
Mediation Enabled Semantic Web Services Usage

Emilia Cimpian, Adrian Mocan, Michael Stollberg

Digital Enterprise Research Institute,
Institute for Computer Science, University of Innsbruck,

Technikerstrasse 21a, A-6020 Innsbruck, Austria
firstname.lastname @deri.org

Abstract. The Semantic Web services has become a challenging research topic
in the last half of decade. Various frameworks offer means to semantically de-
scribe all the related aspects of Semantic Web services, but the solutions to the
heterogeneity problems, inherent in a distributed environment as the Web, are
still to be properly integrated and referred to from the main phases of the Web
services usage. Both data and process heterogeneity, as well as the multitude of
functionalities required and offered by semantic Web services’ requesters and
providers hamper the usability of Web services, making this technology difficult
to use. This paper emphasizes the role of mediators in a Semantic Web services
architecture, illustrating how the mediators can enable the Semantic Web services
usages as discovery, invocation and composition.

1 Introduction

An intense research activity regarding Semantic Web, Web services and their combi-
nation, Semantic Web services, has been going on during the last years. But only the
semantic descriptions attached to data or to the Web services deployed using today’s
technologies, does not solve the heterogeneity problem that may come up due to the
distributed nature of the Web itself. As such, the heterogeneity existing in represent-
ing data, in the multitude of choices in representing the requested and the provided
functionalities, and in the differences in the communication patterns (public processes)
are problems that have to be solved before being able to fully benefit of the semantic
enabled Web and Web services. Considering that these problems can not be avoided,
dynamic mediation solutions that fully exploit the semantic descriptions of data and
services are required.

This paper emphasizes the importance of the mediators in the usages of Semantic
Web services, showing why the basic phases needed for Semantic Web services us-
ages (discovery, invocation and composition) can hardly take place without the support
of mediators. It also identifies different levels of mediation, illustrating what type of
mediation is needed in a particular phase.

The discussion is held in the context of Web Service Modeling Ontology (WSMO)
[4], a framework that offers all the necessary instruments to semantically describe the
Web services and all the related aspects. One of the main reasons in choosing WSMO as
the semantic framework for Web services is that it realizes the importance of mediators
and treats them as first class citizens. WSMO offers specific means to semantically

describe concrete mediation solutions and to directly refer to them where needed (e.g.
from ontologies or Web services).

The paper is structured as follows: Section 2 provides an overview of Semantic
Web services definition, as an important aspect for the usability of the services; Section
3 describes how the discovery, invocation and composition can benefit from the use
of mediators, and what type of mediation is needed in each of these phases; Section 4
presents an illustrative example, addressing all types of mediation previously identified,
while Section 5 provides an overview of the related mediation work; finally, Section 6
concludes the paper.

2 Semantic Web Services Definition

Any Semantic Web service is accessible via its interface, which provides information
on how a service can be invoked. As a consequence, we believe that the ability of a ser-
vice to participate in complex interactions directly dependents on the expressivity of its
interface and on its correctness (from the business logic point of view). Simultaneously,
a service has to correctly and completely advertise its functionality (that is, what the
service can provide), which will enable the service’s discovery by potential requestors.

Web Service Modeling Ontology (WSMO1) provides an exhaustive definition of
Semantic Web services [4].

Table 1: WSMO Web Service Definition

Class webService
hasNonFunctionalProperties type nonFunctionalProperties
importsOntology type ontology
usesMediator type ooMediator, wwMediator
hasCapability type capability

multiplicity = single-valued
hasInterface type interface

The WSMO service definition consists of the following elements:

non-functional properties - general information about the Web service, likecreator ,
format , or description [12];

imported ontologies - external ontologies used in defining the service;
used mediators - different mediators needed for definig the service (for example, for

importing ontologies);
capability - a functional description of what the service can do;
interface - the way of communicating with the requestor or with other services.

From the service’s behaviour point of view, the important items from this definition
are the capability and the interface, and we reproduce their definitions from [12].

1 seehttp://www.wsmo.org

http://www.wsmo.org

Table 2: WSMO Web Service Capability

Class capability
hasNonFunctionalProperties type nonFunctionalProperties
importsOntology type ontology
usesMediator type ooMediator, wgMediator
hasSharedVariables type sharedVariables
hasPrecondition type axiom
hasAssumption type axiom
hasPostcondition type axiom
hasEffect type axiom

Apart from the non-functional properties, the imported ontologies and the used me-
diators, the capability definition of a semantic Web service must contain the following
information:

precondition - the information space of the Web service before its execution;
assumption - the state of the world before the execution of the Web service;
postcondition - the information space of the Web service after its execution;
effect - the state of the world after the execution of the Web service;
shared variables - variables that are shared between preconditions, postconditions, as-

sumptions and effects.

Table 3: WSMO Web Service Interface

Class interface
hasNonFunctionalProperties type nonFunctionalProperties
importsOntology type ontology
usesMediator type ooMediator
hasChoreography type choreography
hasOrchestration type orchestration

The semantic Web service’s interface must contain information about the choreog-
raphy and the orchestration of a service. The choreography offers indications about how
a client should invoke the service, while the orchestration shows how the service can
communicate with other services in order to achieve a common functionality.

3 Semantic Web Services Usability

The previous section provided some details on how WSMO currently defines seman-
tic Web services. An important aspect that needs to be noted is the presence of the
usesMediator attribute in all three of the presented definitions, which shows that in
WSMO, mediation can be supported by all constituent elements of a WSMO service
description.

This section will elaborate onwhyandhowdifferent types of mediation should be
used for the actual usage of a service, during discovery, invocation and composition
phases.

3.1 Web Service Discovery

The Web service discovery has the role of determining appropriate Web services for ful-
filling a certain goal, out of a collection of services. There are numerous techniques for
Web service discovery; WSMO addresses three possible discovery techniques: keyword-
based discovery, discovery based on simple semantic descriptions of services, and dis-
covery based on rich semantic descriptions of services [7].

While the keyword-based discovery can take place without the use of any media-
tion service, the last two (called semantic-based discovery techniques) can benefit from
data level mediation andfunctional level mediation .

In this context the data mediation is considered to be the mediation between two
ontologies. That is, the data mediator is able to transform instances expressed in terms
of one ontology (considered to be thesource ontology) in instances expressed in
terms of the other ontology (target ontology) [10].

During the discovery, the data level mediation is used in case the requestor uses
a different ontology than the ones used by the available Web services. For example,
if a service’s declared functionality is to provide accommodation in a certain city in
Austria and train tickets between any location in Europe and that particular city, it may
have in its internal ontology a concept calledtrain ticket . On the other hand, a
requestor of a train ticket may have an equivalent concept calledtravel voucher .
Without the services of a data mediator able to map thetrain ticket concept to
thetravel voucher concept, the service could not be discovered. Of course, this is
a very simple example of data mediation. Several data mediator tools are able to solve
more complex mappings. For example the data mediator tool developed as part of the
Web Service Execution Environment (WSMX) takes into consideration both syntactical
and structural aspects, mapping concepts based on their names (syntactical aspect),
attributes and relations they are involved in (structural aspects) [10].

The functional level mediation is used to state the logical relations between the
service offer and the service request. Considering a request G2 and an offer WS, there
are five types of possible relations between their functionalities [16]:

1. equal - meaning that WS offers exactly the functionality required by G.
2. plug-in - meaning that WS provides all the functionalities required by G, and some

extra functionalities (G is a plug-in of WS). In the previously described example,
the relation between the functionality requested by the goal (booking a train ticket)
and the one offered by the Web service (booking both a train ticket and an accom-
modation) is a plug-in relation.

3. subsume- meaning that G requires more functionalities that WS provides (G sub-
sumes WS). An example for this case would be when a a requester asks for a com-

2 In WSMO the requests are expressed asGoals ; a goal has a similar definition as a Web
service, expressing in a formal way both the requested capability and the requested interface

plete holiday package (flight tickets and accommodation) and the service offers
only accommodation.

4. intersecting - meaning that WS offers part of what G requests, and some additional
functionality as well. An example for this case would be when a a requester asks
for flight tickets and accommodation and the service offers accommodation and car
rental.

5. disjoint - meaning that the requested and provided functionalities are totally differ-
ent.

For a Web service to be discovered as a candidate in fulfilling a certain goal, the
relation between them has to beequal or plug-in .

We might assume that these functional relationships between the requested capa-
bility and the offered capability can be derived directly in the discovery process in an
automatic manner (using reasoning techniques). There also could be cases when the
human domain expert has to be involved and semi-automatically (or even manually)
derive these functional relations. Such situations appears when there are dependencies
between the matching functionality and the remaining, additional functionality, or when
financial conditions have to be analyzed.

3.2 Web Services Invocation

After the discovery of a service able to fulfil a certain request, the actual invocation
can take place. Since both the provider and the requester of a service express the way
they want to communicate by using the interface (choreography) description prior to
the discovery, it is quite possible that there are a number of mismatches between these
descriptions.

Some of them can be solved by data mediation techniques (like thetrain ticket
- travel voucher one illustrated in the previous section), but some of them can
be communication specific, solvable only by usingprocess level mediation
techniques (we call this process mediation since a choreography represents the public
processes of an entity).

[2] identifies five types of mismatches that can be automatically solved, considering
that the choreographies are expressed conforming to Abstract State Machine (ASM)
specifications [1]3 as illustrated in the following figurer.

Stopping an unexpected message(Figure 1. a)): in case one of the partners sends a
message that the other one does not want to receive, the mediator should just retain
and store it. This message can be send later, if needed, or it will just be deleted after
the communication ends.

Inversing the order of messages(Figure 1. b)): in case one of the partners sends the
messages in a different order than the one the other partner wants to receive them.
The messages that are not yet expected will be stored and sent when needed.

Splitting a message(Figure 1. c)): in case one of the partners sends in a single message
multiple information that the other one expects to receive in different messages.

3 WSMO also uses ASM for representing the choreographies [15]

Fig. 1: Solvable Mismatches

Combining messages(Figure 1. d)): in case one of the partners expects a single mes-
sage, containing information sent by the other one in multiple messages.

Sending a dummy acknowledgement(Figure 1. e)): in case one of the partners ex-
pects an acknowledgement for a certain message, and the other partner does not
intend to send it, even if it receives the message.

3.3 Web Services Composition

The Web service composition is the most complex action from the three phases de-
scribed in this paper, and involves the previously two described actions.

Composition and Discovery - discovery is needed for composition in order to iden-
tify the services that need to be composed; any service that offers only part of the
required functionality is a candidate for the composition.

Composition and Invocation - the composition of several services can be seen as a
composition of several invocations; in order to compose different services, an exe-
cution environment needs to be able to communicate with all of them, sequentially
or in parallel.

Similarly with the relation that should exist between a goal and a Web service (for
the Web service to be discovered as a candidate for fulfilling the goal) the relation
between the goal and the composition of services has to beequal or plug-in . In the
following subsections, we will analyze the possible relations between the goal and the
composed Web services, that would allow obtaining a valid composition. In any other

situation the composition is not correct or not complete (for example, if the required
functionality subsumes the functionality offered by the composition of Web services,
the composition is not complete - one or more other services need to be added to the
composition)

For determining these relations between the functionality of the goal and the func-
tionality of the potential services and the composed functionality, the functional me-
diation can be used. Also the data level mediation may be needed in case different
ontologies are used for representing data.

The help of a process mediator is needed during the actual invocation of the com-
posed services, if the behavior of the participants differ.

Exact Match The exact match between the functionality offered by the composition
of the services and the one requested by the goal can appear only if

– all the composed services offere functionalities subsumed by the required function-
ality,

and

– the requested functionality is the exact reunion of the functionalities offered by the
services.

Fig. 2: Exact Match

Please note that the exact match between the goal’s functionality and the functional-
ity of the composed services still stands even if the functionalities of individual services
overlap at some point.

An example of such a mach is the following:

G - requests train tickets between two locations in Austria, hotel reservation in the
destination city and car hiring in the destination city;

WS1 - offers train tickets between any two locations in Austria;
WS2 - offers hotel accommodation in any city in Austria;
WS3 - offers cars for rent in any city in Austria.

Plug-in match The plug-in match between the functionality required by the requestor
and the functionalities offered by the composition of the services (i.e. composition sub-
sumes the requested functionality) can appear only if

– all the composed services offere functionalities subsumed by the required function-
ality, or the intersection between the required functionality and the one offered by
the services is not null,

and

– the requested functionality is a plug-in of the reunion of the functionalities offered
by the services.

Fig. 3: Plug-in Match

Similarly with the previous case, the relation stands even if the intersection between
the functionalities of individual services overlap at some point.

An example of such a mach is the following:

G - requests train tickets between two locations in Austria, hotel reservation in the
destination city and car hiring in the destination city;

WS1 - offers train tickets between any two locations in Austria;
WS2 - and offers hotel accommodation in any city in Europe (not only in Austria);
WS3 - offers cars for rent in any city in Austria.

4 Example

In order to illustrate how the mediation can be used in various stages of services’ us-
ages, we consider the following example: a client requesting train tickets between two
Austrian cities, and hotel accommodation in the destination city. The available services
are offering:WS1- train tickets between any two cities in Europe,WS2 - hotel accom-
modation in any city in Austria.

The lack of space does not allow us to give all the details regarding the goal, Web
services, ontologies, and mismatches that may appear in such a scenario. The following
sections illustrate some possible data and process mismatches, and the way these could
be solved, and also the functional relations between the goal andWS2 and the goal and
the service composition4

4.1 Data Mediation

For illustrating the data mismatches and how the mismatches can be solved, we consider
the following example.

The goal has in its ontology the conceptstation with the following definition:

concept station
nonFunctionalProperties

dc 5#description hasValue "Station concept"
endNonFunctionalProperties
start_Location typeOf _boolean
destination_Location typeOf _boolean
name typeOf _string

wherestart Location anddestination Location are two boolean at-
tribute showing if the station represent the starting or the ending point of a trip, and
name is the actual name of a station. For example, an instance of the station concept
S having thestart Location set to true, and thedestination Location to
false (assuming that internally there is an imposed condition on these attributes, that
only one of them can be true) will be considered to be the starting point of a trip.

On the other hand the serviceWS1 may have in its ontology the concept route, with
the following definition:

concept route
nonFunctionalProperties

dc#description hasValue "Route concept"
endNonFunctionalProperties

from typeOf _string
to typeOf _string

showing which are the names of departure and arrival stations.
Without the services of a data mediator, an execution environment would not be able

to determine that from two instances of station an instance of route have to be created.
For supporting this, a data mediator has to be able to create and execute rules similar
with the following ones6:

Mapping (
OG7#station

4 All the examples are expressed using Web Service Modeling Language (WSML):http:
//www.wsmo.org/wsml/

5 dc is the prefix we use to refer to Dublin Core non-functional proper-
ties set URL http://purl.org/dc/elements/1.1

6 The rules are expressed in the Abstract Mapping Language [14] are generated and can be exe-
cuted using the Web Service Execution Environment (WSMX) data mediation tool, available
for download athttp://sourceforge.net/projects/wsmt

7 We use OG to denote the goal’s ontology

http://www.wsmo.org/wsml/
http://www.wsmo.org/wsml/
http://sourceforge.net/projects/wsmt

OS8#route
classMapping (one-way station route))

Mapping (
OG#destination_Location
OS#to
attributeMapping (one-way

[(station) destination_Location => boolean]
[(route) to => string]))
valueCondition

(station [(station) destination_Location => boolean] true)

Mapping (
OG#start_Location
OS#from
attributeMapping (one-way

[(station) start_Location => boolean]
[(route) from => string]))
valueCondition

(station [(station) start_Location => boolean] true)

Mapping (
OG#name
OS#to
attributeMapping (one-way

[(station) name => string]
[(route) to => string]))

Mapping (
OG#name
OS#from
attributeMapping (one-way

[(station) name => string]
[(route) from => string]))

The first rule states the relations betweenstation androute , the following two
between the boolean attributes from the station and theto and from attributes from
the route. The last two rules are showing the relation between thename attribute from
the station and theto andfrom attributes.

4.2 Functional Level Mediation

For illustrating the functional level mediation we will describe the capabilities of the
goal,WS1 andWS2 and also the capability of the services’ composition. For simplicity
reasons, we will present only the post-conditions, which describe the information space
of the Web service after its execution; additionally we consider that all the involved
parties use the same terminology.

goal G
capability Gcapability

postcondition Gpostcondition
definedBy

?x[source_location hasValue ?cityS,
destination_location hasValue ?cityD] memberOf ticket and

?cityS[locatedIn hasValue "Austria"] and
?cityD[locatedIn hasValue "Austria"] and
?h[locatedIn hasValue ?cityD] memberOf hotel and
?r[client hasValue ?p,

8 We use OS to denote the service’s ontology

hotel hasValue ?h] memberOf Reservation and
?p memberOf person. 9

webService ws1
capability ws1capability

postcondition ws1postcondition
definedBy

?x[source_location hasValue ?cityS,
destination_location hasValue ?cityD] memberOf ticket and

?cityS[locatedIn hasValue "Europe"] and
?cityD[locatedIn hasValue "Europe"].

webService ws2
capability ws2capability

postcondition ws2postcondition
definedBy

?h[locatedIn hasValue ?city] memberOf hotel and
?city[locatedIn hasValue "Austria"] and
?r[client hasValue ?p,

hotel hasValue ?h] memberOf Reservation and
?p memberOf person.

webService composedws
capability composedwscapability

postcondition composedwspostcondition
definedBy

?x[source_location hasValue ?cityS,
destination_location hasValue ?cityD] memberOf ticket and

?cityS[locatedIn hasValue "Europe"] and
?cityD[locatedIn hasValue "Europe"] and
?h[locatedIn hasValue ?city] memberOf hotel and
?city[locatedIn hasValue "Austria"] and
?r[client hasValue ?p,

hotel hasValue ?h] memberOf Reservation and
?p memberOf person.

The functional relation between G andWS2 has to illustrate the fact thatWS2

offers less than what the goal requests10:

source G
target WS2
nonFunctionalProperties

dc#type hasValue subsume 11

endNonFunctionalProperties
definedBy

?h[locatedIn hasValue ?cityD] memberOf hotel and
?r[client hasValue ?p,

hotel hasValue ?h]
memberOf Reservation and
?p memberOf person.

The functional relation between the goal and the composition of services has to
illustrate the fact that the composition offer more functionality then the one required by
the goal.

9 ”?” denotes a variable in WSML.
10 The relations are expressed based on [16]; this is still on-going work, and there is no tool

available for generating them
11 This non-functional-property is used to express the way the subsumption rela-

tion should be read, i.e G subsumes WS2 by ...

source G
target composedws
nonFunctionalProperties

dc#type hasValue plug-in
endNonFunctionalProperties

definedBy
?x[source_location hasValue ?cityS,

destination_location hasValue ?cityD] memberOf ticket and
naf 12 ?cityS[locatedIn hasValue "Austria"] and
naf ?cityD[locatedIn hasValue "Austria"].

4.3 Process Level Mediation

For illustrating process mediation mismatches we will provide a piece of the goal chore-
ography and and a piece ofWS1 choreography. Both of them are representing using
WSMO definition of choreographies [15], which respects the ASM specifications.

In WSMO, the owner of any instance (that is, the concept that is instantiated) ex-
pected by an entity is part of anin list, and any owner of an instance that should be
sent by an entity is part of anout list. Further more, the order in which the instances
are expected is set by using transition rules, consisting of conditions and updates.

The goal choreography contains the following rules:

/ *
* the invocation starts with the creation of a date instance; no condition
* need to be fulfilled in order to create this instance
* /
do

add (_#[
year hasValue ?year,
month hasValue ?month,
day hasValue ?day

] memberOf tro#date)

/ *
* after the date is created, the requestor creates an instance of station -
* the starting point of the trip
* /
forAll ?date with (?date[] memberOf
tro#date

) do
add (_#[

start_Location hasValue _boolean("true"),
destination_Location hasValue _boolean("false"),
name hasValue ?name

] memberOf tro#station)
endForAll

/ *
* after the instance denoting the starting point of the trip exists, the
* requestor creates an instance denoting the destination point
* /
forAll ?station with (?station[

start_Location hasValue _boolean("true"),
destination_Location hasValue _boolean("false"),
] memberOf tro#station
) do

add (_#[
start_Location hasValue _boolean("false"),
destination_Location hasValue _boolean("true"),

12 naf stands for negation as failure in WSML [8]

name hasValue ?name
] memberOf tro#station)

endForAll

wherestation anddate are both part of theout list of the choreography.
The choreography ofWS1 contains the following rules:

/ *
* the invocation starts when the service receives an instance of route
* /
do

add (
_#[from hasValue ?from,
to hasValue ?to

] memberOf too#route)

/ *
* after the route is created, the service expects an instance of date - the
* date of the trip
* /
forAll ?route with (?route[] memberOf
too#route

) do
add (_#[

year hasValue ?year,
month hasValue ?month,
day hasValue ?day

] memberOf too#date)
endForAll

whereroute anddate are part of thein list.
A graphical representation of the two choreographies is illustrated in Figure 4. a).

Fig. 4: Choreography Mismatches

What the process mediator should do in this case is represented in Figure 4. b).
For example, the way a Process Mediator could work is [2]:

– when the instance ofdate is sent by the requestor, the process mediator should
determine that this instance will be expected at some point in time (by checking
the service’sin list)but it is not expected by the service at the beginning of the
conversation. As a consequence, thedate instance should be stored for further
use.

– when the first instance ofstation is received, the process mediator should invoke
a data mediator in order to obtain the equivalent instance in terms of the service’s
ontology. The data mediator will return an instance ofroute , which conforming

with the service’s choreography is expected at this point of the communication.
The problem is that this instance is incomplete, does not have all the attributes
instantiated as required, so the process mediator will store thestation instance
for further use.

– when the second instance ofstation is sent, the process mediator invokes a data
mediator with bothstation instances, obtaining a correct instance ofroute
from the service’s point of view. As theroute is expected, this instance is sent to
the service.

– after theroute is sent, the process mediator determines, based on the service’s
choreography that an instance ofdate is expected now. Thedate instance is
retrieve from the internal storage and sent.

The WSMX process mediator prototype13 is able to perform this kind a computa-
tions, and to address all the types of mismatches identify in [2]

5 Related Work

Data mediation represents an old research topic that was reshaped and re-explored in
the semantic context. Semantic-based solution have been proposed that offer better,
more-dynamic and Web oriented mediators in a more-effective and effort saving manner
[9,11,3].

At the same time, processes mediation is still a poorly explored research field. The
existing work represents only visions of mediator systems able to resolve in a (semi-)
automatic manner the processes heterogeneity problems, without presenting sufficient
details about their architectural elements. Still, these visions represent the starting points
and valuable references for the future concrete implementations(see for example Con-
tivo14 and CrossWorlds15).

As far as we know the functional mediation has not been directly addressed in any
other work. However similar classification and functional relationships were explored
in various discovery working groups [6,13,5] as prerequisites for the discovery engines.

Even if as future development this work aims in providing complete solution for
this three areas of mediation, this paper focuses on analyzing how these complemen-
tary techniques can be integrated and used in the main steps of Semantic Web services
usage. We are not aware of ay similar overview and work towards a complete mediation
framework for Semantic Web services.

6 Conclusions

This paper emphasizes the importance of mediators in a Semantic Web services in-
frastructure, illustrating why and how the mediators can be used during Semantic Web
services discovery, invocation and composition. These three phases, considered to be

13 Available for download fromhttp://sourceforge.net/projects/wsmx/
14 http://www.contivo.com
15 http://www.sars.ws/hl4/ibm-crossworlds.html

http://sourceforge.net/projects/wsmx/
http://www.contivo.com
http://www.sars.ws/hl4/ibm-crossworlds.html

of highly importance for the Semantic Web services usage are explained in the paper,
and the appropriate mediation technics are identified. These techniques refer to data
mediation (tackling the terminology and representation mismatches), process media-
tion (addressing the public process mismatches, i.e., communication mismatches) and
functional mediation (bridging various required and offered capabilities).

The paper also presents examples of mismatches that can appear in a Semantic Web
services environment, and it proposes ways of solving these heterogeneity problems.

References

1. E. Börger and R. Stärk. Logical Foundations of Artificial Intelligence. Springer, Berlin,
Heidelberg, 1987.

2. E. Cimpian and A. Mocan. WSMX Process Mediation Based on Choreographies. InPro-
ceedings of the 1st International Workshop on Web Service Choreography and Orchestration
for Business Process Management at the BPM 2005, Nancy, France, 2005.

3. J. Euzenat, D. Loup, M. Touzani, and P. Valtchev. Ontology alignment with ola.Proc.
3rd ISWC2004 Workshop on Evaluation of Ontology-based Tools (EON), Hiroshima, Japan,
pages 59–68, 2004.

4. C. Feier, A. Polleres, R. Dumitru, J. Domingue, M. Stollberg, and D. Fensel. Towards intelli-
gent web services: The web service modeling ontology (WSMO).International Conference
on Intelligent Computing (ICIC), 2005.

5. H.-C. Hsiao and C.-T. King. Neuron - A Wide-Area Service Discovery Infrastructure.In
Proceedings of the Internaltional Conference on Parallel Processing (ICPP’02), 2002.

6. U. Keller, R. Lara, H. Lausen, A. Polleres, and D. Fensel. Automatic Location of Services.
In Proceedings of the 2nd European Semantic Web Conference (ESWC 2005), Crete, Greece,
2005.

7. U. Keller, R. Lara, and A. Polleres (eds.). WSMO Web Service Discovery. Deliverable D5.1,
2004. available at: http://www.wsmo.org/TR/d5/d5.1/.

8. H. Lausen, J. de Bruijn, A. Polleres, and D. Fensel. WSML - A Language Framework for
Semantic Web Services.W3C Workshop on Rule Languages for Interoperability, April 2005.

9. A. Maedche, B. Motik, N. Silva, and R. Volz. Mafra - a mapping framework for distributed
ontologies.Proceedings of the 13th European Conference on Knowledge Engineering and
Knowledge Management (EKAW), September 2002.

10. A. Mocan and E. Cimpian. Mapping creation using a view based approach.1st International
Workshop on Mediation in Semantic Web Services (Mediate 2005), December 2005.

11. N. Noy. Semantic Integration: a Survey of Ontology-based Approaches.ACM SIGMOD
Record, 33(4):65–70, 2004.

12. D. Roman, H. Lausen, and U. Keller (eds.). Web Service Modeling Ontology (WSMO).
Deliverable D2, 2005. available at: http://www.wsmo.org/TR/d2/.

13. B. Sapkota, L. Vasiliu, I. Toma, D. Roman, and C. Bussler. Peer-to-peer technology usage in
web service discovery and matchmaking.Sixth International Conference on Web Information
Science and Engineering (WISE 2005), November 2005.

14. F. Scharffe and J. de Bruijn. A language to specify mappings between ontologies. InProc.
of the Internet Based Systems IEEE Conference (SITIS05), 2005.

15. J. Scicluna, A. Polleres, and D. Roman (eds.). Ontology-based Choreography
and Orchestration of WSMO Services. Deliverable D14, 2005. available at:
http://www.wsmo.org/TR/d14/.

16. M. Stollberg, E. Cimpian, and D. Fensel. Mediating Capabilities with Delta-Relations. In
Proceedings of the First International Workshop on Mediation in Semantic Web Services,
Amsterdam, the Netherlands, 2005.

	Mediation Enabled Semantic Web Services Usage
	Emilia Cimpian, Adrian Mocan, Michael Stollberg

