introduce the Smart Objects technology which has been developed for 

managing and handling ontology data in the FRED system. Ontologies have been chosen as 

the underlying data model throughout the whole FRED system. The reason for this is to make 

use of the benefits of ontologies as a highly expressive, up-to-date knowledge representation 

technique in order to enhance the informational significance of knowledge carried by Freds. 

Furthermore, this approach allows integration of existing ontologies into a FRED-based 

application. Thereby support for Semantic Web application development is assured without 

disrupting the knowledge representation format from external ontologies into the internal 

system representation, thus ontological notions can be preserved. A Smart Object is an 

ontology instance compiled into a JAVA object that carries the ontological notions defined 

  14 

http://dict.leo.org/?p=lURE.&search=superordinate
http://dict.leo.org/?p=lURE.&search=concept


FRED Whitepaper  

for the corresponding concept. This allows storing and handling ontologies via conventional 

JAVA technologies which are more mature compared to currently existing ontology 

management technologies; besides, technology consistency of the FRED system as a JAVA-

based platform is assured. Techniques for handling and management of Smart Objects have 

been developed which represent the all aspects required for ontology management in 

ontology-based applications. In the following, we explain the notions of Smart Objects and 

the transformation method for ontologies into JAVA objects. We further present the 

technologies for Smart Objects management and relate them to the state of the art in 

ontology-based applications.  

3.1 The concept of Smart Objects   

In order to avail the competence of ontologies as a highly expressive knowledge modeling 

and representation technique on the one hand and to make use of the potential for enhanced 

information processing, the complete data model of the FRED system relies on ontologies. 

Thereby, ontologies are developed outside the system and then compiled into JAVA-Classes, 

called Smart Objects (short: SMO). During runtime of a FRED-application, Smart Objects 

as the knowledge base of the system are modified on the ontology instance level. 

Additionally, further technical constructs of the FRED system are derived form ontology 

definitions, demonstrating an exhaustive usage of ontologies with respect to the envisioned 

employment of ontologies in Semantic Web applications.   

The mostly accepted understanding of ontology is “explicit specification of a shared 

conceptualization” (Fensel, 2003). This means an ontology is on the one hand a commonly 

accepted conceptual model of a domain which provides a terminology and an understanding 

of a domain for humans and on the other hand it can be specified in a machine-readable 

format and thus can be used as a data model for an application. Because of this, ontologies 

are considered to be the backbone technology for the Semantic Web for the reason that they 

allow highly expressive modeling of knowledge domains and present machine-processable 

semantics for information.  

3.1.1 Types of Smart Objects  

An ontology consists of the following notions (Chaudhri et al., 1998): Concepts describe the 

entities of a domain by their Properties, i.e. attributes that characterize an entity. Relations 

describe the associations between concepts, whereby subsumption and membership 

  15 



FRED Whitepaper  

relationships define the taxonomic structure of an ontology and other kinds of relations can 

be defined to identify further knowledge structures. An Instance is a concrete individual of a 

concept. To allow more sophisticated handling of instances, Axioms can be defined for 

logical constraints and coherences between concepts, properties and relations. With respect to 

this, the FRED system distinguishes the following three types of Smart Objects. 

OOI – Ontology Object Instance 

An OOI is an instance of an ontology concept. It contains all attributes defined for that 

concept in the corresponding ontology, so instantiating an OOI always gives a complete and 

exact representation of that instance. Further, an OOI carries the information about usage, 

ownership and modifications which appear during runtime.  

Attributes (corresponding to ´Properties´ in ontology theory) are the place where specific 

values of a concept are stored which determine the current state of an OOI. Fred 

differentiates two kinds of OOI-Attributes: first the simple-OOI-Attribute which contains 

simple data type and second the OOI-Relationship which describe relationships between 

OOIs, hence the values of the OOI-Relationship are references to OOIs. These OOIs are 

either instances of the concept of the type of the relationship, or instances of any sub-concept 

of the type of the relationship. The expressiveness of OOIs will be described in section 3.3.  

OOC – Ontology Object Constraint 

An Ontology Object Constraint (OOC) is a logical expression defined for a certain ontology 

concept. This expression can be used as generic selection mechanisms in different scenarios. 

OOCs are a powerful concept since they allow defining logical expressions on OOIs which 

are reusable for different purposes. OOCs will be explained in more detail in section 3.3.2.  

OOG – Ontology Object Group  

OOIs and OOCs can be grouped together into an OOG for reasons of managing and 

organizing SMOs in a specific application context. OOGs only contain pointers to SMOs, 

thus an OOI may be contained in several OOGs, and an OOG can be contained in another 

OOG. OOGs do not fulfill any special technical functionality, but they support SMO 

management in applications with possibly numerous SMOs.  

3.1.2 Fred Universe  

Smart Objects are used as for representing all knowledge in the Fred system. That means that 

all features and components that utilize or process data use SMOs as their data format. Thus, 

  16 



FRED Whitepaper  

the knowledge described by the employed ontologies is referred to as the Fred Universe 

because the ontologies determine all information available in the system. More precisely, 

each Fred carries its knowledge as SMOs, the information in Goals, Plans and Processes – the 

task-service-resolution components in the FRED system – are described by SMOs, as well as 

every other construct in the system that uses or processes data. Thus, the Fred Universe 

ensures that the semantic affiliation of information and the consistency of data are guaranteed 

in a FRED application.  

SMOs are generated from ontologies that are being built outside the Fred system. In the Fred 

terminology, the ontology developed outside the system is referred to as the “static aspect of 

ontology” and the compiled JAVA-SMOs, which represent the ontology instance data, are 

called the “dynamic aspect” (this indicates that only data at the instance level are used and 

modified during runtime). The FRED system offers an Ontology API for accessing and 

processing of SMOs, containing features for handling of OOIs, OOCs, and OOGs as well as 

exception handling and storing SMOs. The techniques for storage, maintenance for usage of 

SMOs will be described in detail in section 3.4. 

In order to support sharing and exchange of Business Objects between different applications, 

so-called Shared Smart Objects are provided. Shared Smart Objects are ordinary SMOs 

which are not assigned by singles Fred only, but are hold in a Shared Container in Fred Tools 

Connect (see section 2.2.3). For each application one Shared Container is can be allocated 

which allows all Freds in that application to use the Shared Smart Objects. Distinct from 

Smart Objects, which are exclusively accessed through the Ontology API, Shared Smart 

Objects are stored as Enterprise Java Beans, thus accessible by every Fred via EJB methods. 

This exhaustive usage of SMOs, respectively ontologies as the grounding data model 

throughout the whole system exemplifies the potential of ontologies as a modern knowledge 

representation technique. First, ontologies are a highly expressive knowledge modeling 

technique, secondly they provide machine-processable semantics for information, and thirdly 

they can be applied as the underlying data model for enhanced information processing and 

data consistency checking in an application via constructs like SMOs in the Fred system. 

These potential benefits are the reason why ontologies have been claimed as the basic 

building block for the Semantic Web. The major challenge for ontology-based system is to 

develop techniques which allow managing of ontologies one the one hand and making use of 

the complexity of ontologies in an application (Fensel et al., 2002b). We will present the 

respective solutions of the FRED system in the subsequent sections.   

  17 



FRED Whitepaper  

3.2 Smart Objects Compilation  

The use of ontologies in Fred Base has two flavors. The conventional view of utilizing 

ontologies as the underlying data model for enhanced information processing on the one 

hand, and on the other to make use of ontologies as the common basis for the whole Fred 

system. This means that as many system components as possible as well as components 

needed for application development (APIs, SOAP message formats, plans, processes) are 

derived automatically from ontology definitions. This section describes the deployment 

process of Smart Objects and the generation of other components in the FRED system. First 

we explain the procedure and technologies for compiling ontologies into SMOs and then we 

specify the other technical components generated out of ontology definitions.  

3.2.1 Smart Objects Generation  

As stated before, the ontology schema data (called the ´static part of the ontology´ in Fred 

terminology) are created outside the system and then complied into JAVA-objects, the so-

called ´dynamic part´ of SMOs. For editing the external ontologies, OntoEdit is used.4  The 

ontologies are kept in the OXML-format, the in-house XML-representation for ontologies 

used by OntoEdit.5 Then the OXMLCompiler, a part of the Ontology API, transforms the 

OXML-file of an ontology into JAVA objects which carry the ontological notions for each 

concept. These JAVA objects are the OOIs which are subsequently available as basis of the 

Fred Universe in an application. Figure 3 illustrates this process while we give further 

insights below.  

OntoEdit OXML OXML-Compiler  Fredbase 

<Person>  
  <...>  

 

Figure 3: Ontology Deployment Process in the FRED system 

____________ 

4 OntoEdit: Ontology Editor developed by Ontoprise GmbH, Karlsruhe (Germany) , see: www.ontoprise.de. In the FRED 

system, the professional version of OntoEdit is used, release no. 2.6.  

5 OXML has been designed as a proprietary XML-format for ontology representation in the OntoEdit because no standard 

representation format was available at design time of OntoEdit (Erdmann, 2003).  

  18 

http://www.ontoprise.de/


FRED Whitepaper  

More precisely, the generation of SMOs out of the ontology specification in an OXML-file 

works like follows. First, the OXML-file is transformed into an XML Schema, short XSD-

file. Into this XSD-file, application specific constraints not supported in OXML as well as 

further XML-datatype restrictions are added to the ontology specification. Then this extended 

ontology definition is used to compile the OOIs, the EJBs for Shared Smart Objects as well 

as the generation of other technical constructs (see below). The reason for this intermediate 

step via XSD in Smart Object compilation is that OXML is a proprietary, not easy extendable 

format while XSD allows application specific refinement of ontology definitions. 

Furthermore, existing XML-technologies can be used for further processing of the extended 

ontologies.  

The Ontology Deployment process in its current implementation is obviously a proprietary 

solution for transforming ontology data into JAVA objects as OXML and XML Schema is 

used instead of standard formats like RDF or OWL. But apart from the fact that this can be 

easily changed by a generator for SMOs out of other XML-ontology-representations, the 

approach shows that compiling ontologies into JAVA-objects is a reasonable method to make 

ontology data handle by conventional and settled technologies.  

3.2.2 Generation of Other Components  

The result of the preparation process for compiling SMOs are numerous automatically 

generated technical building blocks and description files all serving as a base for using Smart 

Objects and Shared Smart Objects in Fred applications.  

The generation of the technical building blocks is done in the Ontology Tower, the central 

ontology management unit (see section 3.4.1). The code packages generated out of the XSD-

file apart from the OOI-Java classes are: SQL-statements for creating RDBs including object-

relational mappings, complied EJBs representing Business Objects in Shared Smart Objects 

and providing access to them, compiled Visual Basic classes representing Smart Objects to 

be used in GUI-implementation, description files with rules for constraint processing in the 

Validation Framework (see section 2.2.3),  WSDL descriptions for Smart Objects, and 

HTML Java documentation.  

This demonstrates that the FRED system does not only make use of ontologies for knowledge 

representation and processing, but also utilizes them as the structuring principle whenever 

information management is concerned (in the storage, the business logic and the GUI tier). 

  19 



FRED Whitepaper  

Figure 4

Figure 4: Ontology Compilation in FRED 

 summaries the utilization of ontologies as the grounding data model of the FRED 

system.  

Fredbase  
Fred Tools Connect 

User Interface Applications etc. 
Ontology Tower 

OXML Files 
XSD Files  

Applications 
 
• Use of Smart Objects 
• Use of Shared Smart Objects 

• Generated Code 
• Description Files 

Ontology 
Compilation 

 

The extensive usage of ontologies exemplifies the essentiality of ontologies in progressive 

systems because they do used to provide the underlying data model as the Fred Universe but 

also for structuring and generating other components of the system. An essential prerequisite 

for this technique is to preserve the expressive power of the ontologies which we will analyze 

in the following.  

3.3 Expressiveness 

A very important quality criterion for ontology-based systems is to what extent they make 

use of the expressive power ontologies provide for knowledge representation. In order to 

determine the ontological potency of SMOs we position them within conventional ontology 

representation languages. The expressive power of an ontology representation language is 

determined by the modeling primitives - Concepts, Properties, Relations, and Axioms – 

supported. In order to rank the expressiveness of Smart Objects as an ontology representation 

technique, we describe the ontological notions covered in the OXML-format, those which are 

transferred into Smart Objects by the OXMLCompiler and position this within ontology 

representation standards.  

  20 



FRED Whitepaper  

3.3.1 OOIs – Ontology Object Instances  

OXML as the internal ontology representation format of OntoEdit comprises representation 

facilities for all ontological notions supported by OntoEdit (Sure et al., 2002). Apart from 

facilities for defining the taxonomic structure of ontologies, OntoEdit allows to define highly 

expressive axioms as F-Logic expressions.6 Table 4 summarizes the ontology representation 

primitives complied into OOIs out of the OXML ontology definition.    

Table 4: Ontology Modelling Primitives compiled into Smart Objects 

Feature Group Modelling Primitives  

Concept-modelling  
(all of OXML)  

- concept names (as unique identifier in the Fred system) 
- concept-hierarchy definitions (subConceptOf) 
- instance consistency information (disjointWith) 

Properties & Relations  
(all of OXML) 

- characteristics (name, range, domain, min. / max. cardinality) 
- logical Characteristics (transitivity, symmetry, inverse) 
- property / Relation hierarchy definitions (subRelationOf) 

Instance Information  
(parts of OXML) 

- concept membership 
- pre-defined attribute values and datatype restrictions 
- relation declarations 

Additional information, 
manually added into XSD-file  

- versioning information: current ontology version number  
- language Support: for English and German, descriptions 
- <securityInformationGroup>: data security information on 

accessibility  
- <priority>: specifies application importance of a concept / 

attribute (i.e. the importance of an attribute in terms of 
characterizing a concept or an instance) 

- <required>: specifies if a property or relation is mandatory 
- <deprecated>: define compatibility between instances of 

different ontology versions 

 

Information not compiled is proprietary aspects that are used in OntoEdit as well as axiom 

definitions in the OXML-file. The former does not affect the expressiveness, while the latter 

causes the loss of axiom definitions. Integrity constraints and other logical expressions can be 

____________ 

6 F-logic (Frame-logic): logic that combines the object-orientated paradigm and frame-based approaches for ontology 

specification and reasoning (Kifer et al, 1995).  

  21 



FRED Whitepaper  

added to SMOs by the concept of OOCs. As these are different from axiomatic expressions in 

ontology specifications, we discuss them separately in the following section.  

In comparison to the standards for ontology languages recommended by the World Wide 

Web Consortium W3C, OOIs can be ranked to be equivalent to the one of OWL Lite in terms 

of expressiveness. OWL Lite (McGuiness et al., 2003) is a subset of the full OWL language 

constructors that allows defining taxonomic structures along with simple cardinality 

constraints (just 0 or 1). It provides the ontology modeling primitives shown in Table 5:  

Table 5: OWL Lite Modeling Primitives 

Feature Group Primitives  

RDFS-features class, property, individual, subClassOf, subPropertyOf, 
domain, range 

(In)-Equality  equivalentClass, equivalentProperty, sameAs, 
differentFrom, allDifferent  

Property Characteristics  inverseOf, TransitiveProperty, SymmetricProperty, 
FunctionalProperty, InverseFunctionalProperty 

Property Type Restriction  allValuesFrom, someValuesFrom 

Cardinality  minCardinality, maxCardinality, cardinality (each only 0 or 1) 

Class Intersection  intersectionOf (for specifying composite concepts) 

Datatypes  DataTypeProperty (uses RDF Datatype mechanism) 

 

It is important to note that these ontological notions are only those which are compiled into 

the OOIs. This means that the constituting basis of the Fred Universe contains facilities for 

expressing taxonomic structures, property typologies as well as additional, non-functional 

attributes. As mentioned above, the concept of OOCs allows to define further constraints and 

other logical notions upon OOIs, thus the expressive power of Smart Objects is to be rated as 

the one of OWL Lite plus axiomatic expressions.   

3.3.2 OOCs – Ontology Object Constraints 

OOCs are based on an ontology concept and their purpose is to filter and validate instance 

according to a certain criteria. We will give an example for illustration, based on the concept 

´Car´. After applying the OOC, only cars with more then 100 PS will be valid. A simple path 

expression is used because the amount-attribute is not directly accessible in the concept Car, 

but via the concept ´Power´.  

  22 



FRED Whitepaper  

(hasPower.amount (ALL) > 100)  

AND 

(hasPower.hasMeasure (ALL) LIKE PS) 

Listing 1: OOC Example 

Out of this we can obtain the most relevant features of OOC, namely:  

(1) Subsumption definitions according to the meta-data model of RDFS, as the OOC is 

defined using the Car concept but can be applied to all subsequent instances 

(2) Path expression, as the condition expressed in an OOC is not limited to its own 

concept. Starting at the car concept it uses the relation hasPower and accesses its 

properties amount and hasMeasure 

(3) Basic logical operators are provided, namely: FULLFILS, VIOLATES, ASSIGNABLE, 
NOT_ASSIGNABLE, <, <=, >, >=, ==, != 

(4) Operators for processing  String-Values: LIKE, NEAR  

(5) OOCs consider the cardinality of a particular relation (respectively property). The 

quantifiers ANY and ALL allow explicit specification how to handle the condition in 

case of a cardinality bigger then 1. 

Further, the example demonstrates the usage of OOCs in the FRED-system. An OOC is 

defined for one ontology concept in the Smart Object Browser (see section 2.2.3). After 

creation, it is compiled into a Java Object Instance and handled the same way as OOIs. For 

processing OOCs, so called Predefined Constraint Processors (PCP) are defined which 

perform certain selection operations on the set of OOIs of the ontology concept the OOC is 

defined on. Currently, two PCPs are provided by the FRED system: the PCP 1 returns the set 

of OOIs of a specific OOG which confirm to the OOC (i.e. all ontology instances in an 

application context), while the PCP 2 returns all OOGs which wherein at least one OOI holds 

for the OOC. Referring to the example, the OOC can be used to pose a selection query on 

OOIs of the concept Car in terms of a query to the knowledge base by applying PCP 1. In 

another context, the PCP 2 can be employed for using the OOC as an integrity constraint 

stating that only OOGs are of interest wherein at least one OOI of the concept Car exists that 

has more than 100 PS. Further PCPs can be defined for supplementary selection mechanisms 

if requested.  

The idea behind this approach is that an OOC is a logical snippet defined upon an ontology 

concept processable by PCPs which can be invoked in an arbitrary application context as 

  23 



FRED Whitepaper  

generic selection mechanisms to ease data handling. The treatment of OOCs as Java Objects 

and the execution of PCPs as conventional Java programs ensures performance of OOCs-

processing since no intermediate machine for inferencing on OOC is needed which has been 

proven by testing OntoBroker (Fensel et al., 1998) as an inference machine for OOC 

processing. In terms of Deductive Databases, OOIs can be seen as the extensional knowledge 

base and OOCs represent the intensional knowledge, i.e. the knowledge that is deducible 

from OOIs. Regarding the expressive power, the OOC-concept is an implementation of 

propositional logical (logical expressions within predicates, functions and quantifiers), 

enriched with path expression facilities and means for processing string data (Ullman, 1998). 

An OOC is defined for one single concept, and a PCP only processes one OOC at a time 

while the combination of several OOCs is handled in the application logic. As propositional 

logic is decidable and the concept of OOCs and PCPs does not allow definition of nested 

expressions between independent classes, the OOC-processing technique is decidable and 

thus cannot interrupt the system by infinite loops.  

With the concept of OOCs and PCPs, the FRED system provides a technique for enhanced 

ontology data processing on basis of logical expressions. The strength of this approach is the 

universal applicability and its ease of use since no complicated reasoning environment has to 

be considered in OOCs design. Although, due to the different technological realization, the 

approach is hard to compare with the model-theoretic techniques considered of inference-

based ontology reasoning (Horrocks and Patel-Schneider, 2003) it enables logic-based 

support for enhanced ontology data processing, thus extending the expressiveness of Smart 

Objects with axiomatic capabilities.  

3.4 Smart Objects Management  

Management of Smart Objects comprises techniques for storage and maintenance of 

ontologies and SMOs as well as techniques for mediating SMOs, i.e. to allow interoperability 

of different SMOs. These technologies are very important for ontology-based applications in 

order to make ontologies usable at all on the one hand, and, on the other, to enable long-term 

usage of ontology data in the application as the corresponding knowledge requirements might 

change or evolve over time (Gómez-Pérez et al., 2003). In the following we explain the 

solutions for this provided in the FRED-system and relate them to the techniques used in 

current ontology-based applications. It is to note that the technical solution, although they 

  24 



FRED Whitepaper  

might not confirm to the latest trends and developments in this area, present an operating and 

integrated solution for ontology data handling as it rarely exists at this point of time.   

First we investigate the storage mechanisms for ontologies and SMOs in the Fred system. A 

sophisticated storage technology should provide secure and scalable storage of data, and a 

proper query and retrieval mechanism. Further, maintenance techniques have to be supplied 

to allow updating of the knowledge base of the system. In the Fred system, separate 

techniques are used since ontology data are separated into schema definition, the ´static part 

of the ontology´, and the SMOs as the instance data, called the ´dynamic part´.  

3.4.1 Ontology Tower  

As stated before, ontology schemas (called “ontologies” or “static part of the ontology” in 

Fred terminology) are kept as OXML-files in the Fred system. The ontologies are maintained 

in the so called “Ontology Tower”. This is a central location where all ontologies are edited, 

stored, and the compilation into SMOs is performed.  

Furthermore, a versioning mechanism is applied to allow ontology updating (Klein and 

Fensel, 2001). The versioning information is manually added to the OXML file. Confirming 

to current approaches in research, two kinds of changes are distinguished (Kiryakov et al., 

2002). A minor change adds a concept to the ontology which does not affect the 

interoperability between different versions of the ontology. Thus a minor change is stored by 

simply overriding the old version of the OXML file. The second kind of change is a major 

change which is a deletion or modification of an ontology concept which might affect the 

interoperability between the new and the old version. Therefore a major changed ontology is 

stored in a new OXML file. The system checks the validity of manual versioning so that a 

major change can not be stored as a minor change.  

The overall aim of ontology storage and maintenance systems is to support distributed, multi-

user maintenance of ontologies with the purpose of enabling collective evolvement of an 

ontology as a shared conceptual model of a domain. The major outcome of an exhaustive 

survey of existing tools for ontology storage and querying in (Magkanaraki et al., 2002) is 

that currently available tools for ontology management are not mature enough to support this 

in a secure and scalable manner, thus none of them is appropriate to be employed in a 

commercial system. However, as ontology management solutions are needed in ontology-

based system one way or the other, most existing applications apply a central component for 

ontology management similar to the Ontology Tower in the Fred system. Therein the 

  25 



FRED Whitepaper  

necessary ontology maintenance tasks are performed – i.e. persistent storage, a retrieval 

mechanism and methods for ontology updating. As long as there is no sufficient tool support, 

the correctness of all maintenance activities relies on human beings. This obviously is very 

hazardous as the correctness of ontology management activities determines the functional 

quality of the whole system – especially if ontologies are used as extensively as in the Fred 

system. But regarding the fact that the external ontologies are only used to define the schema 

for SMOs and are kept outside the FRED system, this dependence on human power of 

judgment can not hamper the system functionality directly. 

3.4.2 Persistent Storage of Smart Objects 

One of the major advantages of the Smart Objects concept is that SMOs can be stored as 

Java-Objects, thus conventional storage technologies can be applied. In the FRED system, all 

SMOs data are stored in the Fred Database (see Figure 1).  

An essential requirement for sizable applications is to provide a scalable storage technology. 

The FRED system therefore implements a storage approach based on the “persistence by 

reachability” – paradigm which means that only those SMOs (that is OOIs, OOGs and 

OOCs) are stored permanently which are presently used. With respect to the ´Fred Universe´- 

principle, the Freds, i.e. the agents, are the components that hold knowledge of the system as 

SMOs. All knowledge of a Fred is enclosed in an OO-Container. An OOContainer has 

exactly one Root OO Group. The Root Group is stored in the Fred Database as the starting 

point a Fred’s knowledge. The knowledge of a Fred is extended by adding new SMOs to the 

Root OO Group. As all SMOs belonging to the Root OO Group are stored permanently, only 

the actual knowledge of each Fred is stored permanently.  

By this construct, only the currently needed SMOs data are stored one the one hand and, on 

the other, SMOs which need to be stored persistently are determined automatically during the 

system runtime. If, for example, a SMO ´A´ is referenced by another SMO ´B´ (through a 

relationship in SMO ´B´ with a value of OOI ´A´) and SMO ´B´ is persistent (because it is a 

member of the Root OO Group or of another OO-Group belonging to an OO-Container), then 

SMO A is automatically made persistent as well. In other words: SMOs are only made 

persistent if it is actually used by a Fred. Thus there are three memory states of SMOs (see: 

) Figure 5

(1) Persistent Objects: Persistent Objects are SMOs currently assigned to the OO-

Container, thus persistently stored in the database. 

  26 



FRED Whitepaper  

(2) Transient Objects: Transient objects are SMOs which are needed during a meeting. 

After the meeting, they either become Persistent or Orphaned Objects.  

(3) Orphaned Objects: Orphaned objects are transient objects no longer in use, and 

therefore not accessible. 

                Persistent Objects 

                Orphaned Objects 

                Transient Objects OOContainer 

Root 
OOGroup 

OOGroup 
1 

OOGroup
2 

OOGroup 
3 

OOGroup 
5 

OOGroup 
5 

Fred 

OOGroup
6 

OOGroup 
4 

OOC
7 

OOC
8 

OOI 
1 OOC 

2 

OOI 
3 

OOI 
4 

OOI 
5 

OOC
8 

OOC
8 

OOC
8 

Legend 

 

Figure 5: Persistency Concept in Fred 
 

In this aspect, the Fred system differs from most of the other approaches in currently existing 

ontology-based systems by instantiating all ontology data into Smart Objects, the FRED 

system bypasses the need for scalable and reliable ontology instance storage and querying 

devices because settled techniques for storing Java-Objects can be employed. On the other 

hand, changes in the ontology (on the schema level / static part) require a re-compilation of 

the Smart Objects, eventually also realigning existing SMO-data to new ontology concepts. 

Techniques for enabling interoperability of different versions of ontologies and SMOs with 

regard to long-term usability of FRED-applications in evolving environments are discussed in 

the following section.  

  27 



FRED Whitepaper  

3.4.3 Smart Objects Mediation 

The final aspect of the Smart Objects concept to be investigated is mediation of ontologies 

and SMOs, i.e. techniques to ensure the interoperability between different versions of 

ontologies and SMOs in the Fred system (Wache et al., 2001). A prerequisite for this kind of 

interoperability is that there are no irresolvable ontological mismatches, and the system must 

allow processing of data that belong to different versions of an ontology.  

In ontology research, this field of study is referred to as “ontology integration” (Wache et al. 

2001). The general approach relies on a so called “ontology algebra” (Wiederhold, 1994) 

which defines operations like intersection, union and difference for ontologies as known from 

mathematical algebra. Upon this, rules are defined to resolve the ontological mismatches and 

thus enable interoperability of ontology instance data that belong to different versions or 

completely independent, but interoperable ontology schemas. Generally, three strategies for 

ontology integration are distinguished. In so called “ontology mapping”, rules are defines to 

enable interoperability between two or more ontologies. The rules and the source ontologies 

are kept separated after integrating. In “ontology alignment” one of the source ontologies is 

transformed into the other, while “ontology merging” unites the source ontologies into one 

ontology which comprises all information of the source ontologies. Figure 6 shows the 

difference between these approaches. The choice for one of these techniques is determined by 

the application field. Remark that every strategy is defined on the ontology schema level and 

instances are transformed according to the rules defined (Noy and Musen, 2003).  

Ontology Alignment Ontology Mapping 

Mapping 
Rules 

Ontology Merging 

     

  
Ontology A is made 

compatible to ontology B 

 

Figure 6: Ontology Integration Strategies 

The Fred system provides a solution for solving this kind of interoperability problems 

whereby two strategies are implemented, called ´Mapping´ and ´Morphing´. The functional 

differences can be explained at best within small examples, starting with Mapping: Fred A 

  28 



FRED Whitepaper  

and Fred B want to communicate. If Fred B needs an OOI-instance of concept Person as 

input, the output of Fred A is an OOI-instance of Employee (sub-concept of Person). Then 

the missing information for the input of B (Employee) is added to the output of A (Person) 

via mapping rules. In Morphing, the complete OOI describing a Person is transformed into an 

OOI of Employee, which might be needed when as a consequence of a major version change. 

Thereby all properties including their values have to be transformed. Morphing is also 

realized by mapping rules. It is important to note that these strategies implemented in the 

Fred system do not perform integration of ontologies on the schema level, but 

transformations of SMOs, i.e. on the instance level. With regard to the three ontology 

integration strategies, mapping and morphing are both ontology mapping strategies since they 

are realized via mapping rules and they do not change the schema definitions of the source 

ontologies.  

Mapping and morphing are realized by the same technologies. The integration rules are 

specified in XSLT7, which then are either generated into JAVA-classes that are invoked 

during the runtime of the system (usually used for mapping) or they are used for a so called a 

´batch´ transformation wherein all SMOs are of the specified concept are transformed. 

Therefore, the SMOs are serialized into an XML-document (using a specific XML-Schema 

for that defines the data structure necessary to represent all aspects of SMOs, called ´OO-

XML´), then the XSLT-rules are applied to the XML-file, and then the SMOs are recompiled 

into the FredBase. This technique is usually used for morphing when a huge number of 

SMOs needs to be transformed. As for the other ontology management aspects presented, 

there are no sophisticated tools for ontology integration at this point of time. Thus, the FRED 

system – as well as other ontology-based systems – has been forced to create a proprietary 

solution to achieve interoperability of SMOs.  

4. TASK-SERVICE-RESOLUTION  

A major challenge for agent-based systems is to discover an appropriate problem solving 

service for a task that an agent is assigned to solve. For this resolution of tasks and services, 

the Fred system realizes a goal-driven approach which is a contemporary methodology also 

applied in technologies for discovery of Semantic Web Services.  

____________ 

7 XSLT (Extensible Stylesheet Language Transformations): Language for transforming XML-Data Structures. W3C 

Recommendation, see: http://www.w3.org/TR/xslt     

  29 

http://www.w3.org/TR/xslt


FRED Whitepaper  

This section illustrates the concept of goal-driven resolution, introduces the underlying 

technical constructs and describes the techniques for resolving task-service-resolution 

supplied in the FRED system. We first illustrate the goal-driven approach, and then explain 

the concept of Goals and Plans as well as the initial solution for simple services and the 

Process-based approach which allows definition of more complex problem solving services. 

Finally, we present the technologies for Goal Resolution in section 4.4.  

4.1 The concept of Goal-Driven Resolution  

The idea of goal-driven system is to specify solvable user needs in a declarative way as pre-

defined goals and similarly describe the problem solving capabilities available in the system 

with an operational specification. A selection mechanism is then mapping between both 

descriptions and initiates the execution of appropriate program code for a specific request. So 

goal-driven systems contain a mostly hierarchical ordered set of predefined goals along with 

operators which describe the relations between the goals, implemented services for solving 

problems, and selection mechanisms for dynamic determination of suitable implementations 

for a goal (John and Kieras, 1994).  

The advantage of goal-driven systems in comparison to transaction-driven or user-dialogue-

driven approaches is first that goals and services can be removed, added, or modified 

dynamically without changing the functional architecture, and second that particular goals 

and services can be reused for different application scenarios. Goal-driven approaches have 

been applied in several application fields. For the resolution of tasks and service 

implementations, Problem-Solving Methods (short: PSM) have been developed which rely on 

a goal-driven approach (Fensel, 2000). A PSM is a reusable reasoning pattern which 

decomposes a complex goal into subtasks that are solvable with the existing problem solving 

services, thus allowing automatic detection of suitable services for a given goal to a high 

extent. The idea of PSM is also applied in techniques for discovery and composition of 

Semantic Web Services, wherein so-called capabilities describe solvable goals and 

appropriate Web Services are determined by reasoning on the declarative descriptions. These 

descriptions are based on a web service description ontology to ensure semantic consistency, 

thus bringing up the concept of Semantic Web Services (Fensel et al, 2002a).  

In the FRED system, three technical constructs underlying the goal-driven resolution of tasks 

and services are defined. According to the common arrangement of goal-driven systems, a 

Goal represents generic user goal which can be assigned as a task to a Fred. The service 

  30 



FRED Whitepaper  

implementations existing in a FRED application can either be Plans or Processes. Plans are 

implementations for some simple functionality, while a Process contains a more complex 

workflow procedure which can itself be comprised of several plans, external services or sub-

processes, thus allowing recursive reuse of existing services to solve different Goals. Figure 7 

illustrates the interrelations of Goals, Plans and Processes: a Goal can be solved by a Process, 

wherein the Process consists of several steps which themselves can be solved by a Plan, a 

SubProcess, a manual activity, or by another Goal that can be solved arbitrarily.  

 

Goal Assignment Legend 
Invocation FredG1 
Controlflow 

Process X 

Step 1 Step 2 Step 3 Step n 

manual 
activity 

G2 arbitrary Plan A Process Y

Figure 7: Goals, Plans and Processes for Task-Service-Resolution  

This approach allows defining generic fragments for tasks to be solved in a Fred application, 

thus making use of the benefits of goal-driven systems. The motivation for this approach is 

that Plans and Processes can be re-used for different scenarios in an application on the one 

hand and, on the other, that resolution of tasks can be handled by the same technology 

impartial of whether the task has been assigned to a Fred by its owner or during system 

runtime. In the remainder of this section we first explain the concepts of Goals, Plans and 

Processes in more detail before we address the techniques for goal-resolution in section 4.4.  

4.2 Goals and Plans  

At first we delve into the concept of Goals and Plans as the foundation of the task-service-

resolution technique in the FRED system. We explain the structure of Plans and their 

association to Goals and show how external web services and be invoked as Plans in a FRED 

application.   

  31 



FRED Whitepaper  

Freds determine the activity of a FRED application. This means that meetings and thus 

system activity can mainly achieved when some Freds have been assigned with Goals so that 

they will be called into a meeting. The Goals assigned to a Fred are selected from a 

predefined set of Goals, whereby a Fred may only use goals that are defined in his policy 

profile because of security reasons. As outlined above, a Goal can be solved by associated 

Plans. A Plan can consist of one or more Plan Modules which hold the concrete problem 

solving implementations, which can be either a simple JAVA class, an aggregated resource, 

or a web service. During a meeting, the Goal assigned to a Fred is solved by executing the 

corresponding Plan, respectively its Plan Modules. For Plan execution, the Meeting Room 

(see section 2.2.2.1) provides the computational environment and execution control.  

4.2.1 Goal, Plan and Plan Modules Description  

A pre-requisite for identifying resolving services for a given goal in goal-driven systems is a 

appropriate description language. The FRED system currently uses a rudimentary XML-

based language for this purpose. We record the descriptions elements for Goals, Plans and 

Plan Modules in Table 6. These descriptions are edited in the Description Editor (see section 

2.3). All these descriptions are stored in XML-format because of the ease of use of XML for 

describing data structures like this. These descriptions can serve a basis for an inference-

based extension of the Plan discovery.  

Table 6: Description Elements for Goals, Plans, Plan Modules 

Component Description Elements  Explanation 

Name  primary identifier in system  

Version, Creation Date secondary identifier 

Application  FRED application that Goal is developed for  

GOAL   

Non-functional incl. portray, keywords  

Name primary identifier  

Version, Creation Date secondary identifier 

Link to Goal name & version of Goal that is solved by this plan  

Link to Plan Modules  name & version of 1..n Plan Modules that hold actual 
implementation 

PLAN  

Non-functional  incl. portray, keywords 

Name primary identifier  PLAN 
MODULE  

Version, Creation Date secondary identifier 

  32 



FRED Whitepaper  

Name & Path of JAVA-class pointer to actual problem solving implementation  

FIPA Protocol Type  FIPA protocol used by Plan Module8 

Input & Output  In- & output data of Plan Module, described as SMOs  

Compatible Plan Modules  Plan Modules that can be combined with this one  

 

 

The description elements listed clarify the coherency between the components. A Goal 

describes a generic user goal which can be assigned to a Fred. The Plan Module description 

links to the problem solving resource, provides functional information of a Plan Module by 

it’s in- and outputs (which are described as ontology data), and specifies how the module can 

be utilized in a meeting between agents. The Plan description realizes the linking between 

user goals and the problem solving services, i.e. between Goals and Plan Modules. In order to 

enhance reusability of resources, a Plan Module can be assigned to several Plans and a Goal 

might be described by different Plans. In a nutshell, a Plan represents the intermediate 

connection between user goals and the problem solving implementations in the sense of a 

PSM (see above).  

In the current status of implementation, the connection between Goals, Plans and Plan 

Modules is hardwired. This means that for each Goal, the corresponding Plans and their Plan 

Modules are specified explicitly at design time and not algorithmically determined during 

system runtime. In order to automate the detection of suitable Plans for a Goal, only the 

concept a Plan needs to be replaced by rule-based techniques while the other description 

components can be kept. Nevertheless, the concept of Goals and Plans allows reuse of 

existing constructs for different application scenarios in the sense of the goal-driven approach 

and can be extended to inference-based discovery of suitable Plans for a Goal.  

4.2.2 Deployment of External Web Services  

After having introduced the concept of Goals and Plans we now can explain how external 

Web Service can be integrated into a Fred Application. Therefore a special Plan, the so called 

WSDLExecutorPlan, is provided which allows execution of an external web service via its 

WSDL-description.  

____________ 

8 FIPA-ACL primitives used: FIPAQueryInitiator, FIPAQueryParticipant, FIPARequestInitiator, FIPARequestParticipant, 

FIPAContractNetInitiator, FIPAContractNetParticipant see: http://www.fipa.org/specifications/index.html  

  33 

http://www.fipa.org/specifications/index.html


FRED Whitepaper  

The Web Services Description Language WSDL (Chinnici et al., 2003) is an XML-based 

language for describing the access interface of a web service. WSDL contains descriptions of 

the required input and output data of a Web Service, on its technical accessibility and on 

supported protocols, thus comparable to a Plan Module description in the FRED system. 

Figure 8 gives a self-explaining overview of WSDL. 

 

Figure 8: Web Service Description elements in WSDL 

As this information is not sufficient for automated discovery of web services, more 

expressive description models for web services are developed in current efforts in research 

like DAML-S (DAML-S, 2003) and WSMF (Fensel et al., 2002b). As these technologies are 

not maturely developed, WSDL is mostly used for describing web services at this point of 

time. Because of this reason, WSDL is also supported for deploying external web services 

into the FRED system.  

As pointed above, a WSDL description only contains information on input and output data 

and on the binding, i.e. the technical accessibility of a web service. As this description does 

not supply sufficient information on the functionality of a web service to be integrated into a 

FRED application, the functionality is inspected manually by the application developer for 

incorporation of a web services as a Plan Module into the system. Then, the web services can 

be invoked via the Fred Tools Connect (see section 2.2.3). This manual integration of 

external web services of course is very far away from the overall aim pursuit by research 

efforts in the Semantic Web Services area, i.e. to discovery web services automatically, to 

  34 



FRED Whitepaper  

compose them dynamically, and to conduct necessary mediation during runtime (Fensel et 

al., 2002b). But at this point of time, there neither is an environment realizing this vision in a 

mature manner nor are there sophisticated web services in an adequate number which could 

be used as a functional basis for an application. The WSDLExecutorPlan must thus be 

comprehended as an intermediate solution that allow integration of web services – as an 

upcoming species of application component technology – into a Fred application that will be 

further elaborated in the future.  

4.3 Goals and Processes   

Apart from Plans, Goals can also be solved by Processes (see Figure 7). Therefore, the FRED 

system provides a workflow-based technology for specifying more complex problem solving 

procedures, also referred to as business workflows.  

A process defines execution sequences of services for some repeatedly appearing task which 

is considered as an important requirement for life-size applications. Therein, different kinds 

of problem have to be solved which are highly interrelated and dependent on each other. 

First, problem solving services have to be put into a reasonable order regarding the sub-goals 

solved by each service, second the defined sequence should be easily executable according to 

the transitions between the invoked services (i.e. the output of the former service should be 

applicable as input of the following service), and third the execution of a workflow composed 

of several problem solving services should be transaction-secure. 

Generally, there are two oppositional approaches for specifying workflows. The so called 

procedural approaches define pre-defined, static workflow steps wherein the problems 

mentioned above can be caught during design time of a system. The drawback of these 

approaches is that they are static, so that dynamic changes during runtime of the system are 

not adaptable (at least not to a very high extent), and a workflow has to be defined for every 

application scenario that shall be supported by the system. The second group, so-called 

“declarative approaches” provide descriptions of goals and problem solving services in a 

system and the workflow is determined dynamically through logic-based inferencing on these 

descriptions. Declarative approaches overcome the static and application scenario dependent 

drawbacks of procedural approaches, but they request enormous efforts for ensuring the 

functional requirements of workflow systems (Bussler, 2003).  

  35 



FRED Whitepaper  

4.3.1 Process approach in FRED  

The Fred Process approach relies on a procedural approach. The reason for this is was 

detected that a procedural solution accomplishes the requirements of Fred-based applications 

in a better way since already existing workflows, as there are for many application scenarios, 

can more easily be transferred into procedural process definitions than into declarative ones. 

As outlined above, Processes in Fred are highly interconnected with the concept of Goals and 

Plans and allows recursive definition of processes. Furthermore, a Fred Process can be 

comprised of different kinds of activities which can be either invocations of implemented 

functionality, sub-processes, or manual activities.  

The foundation of the Fred Process concept is the approach proposed by the Workflow 

Management Coalition, a union of over 300 industrial members aiming at defining standards 

for workflow management.9 The workflow implementation model proposed by the WfMC 

identifies the components required for a workflow system (WfMC, 1995). Table 7 lists the 

model components and states the corresponding component in the FRED system.  

Table 7: WfMC workflow model components and realization in the FRED system 

WfMC model component Fred tool 

Process Definition Tool 
tool to create the process description in a computer processable form Process Composer 

section 4.3.3.1 

Process Definition 
process modeling primitives, incl.: constituent activities and rules for 
navigation, possible user tasks, references to invoked applications, 
definition of any workflow relevant data  

Process Ontology  
section 4.3.2 

Workflow Engine 
run time execution environment for a workflow instance 
Workflow Enactment Service 
A software service that may consist of one or more workflow engines in 
order to create, manage and execute workflow instances. Applications 
may interface to this service via the Workflow API (WAPI). Control can 
be realized by a state transition machine or other decision making 
technique.  
The Workflow Enactment Service interprets process descriptions and 
control process instantiation, sequencing of activities, adding work 
items to user work lists, etc. It also maintains internal control data, links 
organizational entities and roles with specific participants and may 
access external applications (document creation etc.). 
Workflow Control Data 
internal control data (internal state, checkpoints, recovery/restart) 
Workflow Relevant Data  

Process Engine 
section 4.3.2 

____________ 

9 See: http://www.wfmc.org  

  36 

http://www.wfmc.org/


FRED Whitepaper  

data to determine the state transition of a workflow process instance 
and data needed for workflow generated by applications  

Application Data 
application specific data not accessible by the workflow system, i.e. 
data that will only be manipulated by the application. 

Freds, resp. their Smart 
Objects  
section 3.1.2 

Worklists 
Items to be processed in the workflow system  Fred, reps. their Goals  

section 4.2 

Worklists Handler 
Managing the interactions with participating elements Plans / Plan Modules 

and Meeting Rooms 
section 4.2 

 

Further, WfMC has introduced the Workflow Process Definition Language WPDL as a 

formal language for specifying workflows according to the WfMC Process Reference Model. 

There is an XML-Serialization of WPDL called XPDL  (XML Process Definition Language) 

which allows exchanging workflow specification data between XML-enabled applications 

(WfMC, 2002).  

4.3.2 Process Ontology and Process Engine  

Based on the WfMC Reference Model for Process Definition, a Process Ontology defines the 

modeling structure for workflow specifications in the FRED system. Figure 9 shows the 

taxonomic structure of the Process Ontology, further explanations of the concepts are given 

below. For specifying workflows in the FRED system, XPDL is used.  

ProcessObject 
 Process 
  AtomicProcess 
  SubProcess 
 ProcessInstance 
 Activity 
  RouteActivity 
  BlockActivity 
  RegularActivity 
   LoopActivity 
   SubflowActivity 
   NoImplActivity 
   ApplActivity 
 ActivityInstance 
  RouteActivityInstance 
  BlockActivityInstance 
  RegularActivityInstance 
   LoopActivityInstance 
   SubflowActivityInstance 
   NoImplActivityInstance 
   ApplActivityInstance 
 Transition 
 TransitionInstance 
 InternalProcessInformation 
 InternalActivityInformation 
 ProcessInformation 
  ControlData 

  37 



FRED Whitepaper  

  CaseData 
   DocumentProxy 
   MediaProxy 
   ApplicationProxy 
   UrlProxy 
 Participant  
  OrganisationalUnit 
  Role 
  Person 
  VirtualPerson 
  Resource 
 ParticipantInstance 
  OrganisationalUnitInstance 
  RoleInstance 
  PersonInstance 
  VirtualPersonInstance 
  ResourceInstanceh  

Figure 9: Fred Process Ontology Structure 

A ProcessObject identifies all process objects. An AtomicProcess describes the general 

process while all occurrences of Processes are modeled as a SubProcess. The most important 

concept is an Activity which describes the action carried out at a certain step of the process. 

An Activity is always related to a Participant which can be a Person, a VirtualPerson (i.e. a 

Fred) in a virtual organization, a Role representing a function executed by a Fred or a 

representative of another organizational unit (OrganisationalUnit). This means that Fred 

Processes are not restricted to definitions for execution orders of technical constructs like 

Goals, Plans or other Processes, but can contain activities of user-interaction as well. The 

Activity sub-concepts describe the behavior of the process after execution of an Activity, for 

instance the LoopActivity defines a recursive repetition of an Activity and SubflowActivity 

calls a nested process. A Transition comprises conditions for transitions between Activities. 

When a Process is instantiated, all these concepts become Instance-concepts which hold 

additional information needed for execution of the process (e.g. a RegularActivity which 

describes a certain state in a process specification and becomes a RegularActivityInstance 

when its corresponding process object get instantiated). Besides the concepts for process 

description, so-called ProcessInformation hold control information for process execution as 

well as CaseData as links to process-external information resources.   

The Process Engine executes processes and controls the execution procedure. It deals with 

ProcessInstance data only, i.e. with effectively existing processes. In order to prevent 

separation of functionality, the Process Engine only controls process execution while 

handling of application data is left to the meeting rooms where Freds interact (see Figure 10).  

  38 



FRED Whitepaper  

Application  
Data 

Process 
Engine 

Workshop/Meeting 
Room 

Process 
Instance Data 

Mapping 
 

Figure 10: Position of Process Engine in the FRED system 

According to the requirements for process management and execution settled by the WfMC 

(see ), the Process Engine implements a state transition machine for process execution 

control which relies on a final state model for processes. The management of processes is 

implemented as an event-driven approach, wherein process execution can be determined by 

conditions for activities and transitions specified in the XPDL-process-description, by time 

constraints, and by internal process control restriction. Thus processes can be operated 

independently, which means they can be invoked and run without unrelated to the state of 

Freds in a meeting room which offers broader possibilities of automation in an application.  

Table 7

4.3.3 Process Specification and Execution  

Fred Processes can be created with the Process Composer. Besides this, the FRED system 

provides a co-called Activity Manager which allows application users to control their Freds, 

delegate tasks to them, and provide user-data input if required in a process. We will briefly 

describe these tools.  

4.3.3.1 Process Composer 

The Process Composer is the Process Definition tool that an application developer uses for 

defining a Process. It relies on the concepts defined in the Process Ontology. We will explain 

the Process Composer by a small example.  

  39 



FRED Whitepaper  

 

Figure 11: Fred Process Example 

The Process shown in Figure 11 describes the procedure of preparing business document. 

The yellow boxes represent process states, which can be achieved by performing activities. 

An Activity is denoted by the squared boxes whereby a red box is an automatic activity 

processable by a Plan, a Sub-Process or an external Web Service via the WSDLExecutorPlan 

(see section 4.2.2). A green box describes a manual activity, in the example the user has to 

provide the date for informing the participants, i.e. co-authors of the document.  

The strength of the FRED Process technology is that a Process can be comprised by 

automated activities as well as manual activities. In the example, a second process would be 

needed in order to allow user interaction if manual activities were not covered in the process 

specification. Another important feature of the Process technology in the FRED system is 

that Smart Objects are utilized as the application data. More precisely, OOIs are applied as 

the input and output data of Activities and OOCs are used to define conditions for 

Transitions. Thus, Processes are based on the SMOs existing in the system which is 

  40 



FRED Whitepaper  

beneficial in several aspects. Firstly, process data are semantically enhanced whereby richer 

expressiveness is enabled than by using primitive data types. Secondly, the consistency of 

information is guaranteed as this is an implicit feature of SMO, and thirdly it enables the 

reuse of information. The usage of ontology objects for workflow specifications is currently 

not supported by any other process definition tool.   

4.3.3.2 Activity Management System 

The Activity Management System is a framework for structured communication between a 

FRED application and its end-users. It consists of tools for user-interaction with agents, 

which allows assigning tasks to a Fred and performing user-system interaction when 

required.  

The proceeding of a FRED-based system is determined by Freds as they hold the tasks 

assigned by users and they solve them during meetings. As mentioned above, Freds not only 

execute implemented services like Plans and Processes for solving a Goal but also allow 

interaction with humans when required for executing a Fred Process. This allows supporting 

a broader range of real-world problems as there are many routine procedures which can be 

automated but require human intervention at some certain points. The major benefit of the 

FRED system is that such activities are integrated in the system wherein agents maintain and 

track the co-operation of human and automated activities. 

For communication between users and a FRED-based application mainly three different 

situations are distinguished. The first one is when a user has to fulfill a manual task outside 

the system, for instance signing a document. The FRED system only needs a notification in 

order to proceed with the process. The second one is when a human decision is required; 

therefore the possibilities and constraints have to be presented to the user and the human 

decision entered determines the further course of the process. The third and most complex 

one is when a user is requested to feed information from external into the FRED system. 

Therefore, the requested information has to be determined, an edition facility must be 

provided, and the information has to be adopted into the Fred system. These procedures 

further have to be considered when designing a system within user-interaction.  

Three tools are currently provided for Activity Management in the FRED system. The Project 

Assistant Fred which allows developing work plans which can consist of manual activities to 

be executed manually by human users as well as automated activities. A work plan is 

assigned to a Fred who controls the execution. The second tool is the Fred Activity 

  41 



FRED Whitepaper  

Management Entry (FAMe), a simple web-based Activity Management which allows users to 

define activities that do not have a personal Fred. Thirdly, the Fred eMail Connector provides 

a simple eMail based Activity Management for formally integrating any person (who has got 

eMail capabilities) into a Fred process.  

4.4 Goal Resolution  

After we have introduced the technological foundations for task-service-resolution, we will 

now explicate the techniques for solving tasks that have been assigned to a Fred. The FRED 

system therefore distinguishes three aspects of goal solution. In a chronological order, the 

first one is the determination of Freds as potential meeting partners according to the Goals 

that are assigned to Freds, referred to as Meeting Creation. The second one is the detection of 

appropriate services to solve a specific Goal, referred to as Service Discovery, and the third 

one the handling of failures during goal resolution due to unavailability of a service, called 

Execution Handling in the FRED terminology. In the following, we discuss the requirements 

for each of these resolution problems and present the solution provided by the FRED system.  

4.4.1 Meeting Creation  

This aspect of Goal Resolution is to determine which Freds are sent into a meeting in order to 

solve their respective Goals. Following the goal-driven approach, Freds are goal-orientated, 

which means that a FRED application can only solve tasks when a Goal has been assigned to 

a Fred. Thus, the question to be addressed here is how to determine corresponding Goals that 

have been assigned to different Freds and to initiate a meeting between these Freds.  

The idea underlying the current solution for meeting creation in the FRED system is 

Compatible Plans. As enlisted in Table 6, a Plan Module Description contains a field for 

specifying the Plan Modules compatible to the one described. As Plan Modules, Plans, and 

Goals are explicitly connected via their descriptions, Compatible Plans and thus Compatible 

Goals can be determined over the Compatible Plan Modules. If such Compatible Goals are 

detected to be assigned to different Freds, these Freds are called for a meeting. The 

compatibility of Plan Modules is defined by the application developer at design time. For 

instance, a Plan Module that resolves equations of the type “add(x,y)” is declared by its 

designer to be compatible with another Plan Module which contains an invocation for  “(int 

a) + (int b)”.  

  42 



FRED Whitepaper  

Meeting creation in the FRED system is performed by three different machines. The first one 

is the Seleng (short for ´Selection Engine´) which permanently searches all existing Goals 

Instances for Compatible Goals that are assigned to different Freds and unsolved at that time, 

and instigates a meeting between the Freds. The second engine is the Event Manager which 

implements an event-driven approach for meeting creation. Therein, concrete meeting 

partners are pre-specified, that means that it has been derived before during system runtime 

or it has explicitly defined by the application developer, which is triggered by an event. An 

event can be timer controlled or an external event coming into the system. The third engine 

engaged in the meeting creation process is the Meeting List Manager which mainly 

organizes meetings and sends them into a Meeting Room for execution (see section 2.2.2.1). 

An initiated meeting carries further descriptions specifying its priority and its flavor, which is 

how the meeting has to be executed as well as conditions for its finalization. The Meeting 

List Manager checks these conditions, optimizes the meeting list and schedules its execution 

in the Meeting Room. In addition, the Meeting List Manager can itself initialize a meeting 

when it is required to solve another Goal from its application context.  

The basic technique of Compatible Plans underlying the meeting creation in the FRED 

system is, in its current implementation status, hard-wired according to the possibilities 

offered by Goal and Plan descriptions (see section 4.2.1). By extending the descriptive power 

of these descriptions, enhanced techniques for determining potential meeting partners can be 

employed in the FRED system. An important finding during the development of the meeting 

creation engines is that a general engine for permanently checking the complete system for 

possible meeting partners like the Seleng has proven to be not scalable. Because of this 

reason, a mixture of engines has been developed which search for meeting candidates in an 

event-driven manner or in an application context.  

4.4.2 Service Discovery  

The second aspect for Goal Resolution is the discovery of an appropriate problem solving 

service for a given goal. As stated above, the aim in research and developed activities in this 

field is to define a powerful description language for goals and services in order to support 

enhanced techniques for automatically and dynamically discovering suitable services to solve 

a goal.  

As discussed in the preceding sections, the description language for Goal, Plans, and Plan 

Modules currently used in the FRED system is very elementary and the determination of a 

  43 



FRED Whitepaper  

Plan Module as a problem solving service in hard-wired in the Plan Description (see section 

4.2.1). For Fred Processes, there is no declarative description and thus dynamic discovery 

technique at this point of time and Processes are invoked from the application context. In 

conclusion, the techniques currently employed in the FRED system are hard-wired as thus to 

be seen as very rudimentary in terms of automation and dynamic Service Discovery. 

Nevertheless, the essential technical constructs needed to for advanced discovery techniques 

are existent and can be extended into more convenient solutions without changing the 

complete architecture.  

4.4.3 Execution Handling  

The third aspect to be covered in Goal Resolution assuring the correct and faultless execution 

of goals or services, respectively. This encompasses solutions for exception handling for 

Goal execution, especially rollback mechanisms. Appropriate frameworks for Execution 

Handling are an essential requirement for goal-driven applications because unavailable or not 

executable services can affect the functionality of the complete system. This problem is 

multi-leveled as a reliability of a system depends on the low-leveled, technical execution of 

services has to be assured as well as all other levels up to the application logic from the user 

perspective. In general, there are two execution handling methods: rollback techniques (also 

referred to as compensation) and ´building-round-about´ which means to determine a 

different service execution sequence to solve a goal.  

The support for execution handling provided in the Fred System is a compensation solution 

included into the application development support. In the templates and the API for Plan 

Module development, the application developer is requested to provide a compensation 

procedure for the case of unavailability of the Plan Module or any other execution exception. 

For Process Execution, such a compensation procedure is requested in the invoking 

application context while the Process Engine provides the rollback mechanism for the 

complete Process. Although these techniques confer the actual compensation solution to the 

application developer, they provide an Execution Handling solution for the technical level 

which ensures the stability of a FRED application.  

5. FRED AS MEDIATION PLATFORM FOR THE SEMANTIC WEB 

In the antecedent sections we have introduced the technical building blocks of the FRED 

system. On this basis we now investigate in detail why the FRED system can serve as an 

  44 



FRED Whitepaper  

agent-platform for Semantic Web enabled applications with special attention the mediation 

facilities of the FRED system.  

The basic requirements for agent-systems to support Semantic Web applications as 

proclaimed introductory in this paper are at first a suitable agent runtime environment for 

automated task processing by agents, secondly support for ontologies as the grounding data 

model to ensure semantically correct information exchange between involved parties, and 

thirdly support for invocation of external Web Services and their integration into the system 

as processing functionalities. While these three requirements are accomplished by the FRED 

system, i.e. the FredBase provides a stable and scalable agent runtime environment (see 

section 2.2), the Smart Object technology facilitates employment of ontologies as the data 

model underlying the complete FRED system (see section 3), and external Web Services can 

be integrated as problem solving services and be automatically invoked via the 

WSDLExecutorPlan (see section 4.2.2), the question addressed in this section is which kind 

of Semantic Web applications can be supported by the FRED system in a expedient manner.  

The general functional aim of the FRED system is to enable delegation of tasks to automated 

representatives, i.e. Freds. In such applications, like, for instance, the Semantic Web scenario 

referenced in the beginning of this paper, another technical requirement arises: the 

technological components have to be able to interoperate. In a FRED application, this means 

that Freds have to ´speak the same language´ and agree on a communicative behavior to be 

able to interact successfully in a meeting. Technologies that enable interoperability of 

potential heterogeneous information resources or functional services are commonly referred 

to as Mediators. Such a mediator does not wrap the content or representation format of a 

resource which is to be integrated into the system, but it provides techniques on a higher level 

which enable interoperation between heterogeneous resources (Wiederhold, 1992). In the 

following, we examine this approach in more detail and explicate how the FRED system, 

apart from supporting ontologies and web services, can serve as a mediation platform for 

Semantic Web applications.  

5.1 Next Generation Mediation Systems 

Mediation is a multi-faceted field because the interoperability between resources can be 

hampered by heterogeneity in different aspects. In order to provide satisfying a means for 

mediation, a sophisticated system has to provide an integrated solution for different 

mediation levels. Thereby, a mediator system should provide it services as a central point 

  45 



FRED Whitepaper  

accessible by the resources to be mediated. Moreover, it is important to remark that the 

challenges arising in  mediation are of infinite complexity and automated support for these 

tasks can and should only be provided up to a certain, reasonable extend while human 

intervention is required for the remaining, more complex mediation issues.  

The mediation to be covered in open and distributed systems of potentially heterogeneous 

problem solving services, like web service enabled applications, can be differentiated into 

three aspects. At first, data mediation which is concerned with enabling syntactically and 

semantically correct information interchange between information resources, secondly 

process mediation which covers mediations between dissimilar business logics that are used 

by different services, and thirdly protocol mediation for handling divergent communication 

behaviours (Fensel et al., 2002a). For data mediation, techniques are needed for enabling 

mediation between different syntactical representations of information, for mediation 

between different semantics of data, and for mediation between different conceptual models 

that underlie the information structures. Therefore, ontologies and especially ontology 

integration techniques are considered to be a sophisticated mediation technology because 

they enable these mediation tasks to a reasonable extent (Wiederhold, 1994). The challenge 

in process mediation is that mismatches in process sequences have to be resolved. Therefore, 

business processes have to be described in a higher-leveled language which allows detecting 

mismatches and determining the degree of interoperability between heterogeneous processes. 

For protocol mediation, the communication behavior of interacting services has to be 

rendered interoperable, wherefore semantic descriptions of the message exchange are needed 

to allow detection and resolution of mismatches.  

In conclusion, the essential requirements for a mediator system are to provide high-level 

description facilities for data, processes, and protocols to allocate techniques for detection 

and resolution of mismatches in these descriptions. Thus, the technological building blocks of 

a mediator system are a data integration facilities, a process model along with a process 

engine, and message protocol processing facilities. Recent systems that comprise these 

building blocks are so-called Enterprise Application Integration systems (EAI) which mostly 

provide monolithic solutions for integrating various information resources and thereby 

enabling interoperability between heterogeneous resources (Bussler, 2003). For integrating an 

information or service resource into such an EAI-system, it has to be aligned to the system’s 

data, process and protocol models in order to achieve interoperability with other resources 

connected to the system. This means that the integration in these systems is not performed 

  46 



FRED Whitepaper  

inside the system but during the preliminary alignment of the resource to the system 

structure, thus these systems do not supply mediation technology but information processing 

facilities with rigid integration support.  

In contrast to this, the architecture of the FRED system allows mediation-oriented 

integration. Therein, Smart Objects represent the data model, Goals, Plans and Processes are 

the processing facilities and protocol mediation is performed by the agent-communication 

protocols. The integration is achieved by the Goal Resolution technologies and the Meeting 

Room Control so that integration is performed inside the system during runtime. Thereby, the 

mediation techniques enable interoperability by higher-leveled descriptions of data and 

service resources without interfering the concrete application logic. Further benefits of the 

FRED system are at first that it allows automated task processing via agents and secondly 

that it is flexible in terms of supportable application fields because no application specific 

functionality is predetermined in the system. Systems that provide such kind of mediation 

facilities are also referred to as next generation mediation systems because they overcome the 

limitations of recent integrations technologies in terms of mediation during system runtime 

without domain restrictions for applicability (McCann and Manning, 1997). In the following, 

we explicate the mediation facilities for Semantic Web applications of the FRED platform in 

more detail.  

5.1.1 Plan Level Mediation  

Resources are only interoperable when they are interoperable in all three mediation aspects 

mentioned, i.e. when they are interoperable according to their data structure and the business 

logic and their communication behavior. In the FRED system, only Freds are called into a 

meeting whose interoperability is secured. The mediation facilities are provided by the 

Meeting Manager and its preliminary technologies for Goal Resolution. We explain how 

interoperability is achieved and assured for Goals that are resolved by Plans, thus called plan 

level mediation.    

The resolvability of a Goal at the plan level requires interoperability at three positions: firstly, 

the ontologies applied have to be interoperable as a common data structure, secondly the 

Plans that are to be processed have to be compatible as a reasonable application logic, and 

thirdly the communication behaviors of the Freds have to be intermateable in order to ensure 

successful information interchange during a meeting. Therefore, various elements of the 

FRED system need to cooperate. The interoperability of ontologies is mainly controlled by 

  47 



FRED Whitepaper  

the application developer who either ensures that interoperable ontologies are used in an 

application scenario or employs the functionalities of Mapping or Morphing, respectively, to 

transform Smart Objects with respect to the required data structure (see section 3.4.3). The 

compatibility of Plans is also established at design time; while it is automatically checked by 

the Selection Engines in the Goal Resolution process during system runtime (see sections 

2.2.2.2 and 4.4.1). The communication behavior of agents is defined in the applied agent 

communication protocols specified in the Plan Module description (see section 4.2.1). Before 

a meeting between Freds is executed in the Meeting Room, the Meeting Room Manager 

checks the interoperability of used ontologies and the correspondence of the respective 

communication protocols (see section 2.2.2.1). Thus, the complete interoperability is assured 

and the application functionality, i.e. solving a Goal assigned to a Fred, is performed in a 

meeting.  

So, a Meeting Room in the FRED system is the place where mediated resources are executed. 

The quality of the mediation support depends on the mediative power of the incorporated 

FRED components which is to be graded as relatively limited in the current implementation 

status. Nevertheless, the approach realized seems to be promising: there are separated 

components for different mediation tasks whose output is tested for interoperability and the 

Meeting Room Manager determines the processability of resources according to their overall 

interoperability. This architectural concept determines complete interoperability required for 

automated processing of resources, it allows mediation independent of a concrete application 

context, it incorporates technologies for runtime mediation based of higher-level descriptions, 

and it is flexible in terms of extendibility of the applied mediation technologies.  

5.1.2 Process Level Mediation  

For mediation of business procedures, here referred to as process level mediation, further 

mediation technologies are needed. Apart form the interoperability of ontologies and the 

correspondence of communication protocols, the compatibility of processes has to be 

determined. Similar to other mediation aspects, a suitable description language for business 

processes is needed which allows detection of mismatches and their resolvability between 

different processes as well as a technique for processing these descriptions (Kayed and 

Colomb, 2002).  

At this point of time, there is no suitable description language for process mediation 

employed in the FRED system. By extending the process description capabilities sufficient 

  48 



FRED Whitepaper  

for process mediation, such functionality can easily be added to the mediation framework 

existing for plan level mediation.  

5.2 FRED as Mediation Platform in DIP  

Net Dynamics is a partner in the DIP-Project (Data, Information, and Process Integration 

with Semantic Web Services), an 6th Framework Integrated Project funded by the European 

Commission which starts in January 2004. The aim of DIP is to develop next generation 

integration technologies for Semantic Web Service driven applications.  

The outcome of the project will be, among others, the development of an architecture for 

mediation between Semantic Web Services. Therein, the FRED system will be used as the 

platform for integration and automatic execution of the mediation technologies which will be 

development in the project. As explained above, the mediation architecture of the FRED 

system ensures that only completely interoperable resources will be further processed during 

meetings between agents. In combination, the mediation system developed in the DIP project 

aims at providing high quality mediation technologies for Semantic Web Services which can 

be executed automatically by the FRED system. As a benefit for the further development of 

the FRED system, the mediation technologies developed in the DIP project can be used to 

extend the currently existing mediation facilities of the FRED system which will enhance its 

usability as an agent-based mediation platform for Semantic Web applications.   

6. RELATED WORK 

Working areas related to the FRED system is agent platforms on the one hand and, on the 

other, ontology-based systems as well as Semantic Web Service technologies. In order to 

position the FRED system in these areas, we investigate current research and development 

activities and allocate the technical solutions of the FRED system in these areas.  

6.1 Related Agent Technologies  

Agent-technology for automated task processing has become an exceedingly explored area of 

research and development in the last years due to functional benefits expected from the agent 

paradigm (autonomous, pro-active, and social agents for resolving task) in many application 

areas. Of special interest for positioning the FRED system are development platforms for 

multi-agent systems. We review agent platforms that have been deeply investigated for the 

  49 



FRED Whitepaper  

FRED system design and which are frequently referred to as state of the art agent systems 

(Nguyen et al., 2002).  

The first platform to investigate is JADE (Java Agent DEvelopment Framework)10 which is a 

development environment for multi agent systems. The main objective of JADE is to provide 

a middleware for development of multi-agent-systems in compliance to the FIPA-

Specifications for agent-based systems.11 The major functional concern is to provide a system 

for secure and reliable agent communication whereupon systems for concrete application 

scenarios can be built. The design of the JADE platform implements the FIPA reference 

model for agent platforms completely: the Agent Communication Language ACL is used for 

agent interaction and ontologies are applied for semantic descriptions of the message content. 

For system control, specialized agents manage access to the system and provide a 

communication channel for meetings, and the management of agents relies on a ´yellow 

pages´ model (Bellifemine et al.; 1999). The JADE platform is an open source that has been 

developed since 1999 and it is applied in several research and development activities.  

The second platform to be mentioned is the ZEUS12, also a development platform for multi 

agent system. Similar to the JADE approach, ZEUS utilizes ACL for agent interaction along 

with ontologies for semantic message content description. In contrast to the FIPA reference 

model, the control of the ZEUS system realizes a goal-driven approach for task-service-

resolution which is performed by a coordination engine that determines reasonable sequences 

of goals for an agent and a Planner / Scheduler that constructs service execution sequences to 

solve a goal using AI-planning techniques (Collis and van Buskirk, 2001).  

Another initiative related to agent technologies for the Internet is the Agentcities project 

which aims at creating a worldwide network of agent platforms in order to provide intelligent 

service composition and execution remotely over the Internet.13  The outcome of the project 

is a word-wide network of currently 38 agent platforms as well as research results concerning 

the interweavement of agent technology with Web Technology, especially with Semantic 

Web and Semantic Web Service technologies.  

____________ 

10 JADE homepage: http://jade.cselt.it  

11 Foundation for Intelligent Physical Agent. Specifications 1997, 1998, 2000. FIPA homepage: www.fipa.org 

12 ZEUS homepage: http://more.btexact.com/projects/agents/zeus/  

13 Agentcities homepage: http://www.agentcities.org/  

  50 

http://jade.cselt.it/
http://www.fipa.org/
http://more.btexact.com/projects/agents/zeus/
http://www.agentcities.org/


FRED Whitepaper  

Similar to the JADE and ZEUS system, the FRED system is a development framework for 

agent-based applications. It provides a reliable agent runtime environment that complies with 

the FIPA reference model for agent interaction by using ACL and ontologies. In contrast to 

the other systems, it further provides the Smart Objects technology that allows using 

ontologies as the grounding data model throughout the entire system and not only for 

semantic descriptions of message content. The FRED technology for task-service-resolution 

realizes a goal-driven approach like the ZEUS system, but the underlying technologies are 

interlaced with the other FRED components to a higher extent than in ZEUS which enables 

the FRED system to serve as a mediator platform for Semantic Web applications. Finally, the 

FRED system allows integrating external Web Services into the system which is not 

supported by any other system yet and still considered as a research aspect in the Agentcities 

project.  

6.2 Comparison with Semantic Web technologies  

The second group of technologies related to the FRED system is Semantic Web technologies, 

more precisely technologies for handling ontology data and technologies for automatic 

discovery, composition, and execution of Web Services, referred to as Semantic Web Service 

technologies. We point out the state of the art in these fields regarding the underlying 

approaches and the maturity of existing technologies and compare it to the technologies 

utilized in the FRED System.  

6.2.1 Ontology Technology 

The challenge arising for making ontologies usable as the underlying data model in ontology-

based systems is the development to provide appropriate means for handling ontology data. 

This includes secure and stable storage and retrieval technologies, techniques of maintaining 

evolving ontologies and ontology integration techniques for enabling interoperability of 

heterogeneous ontologies. Although there are various research and development activities 

working in this field, no sophisticated system for ontology management exists at this point of 

time. Thus, we examine the state of the art in integrated ontology management systems and 

position the FRED technology of Smart Objects (see section 3) to this.  

Research and development activities concerned with ontology management are separated and 

not assimilated at this point of time. Although there are different efforts that work on 

ontology editors, on storage and retrieval systems, on versioning mechanisms and on 

  51 



FRED Whitepaper  

ontology integration techniques, only very few systems incorporate these technologies into a 

coherent ontology management environment. One approach that aims at creating such an 

integrated ontology management system is the WebODE, developed at the Universidad 

Politécnica de Madrid (Corcho et al., 2002). WebODE is comprised of an ontology editor, an 

ontology library facility including storage for ontology data in conventional RDBs and 

retrieving them as well as browsing and documentation facilities, a versioning mechanism for 

evolving ontologies, support for merging ontologies and for import and export of ontology 

representation standards. All features of WebODE have been developed exclusively for the 

platform and thus lack in quality in some aspects, for example the versioning mechanism is 

very basic and the storage technology is insufficient in terms of security and scalability, and 

the system is still under development. As discussed extensively in section 3, the Smart 

Objects technology of the FRED platform contains all functionalities required for ontology 

management. Although there also are some shortcomings, particularly in import / export 

facilities and ontology integration, the FRED technology can be considered as confirming to 

the state of the art in ontology-based systems since no sophisticated environment for ontology 

management is existent.  

A special feature of the Smart Objects technology is that ontologies are compiled into Java 

Objects which allows using conventional Java-technologies for handling ontology data. A 

similar approach is realized by OntoJava14 wherein ontology schema definitions created with 

PROTÉGÉ are compiled into Java Objects. The expressiveness of these Java Objects is 

limited to taxonomic structures with simple constraint definitions since RDF(S) is the used as 

the source representation format for ontologies. For rule-based querying of ontologies, logic 

expressions are transformed into Java methods which then check the repository (Eberhart, 

2001). Compared to the Smart Objects technology, OntoJava objects are not as expressive as 

OOIs and the rule definitions are not as reusable as OOCs. Furthermore, no additional 

ontology management technologies are provided around the OntoJava approach since it is an 

academic effort. Besides, the benefits of the Smart Objects technology, i.e. usage of 

conventional Java technologies for ontology handling, as well as the hazards, i.e. the need of 

recompiling ontologies when updated and re-generation of ontologies for export, have also 

been observed in the OntoJava approach.  

____________ 

14 see: http://www.i-u.de/schools/eberhart/ontojava/  

  52 

http://www.i-u.de/schools/eberhart/ontojava/


FRED Whitepaper  

6.2.2 Semantic Web Service technologies  

Semantic Web Service technologies cover technologies for automated discovery, 

composition, and execution of Web Services in order to enable remote exchange and reuse of 

computational functionality over the Internet. The problems and the technological approaches 

are similar to the task-service-resolution techniques in the FRED system, thus we outline the 

state of the art in Semantic Web Service technologies and position the FRED techniques to 

this.  

For discovery and composition of Web Services, goal-driven approaches similar to the 

concepts of Goals, Plans and Processes are considered in the leading research efforts. 

Therein, the basic idea is to provide declarative descriptions on capabilities, i.e. generic 

descriptions of user goals solvable by existing web services, as well as on the web services 

and utilize these descriptions to determine a suitable web service for a requested capability by 

reasoning on these descriptions (Arroyo et al., to appear). The most recent approaches in 

Semantic Web Services are DAML-S which provides an ontology for semantic descriptions 

of web services (DAML-S, 2003) and the Web Service Modeling Framework WSMF which 

provides a more comprehensive approach for Semantic Web Services (Fensel et al., 2002b). 

When transferring the FRED approach into this terminology, a Goal would be a capability, a 

Plan Module a web service available in the system, and the Plan-concept is the intermediate 

glue that brings capabilities and web services together. This similarity emphasizes that the 

approach followed for task-service-resolution in the FRED system confirm to the state of the 

art, although the current status of implementation has to be seen as very rudimentary. But 

also the technologies for discovery and composition of Semantic Web Services are currently 

under development and only prototypical academic tools exist that present possible technical 

solutions.  

Also, in the area of Semantic Web Services workflow or process technologies are considered 

for specifying reasonable execution sequences as a procedural approach for Semantic Web 

Service composition. The current trend leaves the dichotomised view of procedural and 

declarative techniques and proclaims a combination of both to realize workflow 

specifications. Procedural implementations shall be used for defining the control flow on a 

higher level of abstraction while declarative mechanisms shall be employed for discovery and 

dynamic composition of Web Services which actually solve the problem (Fensel et al., 

2002b). At this point of time, the most recommended process-based approach for Semantic 

Web Services is BPEL4WS which emerged form industrial efforts (Curbera et al., 2002). 

  53 



FRED Whitepaper  

BPEL4WS provides a reference model for workflow specification in web service based 

system which is in general terms of structure and expressiveness comparable to the WfMC 

reference model applied in the FRED system. A process engine for BPEL4WS processes 

along with a validity check for process specifications is provided by IBM, called BPWSJ.15 

Also DAML-S employs a process-approach since web services are understand as processes. 

Therefore, the DAML-S Process Model is defined as a basic building block of the DAML-S 

ontology which consists of two ontologies. A Process Ontology that describes the structure of 

a process and a Process Control Ontology which aims at indicate the control structures 

needed for process execution (DAML-S, 2003). A process editor comparable to the FRED 

Process Composer is currently under construction.16 This approach is not mature yet because 

the disposition of its components has not been elaborated efficiently, thus DAML-S is 

heavily criticised throughout the Semantic Web Services research community (Lara et al., 

2003). It is important to remark that these process approaches only support automated 

activities in a process while, in the FRED system, manual activities can be included in a 

process specification along with a activity management system which allows support for a 

broader range of real world business processes.   

7. APPLICATIONS AND FUTURE DIRECTIONS 

In the final section of this paper we briefly portray existing FRED applications and present 

current issues and future plans concerning the ongoing development of the FRED system. 

Thereby we exemplify the broad variety of application scenarios for the FRED system and to 

expose the ongoing development efforts to enhance the system’s functionality.  

7.1 Existing Applications  

At this point of time, the following FRED applications are existing which have been created 

in collaborative projects between Net Dynamics and the end users.  

eCoach - Skill Management at Wiener Stadtwerke 

According to EU market liberalisation rules Wien Energie, Austria's largest utility  company  

(www.wien-energie.at),  was  faced  with  the  problem of changing  from  a  state  owned  

____________ 

15 http://www.alphaworks.ibm.com/tech/bpws4j  

16 http://www.ksl.stanford.edu/projects/DAML/damls.shtml  

  54 

http://www.alphaworks.ibm.com/tech/bpws4j
http://www.ksl.stanford.edu/projects/DAML/damls.shtml


FRED Whitepaper  

company  into  a customer oriented service company.  This  change requires a  lot  of  

training effort for thousands of employees over a long period of time. To support this, eCoach  

was  introduced.  eCoach  is  a  FRED application wherein each employee gets a personal 

Fred that permanently monitors education offerings, tracks the personal education path, and 

requests feedback from employees. Thereby eCoach provides a means for management that 

supports strategic decision about future education development. eCoach is in successful 

production since more than one year (Smolle and Sure, 2002). 

ORGA-FRED - Automation of Business Knowledge Processes at AVL List 

AVL List is an Austrian based Motor Research Company which strongly relies on high 

quality in every business process. 17  Quality in business processes is basically defined as 

having the knowledge of a process reusable and available in time. Two business processes 

were selected to be supported by the FRED System with the objective to enable stepwise 

automation of them. The first business process, called ORGA is to automate the design 

review process for motor development, where a number of highly specialized  project 

members are supported by an ORGA-FRED with the necessary material and knowledge 

about the project status to achieve short and effective review meetings. The second business 

process called ORGDB verifies that semantic misspelling of identifications or names from 

research resources of supportive companies are detected at the most accurate time, though 

preventing parallel or wrong activities at AVL.  

U-Haul-FRED - Wien Energie Relocation Service 

Almost 7% of the Vienna population is moving from one place to the other within one year. 

Due to the fact that this event has a high likelihood for a mover to change his energy 

provider, To provide a unique service, Wien Energie is providing a FRED based application 

U-Haul-FRED which will support a customer in a way that this FRED manages and 

automates the necessary address and similar changes with only minimal involvement by the 

users. Since up to 300 independent partners, like Post or Telekom, may be concerned by U-

Haul the integration-service of the respective partner processes will be a mayor task done by 

the U-Haul-FRED.  

 

 
____________ 

17 see: www.avl.com  

  55 

http://www.avl.com/


FRED Whitepaper  

BA-FRED - Business Process Activity Management Tool 

The tracking of Business Processes in an collaborative environment in general, and especially 

within project processes, is a major task which can be very effective supported by the FRED 

system. The BA-FRED is an application which allows the delegation of activities to an 

Activity Manager, a FRED, who based on the type and attributes of the activity (due date, 

performer, escalation rules, business process to follow etc.) can perform the necessary 

tracking automatically. This tracking process for general business processes can also be done 

for members in a project by supporting everyone with his personalized FRED who then acts 

like a project office specialist and reducing so the time spent for administration tasks. When a 

BA-FRED performs a business or project process, it can capture this process immediately as 

an experience and enable though someone less know ledged about this process to reuse this 

experience by CSR (case based reasoning) technologies applied.  

7.2 Future Developments 

Throughout the paper we have presented the current status of technical solutions provided by 

the FRED system. Therein, it was repeatedly stated that the current implementations are only 

intermediate solutions which in fact follow an appropriate technological approach but are not 

maturely developed at this point of time. Here, we summarize these points and point out 

current working areas and future plans for further development of the FRED system.  

7.2.1 Smart Objects  

The Smart Object technologies are in an appropriate state regarding the support for using 

ontology data as the underlying data model in the FRED system. The further development 

considered for this are consolidation and enhancement of certain aspects. In particular, the 

OXMLCompiler will be replaced by and RDF / OWL-compiler in order to support ontology 

representation standards. To enhance the facilities for incorporation of ontologies into a 

FRED application, the Ontology Tower is planned to be extended with import and export 

features for ontology schema and instance data. Eventually, the technologies for mediation 

between ontologies and especially between SMOs will be extended in order to improve 

interoperability support between Freds that use different ontologies.  

  56 



FRED Whitepaper  

7.2.2 Task-Service Resolution  

The task-service-resolution techniques of the FRED system realize a promising approach for 

automated and dynamic goal resolution, although the technological realization is very 

rudimentary at this point of time. The essential pre-requisite for enhanced solutions is a 

powerful description language for goals and problem resolving services upon which more 

sophisticated technologies for goal resolution can be developed. The focus for future 

development in this area is to incorporate emerging standards for goal, service, and process 

description languages into the FRED system and not to develop an own, proprietary solution 

for this. Especially techniques developed in the area of Semantic Web Services research will 

be explored in order to support integration of external Web Services as well as 

interoperability with other Semantic Web based applications in a better way.  

7.2.3 Mediation Technology  

The third major area for future development is the enhancement of the mediation facilities of 

the FRED system. As outlined in section 5, the strength of the FRED system is that it can be 

used as a mediation platform for agent-based Semantic Web applications whereby the 

concept of Meeting Rooms in cooperation with its surrounding technologies enables 

automated execution of mediated resources. The further development of the FRED system 

concentrates on enhancing its mediation facilities and, as the approach seems to be promising 

for mediation at the plan level, it will be extended towards mediation at the process level.  

8. CONCLUSIONS 

In this paper we have presented the FRED system as an agent platform with special 

capabilities as a mediator system for Semantic Web driven applications. The aim of the 

FRED system is to serve as a development platform for agent-based systems that support 

automatic execution of tasks delegated to an electronic representative and which utilize the 

Internet, more precisely the Semantic Web, as a resource for information and functionality. 

The requirement for such a system is, apart from an adequate agent runtime environment, 

means for integration of Semantic Web resources. Therefore, techniques for integration of 

ontologies and Semantic Web Services as well as mediation facilities for enabling 

interoperability between potentially heterogeneous resources are required.  

In order to explicate the usability of the FRED system as a agent platform for Semantic Web 

applications and its mediation facilities, we thoroughly presented the architecture and the 

  57 



FRED Whitepaper  

technical solutions for handling ontologies and task-service-resolution. The FredBase is the 

agent runtime environment of the FRED system which consists of the FredBase Server for 

executes and control of meetings between agents, the Fred Database for storing all relevant 

application data, and interfaces for system control and user interaction. The interaction 

between agents, called Freds in the system, takes place in a Meeting Room whereby only 

Freds are called for a meeting that can and solve a goal according to the application context 

and which are interoperable according to the data model and functionalities to be used. The 

FRED platform supplies integrated interfaces for connection to external systems and other 

Fred applications, as well as for central management of user interfaces.  

The complete FRED system employs ontologies as the underlying data model, thereby 

exploiting the benefits of ontologies for information processing and enabling integration of 

external ontologies into the FRED system that are needed for a Semantic Web application. 

For managing ontology data, the Smart Object technology has been developed which 

transforms ontology definitions into Java Objects so that ontology instances can be handled 

by conventional Java technologies which are more mature in terms of security and 

performance than currently existing ontology technologies. Regarding the expressiveness as a 

ontology representation language, Smart Objects are comparable to OWL Lite for ontology 

instance descriptions. Additionally, logical expressions can be defined on a concept which 

can be used as generic selection mechanisms on instances. The techniques for Smart Object 

management comprise all aspects needed for ontology-based systems, that is performant and 

scalable ontology data storage and retrieval, ontology versioning to enable evolvability of 

ontologies, and transformation techniques to make heterogeneous ontology instances 

interoperable. Although these technologies can not be considered to be mature, the Smart 

Objects technology confirms to the state of the art in ontology-based systems since no 

sophisticated integrated environment for ontology management exists at this point of time.  

For the task-service-resolution, i.e. how a task assigned to an agent is solved by adequate 

problem solving services available in the system, the FRED system realizes a goal-driven 

approach. Therein a Goal represents a generic user goal that can be assigned as a task to a 

Fred-agent. Goals can either be solved by a Plan as a simple problem solving implementation 

or by a Process which is a more complex workflow specification. Thereby, external Web 

Services can be integrated into the FRED system via a special Plan which allows to invoke a 

Web Service according to its WSDL-description. Upon these constructs, Goal Resolution 

techniques are applied which are differentiated into determination of appropriate partners for 

  58 



FRED Whitepaper  

a meeting (meeting creation), discovery of suitable problem solving services for a given goal 

(service discovery) and exception handling during service execution (exception handling). 

Although the description language for Goals and Plans in the FRED system is rudimentary in 

its current implementation status and thus the Goal Resolution techniques are very basic, we 

emphasize that architectural concept allows enhancing the Goal Resolution technologies by 

extending the technical building blocks without changing the overall architecture.  

Finally, we have outlined why the FRED system can serve as platform for Semantic Web 

applications with special attention to its usability as an automatic mediator system. The 

primary support for Semantic Web applications is the possibility of employing ontologies and 

of integrating external Web Services into the system. As incorporated resources might be 

heterogeneous, especially if derived form an open and ambiguous environment like the 

Internet, an agent platform for Semantic Web has to assure that used resources are completely 

interoperable before they are sent into a meeting for automated task processing. In the FRED 

system, the Meeting Room Manager and its preliminary technologies ensure that only Freds 

are called into a meeting which firstly apply the same or interoperable ontologies, secondly 

have compatible Goals, and thirdly have intermateable communication behaviors. The 

mediation facilities rely on various technical constructs of the FRED system and, due to their 

currently rudimentary implementation status, are limited in the mediative power provided. 

Nevertheless, the interoperability is derived and checked during by means of runtime without 

interfering the application context, the FRED system can be seen as next generation mediator 

system for agent-based Semantic Web applications.   

In conclusion, the FRED system provides a development environment for agent-based with 

satisfactory support for Semantic Web applications. Its most important characteristic is that 

the overall architecture confirms to the approaches currently persecuted in research and 

development efforts for Semantic Web and Semantic Web Services driven applications. 

Thus, the functional quality of the FRED system for support of ontologies and integration of 

Semantic Web Services, its Goal Resolutions techniques, and, in consequence, its mediation 

facilities can be easily extended by applying more sophisticated technologies for specific 

FRED components without changing the whole system.  

 

 

 

  59 



FRED Whitepaper  

Acknowledgements  

The work presented in this paper is based on a collaborative project between Net Dynamics 

and DERI Austria in the summer of 2003. We like to thank the members of Net Dynamics 

and of the DERI Austria Institute for support and fruitful input to this work.  

 

REFERENCES 

Arroyo, S.; Lara, R.; Gómez, J.; Berka, D.; Ding, Y.; Fensel, D. (2004): Semantic Aspects of 
Web Services. In Munindar. P. Singh (Ed.), Practical Handbook of Internet Computing. 
Baton Rouge: Chapman & Hall and CRC Press, to appear. 

Bellifemine, F.; Rimassa, G.; Poggi, A. (1999). JADE - A FIPA-Compliant Agent Framework. In: 
Proceedings of the 4th International Conference and Exhibition on the Practical Application of 
Intelligent Agents and Multi-Agents, London.  

Berners-Lee, T.; Hendler, J.; Lassila, O. (2001): The Semantic Web. A new form of Web 
Content that is meaningful to computers will unleash a revolution of new possibilities. In: 
Scientific American May 2001. 

Bussler, C. (2003): B2B Integration. Berlin, Heidelberg: Springer. 

Chaudhri, V. K.; Farqhuar, A.; Fikes, R.; Karp, P. D.; Rice, J. P. (1998): Open Knowledge 
Base Connectivity 2.0.3. Knowledge Systems Laboratory, Stanford University. 

Chinnici, R.; Gudgin, M.; Moreaum, J.-J.; Weerawarana, S. (2003): Web Services Description 
Language (WSDL) Version 1.2, W3C Working Draft 3 March 2003. 

Collis, J.; Ndumu, D.; van Buskrik, C. (2001). The ZEUS Technical Manual. Release 1.04. 
available at: http://zeusagent.sourceforge.net/docs/techmanual/TOC.html     

Corcho, O.; Fernández-López, M.; Gómez-Pérez, A.; Vicente, O. (2002). WebODE: an 
integrated workbench for ontology representation, reasoning and exchange. Lecture 
Notes on Artificial Intelligence Vol 2473. 13th International Conference on Knowledge 
Engineering an Knowledge Management (EKAW'02). Berlin: Springer, pp. 138-153.  

Curbera, F.; Goland, Y.; Klein, J.; Leymann, F.; Roller, D.; Thatte, S.; Weerawarana, S. 
(2002):  Business Process Execution Language For Web Services, BEA Systems & IBM 
Coporation & Microsoft Corporation. 

The DAML Services Coalition (2003): DAML-S: Semantic Markup for Web Services, version 
0.9. http://www.daml.org/services/daml-s/0.9/damls.pdf, 2003. 

Eberhart, A. (2001). OntoJava – Applying Mainstream Technology to the Semantic Web, 
Workshop on Semantic Web-based E-Commerce and Rules Markup Languages at the 
ICEC, Vienna (Austria).  

Erdmann, M. (2003): OXML 2.0. Reference manual for users and developers of OXML - the 
XML-based Ontology Representation language for OntoEdit. Karlsruhe: Ontoprise 
GmbH.  

  60 

http://zeusagent.sourceforge.net/docs/techmanual/TOC.html


FRED Whitepaper  

Fensel, D.; Decker, S.; Erdmann, M.; Studer, R.(1998). Ontobroker: The Very High Idea. In: 
Proceedings of the 11th International Flairs Conference (FLAIRS-98), Sanibal Island, 
Florida,.  

Fensel, D.; Bussler, C.; Ding, Y.; Omelayenko, B. (2002a): The Web Service Modeling 
Framework WSMF. Electronic Commerce Research and Applications, 1(2), 2002. 

Fensel, D.; Wahlster, W.; Lieberman, H.; Hendler, J. (Ed.) (2002b): Spinning the Semantic 
Web. Brining the World Wide Web to Its Full Potential. Boston: MIT Press. 

Fensel, D. (2003). Ontologies. A Silver Bullet for Knowledge Management and E-Commerce. 
2nd Edition. Berlin, Heidelberg: Springer. 

Gómez-Pérez, A.; Fernández-López, M.; Corcho, O. (2003): Ontological Engineering. Series 
in Advanced Information and Knowledge Processing. London: Springer Ltd.  

Horrocks; I.; Patel-Schneider, P.F. (2003): Three Theses of Representation in the Semantic 
Web, In Proceedings of the WWW2003, Bulgaria. 

John, B. E. and Kieras, D. E., The GOMS family of analysis techniques: Tools for design and 
evaluation, Carnegie Mellon University School of Computer Science Technical Report 
No. CMU-CS-94-181, 1994. 

Kayed, A.; Colomb, R.M. (2002). Business to Business Electronic Commerce: The Electronic 
Tendering. In M. Warkentin (Ed.): Business to Business Electronic Commerce, 
Challenges & Solutions. Hershey (USA): IDEA GROUP PUBLISHING.  

Kifer, M.; Lausen, G.; Wu, J. (1995): Logical Foundations of Object-Oriented and Frame-
Based Languages, Journal of the ACM, 42:741-843.  

Kiryakov, A.; Simov, K.; Ognyanov, D. (2002): Ontology Middleware and Reasoning. In 
Davis, J.; Fensel, D.; v. Harmelen, F. (Ed.), Towards the Semantic Web. Ontology-Driven 
Knowledge Management. London: Wiley. 

Klein, M.; Fensel, D. (2001): Ontology versioning on the Semantic Web. In Proceedings of 
the 1st Semantic Web Working Symposium (SWWS), pages 75-91, Stanford University. 

Lara, R.; Lausen, H.; Arroyo, S.; de Bruijn, J.; Fensel, D.: Semantic Web Services. description 
requirements and current technologies, International Workshop on Electronic Commerce, 
Agents, and Semantic Web Services, In conjunction with the Fifth International 
Conference on Electronic Commerce (ICEC 2003), Pittsburgh, PA, September 30, 2003 

Magkanaraki, A.; Karvounarakis, G.; Anh, T. T.; Christophides, V.; Plexousakis, D. (2002): 
Ontology Storage and Querying. Information Systems Laboratory, Foundation for 
Research and Technology Hellas: Technical Report 308.  

McCann J.A.; Manning K.J. (1997). Performance Management Tool for Interoperable 
Environments. In K. Stone (ed.): Proc. of the 4th Annual Conference of the British 
Computer Society Client/Server Group, CSG '97, Cambridge, UK,  pp 60-70.  

McGuinness, D.; v. Harmelen, F.: OWL Web Ontology Language Overview. W3C Candidate 
Recommendation, 18. Aug. 2003. 

Mitra, N.: SOAP Version 1.2. Part 0: Primer. W3C Recommendation 2003.  

Nguyen G. T., Dang T. T., Hluchy L., Balogh Z., Laclavik M., Budinska I. (2002). Agent 
Platform Evaluation and Comparison. Technical report for Pellucid 5FP IST-2001-
34519. Bratislava, Slovakia.  

  61 

http://www.icec03.org/
http://www.cs.city.ac.uk/~jam/papers/bcs.ps
http://www.cs.city.ac.uk/~jam/papers/bcs.ps


FRED Whitepaper  

  62 

Noy, N. F.; Musen, M. A (2003): Ontology Versioning as an Element of an Ontology-
Management Framework. To be published in IEEE Intelligent Systems. 

Smolle, P.; Sure, Y. (2002). FRED: Ontology-based Agents for enabling E-Coaching Support 
in a large Company. 2nd International Workshop on Ontologies in Agent Systems (OAS 
2002), at the 1st International Conference on Autonomous Agents & Multiagent Systems, 
Bologna, Italy. 

Sure, Y.; Erdmann, M.; Angele J.; Staab, S.; Studer, R.; Wenke, D. (2002): OntoEdit: 
Collaborative ontology development for the Semantic Web. In First International 
Semantic Web Conference (ISWC 2002), volume 2342 of LNCS, pages 221–235. 
Springer. 

Ullman, J.D. (1988): Principles of Databases and Knowledge Based Systems, Vol. I. 
Computer Science Press, New York. 

Wache, H. et al.. (2001): Ontology-Based Information Integration – A Survey of Existing 
Approaches. In Proceedings of the Workshop Ontologies and Information Sharing, IJCAI 
2001.  

WfMC (1995): The Workflow Reference Model. The Workflow Management Coalition. 
WFMC-TC00-1013.  

WfMC (2002): Workflow Process Definition Language – XML Process Definition Language. 
The Workflow Management Coalition. WFMC-TC00-1025.  

Wiederhold, G. (1992). Mediators in the Architecture of Future Information Systems, IEEE 
Computer, 25(3): pp. 38- 49. 

 Wiederhold, G. (1994): Interoperation, Mediation, and Ontologies. In Proceedings of the 
International Symposium for Fifth Generation Computer Systems, Workshop on 
Heterogeneous Cooperative Knowledge Bases, Tokyo.  


	Abstract
	Table of Contents
	Introduction
	The FRED Platform
	Objectives and Design Principles
	Architecture
	FredBase
	FredBase Control
	Meeting Rooms
	Selection Engines

	Interfaces

	FRED Development Kit

	Smart Objects
	The concept of Smart Objects
	Types of Smart Objects
	Fred Universe

	Smart Objects Compilation
	Smart Objects Generation
	Generation of Other Components

	Expressiveness
	OOIs – Ontology Object Instances
	OOCs – Ontology Object Constraints

	Smart Objects Management
	Ontology Tower
	Persistent Storage of Smart Objects
	Smart Objects Mediation


	Task-Service-Resolution
	The concept of Goal-Driven Resolution
	Goals and Plans
	Goal, Plan and Plan Modules Description
	Deployment of External Web Services

	Goals and Processes
	Process approach in FRED
	Process Ontology and Process Engine
	Process Specification and Execution
	Process Composer
	Activity Management System


	Goal Resolution
	Meeting Creation
	Service Discovery
	Execution Handling


	FRED as Mediation Platform for the Semantic Web
	Next Generation Mediation Systems
	Plan Level Mediation
	Process Level Mediation

	FRED as Mediation Platform in DIP

	Related Work
	Related Agent Technologies
	Comparison with Semantic Web technologies
	Ontology Technology
	Semantic Web Service technologies


	Applications and Future Directions
	Existing Applications
	Future Developments
	Smart Objects
	Task-Service Resolution
	Mediation Technology


	Conclusions
	References

