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1 Introduction

This report introduces and defines so-calleddelta relations(or shorter∆-relations) as a means for explicat-
ing the conditions under which a Web service is usable for solving a goal. Such conditions occur when the
functionality provided by a Web service does not precisely match with the one requested by a goal but there
still are specific executions of the Web service that allow to solve the goal. We discuss the properties of
∆-relations and provide a concise formal definition along with illustrative examples for demonstration and
clarification purpose.

The central aspects addressed in this report are:

• the motivation and application purpose of ∆-relations with respect to formalized functional de-
scriptions of goals and Web services and semantically enabled mechanisms for determining the us-
ability of Web services for a given goal

• the concept of thesemantic difference between logical formulaeas the basis for denoting the aspi-
rated logical relationship

• extending the definitions and techniques for∆-relations on logical formulae towardsformal func-
tional descriptions of goals and Web servicesin terms of pre- and postconditions

• clarification and demonstration of the concepts and definitions by illustrative examples

• discussion and positioningof the approach within related work, especially with respect to techniques
for “assumption explication”developed in the course of UPML.

The document is structured as follows: the remainder of this section outlines the motivation and aim of
∆-relations and identifies their central characteristics. Section2 elaborates the formal foundations by defin-
ing ∆-relations for conventional logical expressions that represent functionalities requested by goals and
provided by Web services. These are extended in Section3 towards formal functional descriptions that are
defined in terms of preconditions and effects within a state-based model of the world. Section4 discusses
related work and positions our approach therein, and Section5 summarizes and concludes the document.

1.1 Motivation and Aim

The problem context of∆-relations is detection of usable Web services for solving a given request, com-
monly referred to as discovery and composition within the field of Semantic Web services. As the core
technique, research on semantic matchmaking has identified different degrees under which a Web service is
considered to be usable for solve a goal (e.g., [21, 26, 16]). In all situations where the functionality offered
by a Web service provider does not exactly match with the one demanded by requester for solving his goal,
certain conditions arise under which the Web service is usable for successfully solving the gaol. In particu-
lar, for certain matchmaking degrees the client has to provide specific inputs to the Web service such that its
execution will provide a result that satisfies the goal; for other degrees, using the Web service for solving a
given goal has certain impacts on how the goal will be resolved.

Let’s consider an example for clarification. Imagine a generic goal formulationG for purchasing travel
tickets in Austria that is instantiated for a concrete client requestG1 of buying a ticket from Innsbruck to
Vienna on a certain date. Among all available Web services there isWS 1 for purchasing tickets for all train
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connections offered by the Austrian national railway operatorÖBB; another Web serviceWS 2 offers flight
ticket purchasing for Austrian Airlines AUA. Both thëOBB as well as AUA offer connections between
Innsbruck and Vienna. The matchmaking degree betweenG andWS 1 is thatG is more general, i.e. all
executions ofWS 1 can satisfy all instantiations ofG but there also are other solutions that are not provided
by WS 1. In this situation, the Web service can be used without any constraints. However, its usage will
result in purchasing a train ticket, hence there is a certain impact on howG1 is resolved when usingWS 1.

For WS 2, the national AUA flight connections provided by AUA can satisfyG in case that the origin
and destination city have an associated airport; however, international AUA flight connections cannot be
used. This situation – commonly referred to as the intersection match in literature – requires that the client
provides specific input such that the execution ofWS 2 will provide results that satisfyG. In this case, the
accurate input is restricted to Austrian cities with an associated airport. This is what we refer to as conditions
for usage of a Web service for solving a goal.

The purpose of∆-relations is to explicate such impacts and usage conditions on Web services for solv-
ing a particular goal in order to provide advanced support for Web service detection and usage. Impacts and
conditions for Web service usage as illustrated result from differences between the requested and provided
functionalities. In frameworks with formal descriptions of goals and Web services, these occur as the se-
mantic difference between functional descriptions. The aim of∆-relations as introduced and defined in this
document is to provide a means for explicating these differences so that it can beformally expressedand
explicitly represented. This additional knowledge can then beprovided to applicationsthat deal with not
precisely matching requested and provided functional descriptions. The following outlines such applications
and identifies the consequential characteristics of∆-relations.

1.2 Some Usage Scenarios for Delta Relations

In accordance to [15], we consider the following procedure for Web service detection. A generic goal
description formalizes objectives to be achieved in terms of preconditions and effect descriptions that are
mathematically identical to functional descriptions of Web services. A client instantiates such a goal formu-
lation by providing concrete input data that satisfy the goal precondition; these data serve as the inputs for
invoking a usable Web service [33]. Discovery or composition with respect to the requested and provided
functionalities is performed on the formally described requested and provided functionalities of goals and
Web services, i.e. orthogonal to goal instantiation for concrete client objectives.

As a extension for discovery and composition techniques, explication of usage conditions for Web ser-
vices works on generic goal formulations and functional descriptions of Web services. There are different
possibilities for presenting this to clients: we can either construct revised goal formulations with a different
matchmaking degree such that the conditions do not arise anymore, or we can explicate the conditions as ad-
ditional constraints that need to hold for successful goal solving with the particular Web services. For both,
∆-relations provide the basis as we illustrate in the following. For convenience, we stick to the example of
buying tickets for travelling from Innsbruck to Vienna throughout the explanations. We examine the arising
requirements for∆-relations below.

Goal Refinement / Adjustment. This refers to the subsequent refinement of generic goal formulations.
For instance, imagine that the client who definesG1 has a preference for travelling by plane because of tight
schedules but did not explicate this in the initial specification ofG1. After receiving the discovery result for
the initial goal definition, the client may refineG1 with a preference for flying. In the next step,WS 2 would
be selected as the impact for goal resolution by usingWS 1 contradicts with the client’s preference.
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Goal adjustment means that a goal formulation is refined such that the nature of the specified objective
is changed. Within our scenario, imagine that some client defines a GoalG2 for buying a flight ticket from
Innsbruck to Vienna for less thane 200,-. The flight booking Web serviceWS 2 seems to be usable, but all
purchasable flight ticket cost significantly more thane 200,-. However, train tickets for the desired itinerary
are available for less thane 200,- fromWS 1. By analyzing the functional relationship and difference
betweenG2 and the Web services, we can propose possibilities for adjusting the goal: either weaken it by
omitting the price constraint so thatWS 2 becomes usable, or change the desired ticket type to train ticket
so thatWS 1 becomes usable. We discuss examples for goal re-formulations in detail in Section2.4.

Assumption Explication. This is concerned with determining so-calledhidden assumptions, that is ad-
ditional aspects that are not explicated a priori within formalized descriptions of requested and provided
functionalities. Such hidden assumption result from the fact that knowledge engineers specify formal de-
scriptions with respect to their individual understanding and view of the world. Following constructivist
philosophy, this naturally differs between humans. As missing knowledge might hamper usability of a com-
putational resource for solving a problem, explication of hidden assumptions is considered as an important
and critical task for enabling automated software usage on basis of formal descriptions [4]. [9] presents
so-calledinverse verificationas a technique for assumption explication by manual analysis of failed proofs
on the usability of problem solving methods for a given task.

We can understand the conditions or impacts on using a particular Web service for solving a goal as
a specific type of such hidden assumptions. For the usage of the AUA Web service in the above example
scenario, we could formalize a constraint that the origin and destination provided as inputs need to be
Austrian cities with an airport. We can use this as an additional constraint for usingWS 2 for resolvingG.
We illustrate how to obtain such assumptions by∆-relations in Section2.4, and discuss the similarity and
differences of our approach and inverse verification in Section4.

While the above techniques are concerned with explicating usage conditions on Web services, another
potential application area of∆-relations might begrouping of requested and provided functionalities.
Outlined in [31], this addresses the scalability problem of techniques for automated Web service usage.
The bottleneck is the potentially very large number of matchmaking operations that need to be performed
for discovery or composition as all available Web services need to be taken into account. For reducing
this, we can group available Web services with respect to similar provided functionalities in order to attain
an efficient search graph for Web service repositories. Furthermore, we can group goals with respect to
the relationship and difference of the requested functionalities and capture knowledge about discovery and
composition results in order to perform usability detection by look-up. This is the idea ofSemantic Goal
Cachingthat will be represented at a later stage of research, along with the usability∆-relations therefore.

1.3 Characteristics of Delta-Relations

Considering the realization of such techniques reveals that they all deal with certain aspects of the semantic
difference between the formalized functional descriptions of Web services and goals that do not precisely
match. Goal refinement and adjustment need to analyze the impacts of using specific Web services for a
given goal and derive a semantically related goal formulation; representing usage conditions in form of
assumption needs to explicate the relevant aspects of the semantic difference between the goal and the Web
service; functional grouping of Web services and goals needs to determine taxonomic structures with respect
to formal functional descriptions.
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Hence, there is a common basis for applications as illustrated above: the semantic relation and difference
of formally described requested and provided functionalities with respect to the context of the usability of
Web services for solving a given goal. This is what we refer to as a∆-relations in the following. In
principle, it provides a “raw form” of explicit knowledge on the relation and difference of formally described
functionalities. This is used and interpreted by distinct techniques for realizing applications as discussed
above. Figure1 illustrates the correlation of∆-relations and techniques that work upon them for enabling
particular applications.

Figure 1:Delta Relations - Techniques - Applications

To provide a sophisticated basis for inference-based techniques and advanced applications for Web service
detection,∆-relations need to meet certain requirements. While providing further explanations and concise
formal definitions in the subsequent sections, we depict the requirements here informally:

1. completeness, i.e. cover all aspects of difference (necessary condition)

2. minimality , i.e. only encompass those aspects needed to cover the complete difference but nothing
more (sufficient condition).

3. formal definition of the properties and meaning of∆-relations in a logical framework

4. declarative representation, i.e. explicit representation of∆-relations in a declarative manner.

The remainder of this document subsequently elaborates and defines∆-relations with respect to the iden-
tified requirements. At first, Section2 discusses the usage of conventional logical expressions as formal
descriptions of goals and Web services, and introduces the definition of a∆-relation as a pair of formu-
lae that properly represent the relevant aspects of the semantic difference between goal and Web service
descriptions. This is extended in Section3 with respect to the structure and semantics of functional descrip-
tions in terms of pre- and postconditions. Moreover, we provide two extensions to the mathematical core
of ∆-relations: (1) the alignment with semantic matchmaking in Section2.3 with respect to the applica-
tion context of Web service detection, and (2) the integration within the WSMO mediation framework in
Section3.3to allow directed, explicit, and declarative specification of∆-relations.
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2 Foundations – Delta Relations for Logical Expressions

This section discusses the properties and definition of∆-relations for conventional logical expressions in
some ontology language that formally describe requested and provided functionalities. While this abstracts
from the structure and semantics of formal functional descriptions in some capability language, we subse-
quently extend the definitions to functional descriptions in terms of pre- and postconditions in Section3.

We first recall the meaning of logical expressions as formulae in logics with model-theoretic seman-
tics and define the semantic difference between such formulae. Then, we provide a formal definition of
∆-relations with respect to the specific requirements arising for Web service detection as the relevant appli-
cation context. We align this with semantic matchmaking for Web service detection, and finally demonstrate
the definitions and their application within an illustrative example.

2.1 Logical Expressions, Model-Theoretic Semantics, and Semantic Difference

Logics are traditional means for knowledge representation in Computer Science. Each logicL consists at
least of two fundamental parts: a formal languageL and a formal semanticsS. As the basis for the following
elaborations, we briefly recall the definitions ofL andS for classical first-order logic as defined in [30].

L provides the syntactic means to represent knowledge as statements in a limited language. The language
depends on a set of elementary symbolsΣ (calledsignature) which can be used in a predefined manner to
construct statements.Σ contains symbols with a pre-defined meaning inside the particular logicL (logical
symbols, e.g. ∧, ∨, ¬, true), symbols that do not have such a fixed meaning (non-logical symbols, e.g.
human(·), jack parent − of (·, ·)) and auxiliary symbols without any logical meaning (e.g. opening and
closing brackets, commas, etc.). Usually, one only considers the part of the non-logical symbols when
talking about a signatureΣ.

The formal semanticsS assigns a truth valuevalI(φ) to any consistent statementφ ∈ L. The evaluation
depends on a particular contextI (usually calledinterpretationof signatureΣ) which gives meaning to
the non-logical symbols in the signatureΣ. In classical KR languages the range ofvalI contains precisely
two values, namelytrue andfalse. Regarding the semantics of a formula (or logical expression)φ ∈ L,
the formal semanticsS essentially divides the set of all possible interpretations (of signatureΣ) into two
partitions: (1) interpretationsI that satisfyφ, i.e. valI(φ) = true (these interpretation are calledmodels
of φ), and (2) interpretation where this is not the case, i.e.valI(φ) = false. The former case is often
represented in terms of a semantic relation (read ,,satisfies” or ,,models”) between an interpretation and a
formula:I |= φ. In consequence, the class of models of a formulaφ over the respective signatureΣ

ModΣ(φ) = {I | I interpretation over Σ such that I |= φ}
can be considered as the semantics ofφ. This can be used as the formal descriptionD of some resource.
For instance, ifφ formally describes a Web service thenModΣ(φ) denotes those interpretations that can
be provided by the Web service with respect to some specific inputs. This perspective on the semantics of
formulas (or formal descriptions) is calledmodel-theoretic semanticsand is illustrated in Figure2.

The model-theoretic perspective on the semantics of formal descriptions provides a natural way to define
the semantic difference between two given descriptions. Letφ1, φ2 be formal description defined as logical
formulae whose meaning is formally represented by the set of modelsModΣ(φ1),ModΣ(φ2). Descriptions
with the same models (i.e.ModΣ(φ1) = ModΣ(φ2) ) are semantically equivalent, i.e. they mean the same
(though they might look syntactically different). Therefore, every interpretationI ∈ ModΣ(φ1) that is not
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Figure 2:Model-theoretic Semantics of Formal Descriptions

part of the semanticsModΣ(φ2) of another descriptionφ2 (or vise versa) represents a bit of information
that distinguishesφ1 andφ2 semantically. This leads straightforwardly to the following characterization of
difference on a semantic level which is illustrated in Figure3:

Definition 1 (Semantic Difference). Letφ1, φ2 ∈ L be two formulae over signatureΣ and letInt(Σ) denote
the set of allΣ-interpretations.

Thesemantic differenceSemDiff (φ1, φ2) betweenφ1 andφ2 is the set ofΣ-interpretationsI that are
models of eitherφ1 or φ2 but not both. Formally, this means

SemDiff (φ1, φ2) = {I ∈ Int(Σ) | (I |= φ1 and I 6|= φ2) or (I 6|= φ1 and I |= φ2)}

Figure 3:Semantic Difference of Formal Descriptions under Model-theoretic Semantics

According to this definition, semantic difference is asemantic(or mathematical) concept, i.e. it is de-
fined to be a particular set of interpretations. However, in order to leverage the semantic difference of logical
expressions in applications later on, this object is not directly useful as such. Applications that deal with se-
mantic descriptions never have direct access to the semantic level, but they merely access the semantic level
indirectly via formal descriptions in some logic. Hence, we need a concrete representation of the semantic
difference of two given logical expressionsφ1, φ2 ∈ L in a logic L′. More precisely, we need a formal
statementδ ∈ L′ such thatModΣ(δ) = SemDiff (φ1, φ2). Depending on the expressiveness of the logicL

to which the original descriptions belong,L′ might or might not be the same asL. In some cases,L′ might
require additional language constructs (i.e. must be more expressive) thanL. In consequence, we identify
a formula which faithfully represents the semantic difference and makes it accessible for applications that
deal with formal descriptions.



DERI TR 2006-08-18 7

Definition 2 (Symmetric Difference). Let L be a logic with model-theoretic semantics. Letφ1, φ2 ∈ L

be two formulae over signatureΣ. LetL′ be an extension ofL which provides additionally the two logical
connectives conjunction (∧) and negation (¬) with the usual classical semantics. Then we call the expression
δ(φ1, φ2) ∈ L′ with

δ1(φ1, φ2) = (φ1 ∧ ¬φ2)

δ2(φ1, φ2) = (¬φ1 ∧ φ2)

δ(φ1, φ2) = δ1(φ1, φ2) ∨ δ2(φ1, φ2) = (φ1 ∧ ¬φ2) ∨ (¬φ1 ∧ φ2)

thesymmetric differenceof φ1 andφ2
1.

Proposition 1. Let L be a classical logic with model-theoretic semantics. Letφ1, φ2 ∈ L be two formulae
over signatureΣ. Let L′ be an extension ofL which provides additionally the two logical connectives
conjunction (∧) and negation (¬) with the usual classical semantics.

Then it holds that the symmetric differenceδ(φ1, φ2) of φ1 and φ2 formally represents the semantic
difference ofφ1 andφ2, i.e.

ModΣ(δ(φ1, φ2)) = SemDiff (φ1, φ2)

If L already provides classical conjunction and negation, then we can represent the symmetric difference
already inL itself.

Proof. ConsiderI ∈ ModΣ(δ(φ1, φ2)), i.e. aΣ-interpretationI |=L′ δ(φ1, φ2).
I |=L′ δ(φ1, φ2)

iff. I |=L′ (φ1 ∧ ¬φ2) ∨ (¬φ1 ∧ φ2) by Def.2
iff. I |=L′ (φ1 ∧ ¬φ2) or I |=L′ (¬φ1 ∧ φ2) by semantics of∨ in L′

iff. (I |=L′ φ1 andI 6|=L′ φ2) or (I 6|=L′ φ1 andI |=L′ φ2) by semantics of∧,¬ in L′

iff. (I |=L φ1 andI 6|=L φ2) or (I 6|=L φ1 andI |=L φ2) sinceL′ conservatively extendsL
iff. I ∈ SemDiff (φ1, φ2) by Def.1

Therefore, we can concludeModΣ(δ(φ1, φ2)) = SemDiff (φ1, φ2).

The above definitions hold for all specific logics that have model-theoretic semantics and classical nega-
tion. In particular, these are first-order logic [30] and its decidable sub-sets Description Logic [2] and Horn
Logic [14], as well as Description Logic Programs as their maximal intersection [12]. Extensions towards
applicability for logics with minimal model semantics and negation by failure that underlie Logic Program-
ming languages - e.g. datalog with default negation [36] and the variants “WSML-Flight”and “WSML-
Rule”of the WSML language [5] - are considered as future work at this point in time.

1As usual, the logical connective disjunction (∨) can be expressed in terms of conjunction and negation:φ1 ∨ φ2 ≡ ¬(¬φ1 ∧
¬φ2)
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2.2 Requirements and Definition of Delta Relations

We now turn to the concrete context of Web service detection. The relevant aspect that we want to represent
in ∆-relations is the semantic difference between formally described requested and provided functionali-
ties for Web services. The following derives formal definitions of the requirements of completeness and
minimality of ∆-relations as informally identified in Section1.3. We then show how to construct a formal
expression that has these desired properties.

Consider some Web serviceW that offers some specific functionality and a goalG that specifies what
functionality a potential client is seeking for. In this section, we assume both functionalities to be described
by formulae in a logic with model-theoretic semantics such thatφG is the formal description ofG andφW the
one forW. Both formulae are defined on basis of a signatureΣ that defines the terminology and knowledge
of the domain of interest; we assume all goal and Web service descriptions to be consistent formulae such
that there exists at least oneΣ-interpretation that is a model of the description.

As the common result of several research efforts around Web service discovery by semantic matchmak-
ing (e.g. [21, 16], see Section2.3 for details), there are different logical relationships betweenφG andφW
under which the Web service is considered to be usable for solving the goal. For functionalities described by
logical expressions, the notable ones are the exact match (φG ≡ φW ), proper logical entailments (φG |= φW
or φW |= φG), and existence of at least one common model without entailment, commonly referred to as the
intersection match:∃I(Σ). I(Σ) ∈ ModΣ(φG) ∧ I(Σ) ∈ ModΣ(φW) andφG 6|= φW andφW 6|= φG .

The aspects of interest for∆-relations arise when there is a proper entailment or an intersection match
between the goal and the Web service descriptions. In each of these situations, there exists at least one
Σ-interpretation that is a model for eitherφG or φW but is not common to them. The set of these interpreta-
tions constitute the semantic difference between goals and Web services. This causes certain restrictions or
impacts on how the goal can be solved by using the particular Web service as illustrated in the introduction.
Two central requirements arise for precisely denoting this within∆-relations:

1. as thenecessary conditionof completeness, the∆-relation betweenφG andφW needs to encompass
all Σ-interpretations that are models for one but not the other description. This is given if∆φG ,φW
allows establishing logical equality between the goal and the Web service description such thatΣ |=
φG ∧ ∆1 ≡ φW ∧ ∆2. The reason is that ifφG ≡ φW holds, then there does not exist anyΣ-
interpretation that is a model for one formula but not the other; hence, there is no semantic difference
that causes undesired impacts of usingW for solvingG.

2. as thesufficient condition for appropriate handling, a∆-relation should be theminimal expression
that correctly denotes the semantic difference betweenφG andφW . This means that∆φG ,φW only
explicates thoseΣ-interpretations that constitute the semantic difference, which is given if there does
not exists any∆φG ,φW ’ that satisfies the necessary condition and is logically entailed by∆φG ,φW .

Definition5 formalizes these requirements on∆-relations, while Definitions3 and4 provide the formal
tools therefore. With respect to this, Theorem1 defines the construction of∆-relations that satisfy the
necessary and sufficient conditions. The central properties of these definitions are first that∆-relations are
defined as a pair of expressions∆ = (∆1, ∆2) whereby∆1 denotes the restrictions for the goal description
φG and∆2 those for the Web service descriptionφW for establishing logical equality between them. As
discussed below, this provides a general formula for constructing∆-relations in all situations that can occur
between formal descriptions. Secondly, there is not a unique syntactical representation of∆-relations.
Rather, all semantically equivalent expressions that satisfy the necessary and sufficient conditions represent
accurate∆-relations.
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Proposition 2 (Entailment Pre-ordering onL). Letφ1, φ2 ∈ L be formulae over signatureΣ in logic L.
The logical entailment relation|=L⊆ L× L represents a pre-order2.

Based on the pre-order|=L we can define a partial order2 on formulae inL as follows:

Definition 3 (Entailment Ordering of Formulae). Let φ1, φ2, φ
′
1, φ

′
2 ∈ L be formulae over signatureΣ in

logic L. Let [φ]≡L
denote theequivalence classof formulaφ wrt. logical equivalence inL, i.e.

[φ]≡L
= {φ′ |φ |=L φ′ and φ′ |=L φ}

We define a partial order¹⊆ L/≡L
×L/≡L

between formulae modulo equivalence (i.e. on equivalence
classes inL wrt. equivalence relation≡L) in L by

[φ1]≡L
¹ [φ2]≡L

iff . φ1 |=L φ2

We call¹ entailment ordering onL. By≺ we denote the respectivestrict entailment order onL× L, i.e.

[φ1]≡L
≺ [φ2]≡L

iff . [φ1]≡L
¹ [φ2]≡L

and [φ1]≡L
6= [φ2]≡L

We can extend the strict entailment order onL in a natural way to a strict partial ordering onL× L:

Definition 4 (Strict Entailment Ordering on Pairs of Formulae). Let φ1, φ2, φ
′
1, φ

′
2 ∈ L be formulae over

signatureΣ in logic L.
We define thestrict entailment ordering@ between pairs of formulae inL based on≺ and¹, i.e. by

(φ1, φ2) @ (φ′1, φ
′
2) iff . ([φ1]≡L

≺ [φ′1]≡L
and [φ2]≡L

¹ [φ′2]≡L
) or

([φ1]≡L
¹ [φ′1]≡L

and [φ2]≡L
≺ [φ′2]≡L

)

Proposition 3 (Properties of the Strict Entailment Ordering). The strict entailment orderings≺ onL and@
onL× L are strict partial orderings2.

On basis of this formal toolset, we can capture the necessary and sufficient requirements on∆-relations as
follows:

Definition 5 (Formal Requirements for Delta Relations). Let φG be a formula denoting a functionality re-
quested in a goal andφW be a formula denoting functionality provided by a Web service; both are defined
on basis of a signatureΣ in the context of some background ontologyΩ ⊆ L that specifies domain knowl-
edge. A pair of formulas∆ = (∆1, ∆2) is called∆-relation of φG andφW overΩ if it has the following
properties:

2 Definitions of used standard logical notions:

• a pre-order ≤ is a reflexive and transitive binary relation on a setS with: ∀a, b, c ∈ S. a ≤ a, if a ≤ b andb ≤ c then
a ≤ c.

• a partial order R is a reflexive, antisymmetric, and transitive binary relation on a setS with: ∀a, b, c ∈ S. aRa, if aRb
andbRa thena = b, if aRb andbRc thenaRc;

• astrict partial order R is a irreflexive, antisymmetric, and transitive binary relation on a setS with: ∀a, b, c ∈ S. ¬(aRa),
if aRb andbRa thena = b, if aRb andbRc thenaRc;
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(i) ∆ must allow establishing logical equivalence betweenφG andφW :
Ω |=L (φG ∧∆1) ↔ (φW ∧∆2)

(ii) ∆ must be a minimal expression with such a property, i.e. formally
there does not exist any pair of formulae∆′ = (∆′

1, ∆
′
2) such that

Ω |=L (φG ∧∆′
1) ↔ (φW ∧∆′

2) and∆ @ ∆′

In this definition, clause (i) states that∆ specifies the needed restrictions that one has to impose on both,
the goal description (∆1) and the Web service (∆2) such that the descriptions become logically equivalent.
There may be more than one such∆ expression and certain∆ expressions might be more specific than
others, i.e. they impose more restrictions than others (and thus than actually needed). For instance∆ =
(false, false) is a delta expression satisfying clause (i), but in most cases intuitively not useful. Clause (ii)
states in a formal way that amongst the possible∆ expressions, we are only interested in most general
ones (in regard of the strict entailment order@), i.e. those descriptions that impose only minimal necessary
restrictions on both descriptions to achieve logical equivalence betweenφW andφG .

It is easy to see that delta relations are not unique: If∆ = (∆1,∆2) is a delta relation forφG andφW ,
then any∆′ = (∆′

1, ∆
′
2) such that∆1 ≡L ∆′

1 and∆2 ≡L ∆′
2 is a delta relation as well. However, a delta

relation issemanticallyunique, i.e. for any other delta relation∆′ = (∆′
1, ∆

′
2) it must hold that∆1 ≡L ∆′

1

and∆2 ≡L ∆′
2.

Having formally characterized what kind of formal description we are interested in, the question arises of
how to find concrete∆-relations for a given Web service and goal description. Our previous considerations
on the semantic difference of logical expressions and how to represent them guide us to the following idea.
To satisfy clause (i),∆1 needs to restrict the actual models ofφG to only those that are also models of
φW . For the sufficient condition (clause ii),∆1 needs to be the most general expression (with respect to
strict entailment ordering) that satisfies the necessary condition. The same holds for∆2. In essence, we
are describing here the complement of some specific component of the semantic difference betweenφG and
φW , namelyδ1(φG , φW) andδ2(φG , φW). With respect to Definition2, δ1(φG , φW) ∨ δ2(φG , φW) denotes
the symmetric difference ofφG andφW . The following theorem underpins this intuition formally:

Theorem 1(Construction of a Delta Relation). LetφG be a formula denoting a functionality requested in a
goal andφW be a formula denoting functionality provided by a Web service; both are defined on basis of a
signatureΣ in the context of some background ontologyΩ ⊆ L that specifies domain knowledge.

Then the pair of formulas∆(φG , φW) = (¬δ1(φG , φW),¬δ2(φG , φW)) with

δ1(φG , φW) = (φG ∧ ¬φW)
δ2(φG , φW) = (¬φG ∧ φW)

is a∆-relation ofφG andφW overΩ.

Proof. Let ∆(φG , φW) = (∆1,∆2) be as defined above, i.e.∆1 = ¬(φG ∧¬φW) and∆2 = ¬(¬φG ∧φW).
We show that∆(φG , φW) satisfies clause (i) of Definition5. LetI be aΣ-interpretation that satisfiesΩ,

and letI |= ∆1 ∧ φG , i.e. I |= ¬(φG ∧ ¬φW) ∧ φG . Since¬(φG ∧ ¬φW) ∧ φG ≡L φW ∧ φG , we have
I |= φW ∧ φG 〈0〉. Furthermore, asφW ∧ ∆2 = (φW ∧ ¬(¬φG ∧ φW)) ≡L φW ∧ φG , it also holds that
I |= φW ∧∆2. Since we only used equivalence transformations, the same argument gives us the opposite
direction and thusΩ |= (∆1 ∧ φG) ↔ (φW ∧∆2) 〈1〉 .

Next, we show that clause (ii) of Definition5 is satisfied by∆(φG , φW) as well. We prove by contradic-
tion and assume that there exists a∆′ = (∆′

1, ∆
′
2) such that∆(φG , φW) @ ∆′ 〈2〉 andΩ |= (∆′

1 ∧ φG) ↔
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(φW∧∆′
2) 〈3〉. From〈3〉, we conclude thatModΣ(Ω∪{∆′

1∧φG}) = ModΣ(Ω∪{φW∧∆′
2}) 〈4〉. Similarly,

from 〈1〉 we get thatModΣ(Ω ∪ {∆1 ∧ φG}) = ModΣ(Ω ∪ {φW ∧∆2}). By 〈2〉 we know that[∆1]≡L
≺

[∆′
1]≡L

or [∆2]≡L
≺ [∆′

2]≡L
. Without loss of generality, assume that[∆1]≡L

≺ [∆′
1]≡L

(the other case
works analogously). Then,ModΣ(∆1) ⊂ ModΣ(∆′

1) andModΣ(Ω ∪ {∆1}) ⊂ ModΣ(Ω ∪ {∆′
1}) and

ModΣ(Ω ∪ {∆1 ∧ φG}) ⊂ ModΣ(Ω ∪ {∆′
1 ∧ φG}). By 〈0〉, we know thatModΣ(Ω ∪ {∆1 ∧ φG}) =

ModΣ(Ω ∪ {φG ∧ φW}) ⊂ ModΣ(Ω ∪ {∆′
1 ∧ φG}) 〈5〉.

We now show thatModΣ(Ω∪{∆′
1∧φG}) ⊆ ModΣ(Ω∪{φG ∧φW}) has to hold too which gives us the

desired contradiction, since thenModΣ(Ω∪{∆1∧φG}) = ModΣ(Ω∪{∆′
1∧φG}) would have to hold which

is not compatible with〈5〉. For this last step, assume thatModΣ(Ω∪{∆′
1∧φG}) 6⊆ ModΣ(Ω∪{φG∧φW}),

i.e. there existsI ∈ ModΣ(Ω ∪ {∆′
1 ∧ φG} such thatI 6∈ ModΣ(Ω ∪ {φG ∧ φW}. For thisI it then

must hold thatI 6|= φW , sinceI |= Ω andI |= φG . At the same time, by〈4〉 it must hold thatI ∈
ModΣ(Ω ∪ {φW ∧∆′

2}) and thusI |= φW . Therefore, we have a contradiction by which we can conclude
ModΣ(Ω ∪ {∆′

1 ∧ φG}) ⊆ ModΣ(Ω ∪ {φG ∧ φW}) which completes the proof.

Proposition 4 (Properties of Delta Relations). The goal and Web service descriptions restricted by∆1 and
∆2 logically entail the original descriptions:φG ∧∆1 |= φG andφW ∧∆2 |= φW .

2.3 Alignment with Semantic Matchmaking

With respect to Web service detection as the problem and application context of∆-relations, the following
presents the alignment of the above definitions with semantic matchmaking for Web service detection.

As the core and common result of several research efforts, five degrees of match are distinguished:
exact, plugin, subsume, intersection wherein a Web service is usable for solving a goal,
and disjoint wherein this is not given. These notions denote specific logical relationships between
formalized descriptions of goals and Web services and are used as proof obligations for determining the
usability of a Web service for a given request.3 The central aspect of aligning∆-relations with the semantic
matchmaking notions is that certain properties hold for the∆-relation for each distinct situation of matching.
In particular, for each matchmaking notion there are known values for the formulae that the∆-relations
consists of. These can be used either for simpler construction of the∆-relation in case that the matchmaking
degree is known (as values for parts of the∆-relation are known), or determination of the matchmaking
degree if the∆-relation is known.

As a basis for formally defining this relationship, the following recalls the definition of the matchmaking
notions. In accordance to the above, definitions, we consider a goal and a Web service described by formulae
in a logic with model-theoretic semantics:φG and φW . We define the matchmaking notions from the
perspective of the goal. Moreover, for each matchmaking notion we discuss the implications of Web service
usage as well as the a priori known values for the∆-relation.

exact(φG , φW ) This denotes that the goal and the Web service description are semantically identical, i.e.
φG ≡ φW . Here, the goal can be resolved by the Web service without any impacts on the result. There
is no semantic difference betweenφG andφW , as there does not exists anyΣ-interpretation that is a
model of one description but not the other. Hence,δ1 = δ2 = false so that∆φG ,φW = (true, true).

3These have been presented in [21] for Web service discovery on basis of DL-descriptions, used in [26] for matching in- and
outputs of OWL-S profiles, defined in [16] as the basis for Web service discovery in WSMO and applied in [34], and used in [7]
for candidate detection in Web service composition; each work defines them in terms of the respective specification language used.
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plugin(φG , φW ) This degree denotes that the goal logically entails the Web service description, i.e.φG |=
φW such thatModΣ(φG) ⊆ ModΣ(φW). In this situation, the Web service can be used to solve
the goal under the condition that the inputs provided for invoking the Web service result in anΣ-
interpretation that is a model ofφG . Hence, the client needs to ensure that appropriate inputs are
provided to the Web service in order to successfully solve the desired goal.For the semantic difference,
it holds thatδ2 = ¬φG ∧ φW = false so that the∆φG ,φW = (¬δ1, true). 4

subsume(φG , φW ) As the opposite to the plugin degree, this denotes that the Web service description entails
the goal, i.e.φW |= φG such thatModΣ(φW) ⊆ ModΣ(φG). In this situation, everyΣ-interpretation
that is returned as a result of invokingW always satisfiesG. Hence, this degree guarantees successful
resolution of the goal without any impacts or conditions on the result. However, there may still be
impacts on how the goal is resolved because the possible results of executing the Web service merely
denote a subset ofΣ-interpretations that satisfy the goal. For the semantic difference, it holds that
δ1 = φG ∧ ¬φW = false so that in this situation∆φG ,φW = (true,¬δ2).

intersect(φG , φW ) This degree denotes that there is no proper logical entailment relation but there exists
at least oneΣ-interpretation that is a common model forφG and φW , formally: ∃I(Σ). I(Σ) ∈
ModΣ(φG) ∧ I(Σ) ∈ ModΣ(φW) ∧ ¬(ModΣ(φG) ⊆ ModΣ(φW) ∨ModΣ(φG) ⊇ ModΣ(φW)).
Here, the Web service can be used for solving the goal under the condition that the inputs for invoking
W result in provision of aΣ-interpretations that satisfy the goal; there might be only one invocation
of the Web service that allows solving the goal. Hence, this is the weakest matchmaking situation
that allows using the Web service for solving a given goal. Regarding the semantic difference, the
∆-relation needs to explicate restrictions on both the goal and the Web service description that allow
establishing logical equivalence so that∆φG ,φW = (¬δ1,¬δ2).

disjoint(φG , φW ) The fifth and final matchmaking degree denotes that the goal and Web service description
are disjoint, i.e.¬∃I(Σ). I(Σ) ∈ ModΣ(φG) ∧ I(Σ) ∈ ModΣ(φW). Obviously, in this situation
the Web service can not be used for solving the goal - also not by refining one of the descriptions.
Although this situation is not of interest for Web service detection, we can still represent the semantic
difference. Here, with respect to the degree definition, it holds thatδ1 = φG ∧ ¬φW = G and
δ2 = ¬φG ∧ φW = W so that∆φG ,φW = (¬G,¬W).

Furthermore, there are logical relationships between the matchmaking degrees. In particular, it holds
that (1) if plugin( φG , φW ) and subsume( φG , φW ), then exact( φG , φW ) , and (2) - under the as-
sumption that all goal and Web service descriptions are consistent formulae - ifplugin( φG , φW ) then
intersect( φG , φW ) as well as ifsubsume( φG , φW ) then intersect( φG , φW ). Accordingly, [16]
defines the following precedence of the matchmaking degrees:exact ¹ plugin, subsume ≺ intersect.
Naturally, this is also reflected in the relationship of the structure of∆-relations for the distinct match-
making notions. When grouping the degrees into levelsPx such thatP1 = exact( φG , φW ) , P2 =
textttplugin(φG , φW ) andsubsume( φG , φW ), P3 = intersect( φG , φW ), andP4 = disjoint( φG , φW ),
then the structure of the∆-relations follow a strict entailment order from the lower level to the next higher
level. Figure4 illustrates this correlation with the directed arrows−→ denoting the strict entailment ordering
of ∆-relations, and Theorem2 underpins this formally.

4proof for δ2 = ¬φG ∧ φW = false:

(φW ⇒ φG) ⇒ (¬φG ∧ φW ⇔ false) ⇔ (¬φW ∨ φG) ⇒ ((¬φG ∧ φW ∧ false) ∨ (¬(¬φG ∧ φW) ∧ ¬false)
⇔ ¬(¬φW ∨ φG) ∨ (¬(¬φG ∧ φW) ∧ true) ⇔ (φW ∧ ¬φG) ∨ φG ∨ ¬φW
⇔ (φW ∨ φG ∨ ¬φW) ∧ (¬φG ∨ φG ∨ ¬φW) ⇔ true ¤
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Figure 4:Delta Relations and Semantic Matchmaking Notions - Alignment and Correlations

Theorem 2(Strict Entailment of Delta Relations on Matchmaking Levels). LetφG be a formula denoting a
functionality requested in a goal andφW be a formula denoting a functionality provided by a Web service;
let the semantic matchmaking notions be arranged in precedence levelsP such that:

P1 = exact( φG , φW ) P3 = intersect( φG , φW )
P2 = plugin( φG , φW ), subsume( φG , φW ) P4 = disjoint( φG , φW ),

then the∆-relations on the precedence levels denote a strict entailment ordering:

∆Px(φG , φW) @ ∆Px−1(φG , φW), x ≤ 2 ≤ n ≤ 4

Proof. As one condition, Definition4 defines a strict entailment order of pairs of formulae(φ1, φ2) @
(φ′1, φ

′
2) to be given if([φ1]≡L

¹ [φ′1]≡L
and [φ2]≡L

≺ [φ′2]≡L
). Further, we recall that in logics with

model-theoretic semantics logical entailment of two formulaeφ1 |= φ2 is given ifφ1 ⇒ φ2.
We first show strict entailment ordering for∆disjoint = (¬G,¬W) @ ∆intersect = (¬δ1,¬δ2) with

δ1 = φG ∧ ¬φW andδ2 = ¬φG ∧ φW . For the first part of the condition, it has to hold that¬φG |= ¬δ1

which we can prove as follows:(¬φG ⇒ ¬(φG ∧ ¬φW) ) ⇔ (φG ∨ ¬φG ∨ φW) ⇔ true. For the second
part, it has to hold that¬φW |= ¬δ2 and¬φW 6= ¬δ2. While the latter is trivial, we can prove the former
by: (¬φW ⇒ ¬(¬φG ∧ φW) ) ⇔ (φW ∨ φG ∨ ¬φW) ⇔ true. Hence,∆P4(φG , φW) @ ∆P3(φG , φW).

Next, we show strict entailment ordering for∆intersect = (¬δ1,¬δ2) @ ∆plugin = (¬δ1, true). For
the first part of the condition, it trivially holds that¬δ1 |= ¬δ1. For the second part, it has to hold that
¬δ2 |= true and¬δ2 6= true. While the latter is trivial, the former can be proved by(¬δ2 ⇒ true ) ⇔
(δ2 ∨ true) ⇔ true. Similarly, it holds that∆intersect = (¬δ1,¬δ2) @ ∆subsume = (true,¬δ2) so that
∆P3(φG , φW) @ ∆P2(φG , φW).

Finally, we show∆P2(φG , φW) @ ∆P1(φG , φW). For∆subsume = (true,¬δ2) @ ∆exact = (true, true)
we can apply the condition for strict entailment ordering used above. For the first part, it trivially holds that
true |= true; for the second part,¬δ2 |= true can be shown by(¬δ2 ⇒ true) ⇔ (δ2 ∨ true) ⇔ true and
¬δ2 6= true trivially holds. For∆plugin = (¬δ1, true) @ ∆exact = (true, true) we need to apply the other
conditions for strict entailment ordering defined in Definition4: ([φ1]≡L

≺ [φ′1]≡L
and [φ2]≡L

¹ [φ′2]≡L
).

For the first part, it has hold that¬δ1 |= true and¬δ1 6= true. The latter is trivial, while the former can be
proved by:(¬δ1 ⇒ true) ⇔ (δ1∨ true) ⇔ true. For the second part of the condition, it trivially holds that
true |= true. This completes the proof.
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2.4 Illustrative Example and Discussion

The following demonstrates and discusses the above definitions within a non-trivial example: a goal spec-
ifies the objective of finding the best restaurant in a city, and an available Web service provides a search
facility for the best French restaurant in a city. We first explain the example setting with the formal func-
tional descriptions in classical first-order logic. Then, we construct the∆-relation between and present
a technique for formulae simplification by conventional tautologies. Finally, we discuss possibilities for
providing gained knowledge on the conditions for using the Web service for solving the goal to the client.

2.4.1 Example Setting and Functional Descriptions with FOL

According to the scope of the above definitions, we describe the requested and provided functionality as
formulae in classical first-order logic (FOL) with the syntax defined in [11]. FOL is a specific logicL
with model-theoretic semantics as defined in Section2.1 that serves as an umbrella for several ontology
languages [8]. Hence, we can apply the above definitions for∆-relations between logical formulae to FOL.
We use a common structure for describing requested and provided functionalitiesD as FOL formulae:

D(Σ) = in(x1, . . . , xn) ∧ φ(~x) → (out(y) ↔ ψ(~x, y)).

The meaning is as follows. The functionality is specified with respect to a signatureΣ that defines
terminology and knowledge of the domain of discourse, which typically is defined in terms of an ontology.
in(x1, . . . , xn) denotes possibly several inputs which typically contain datatype constraints. Commonly
referred as preconditions,φ(~x) defines conditions on the inputs as well as other conditions that need to
hold before the functionality can be requested (goal), respectively achieved (Web service). If the inputs and
conditions are true, then the outputs are true (defined as an implication→). The expected or provided output
is denoted byout(y); this is considered to always be one object that might be an aggregation of several
others, so that it is denoted by only one variable. Commonly referred to as postconditions or effects,ψ(~x, y)
defines conditions on the output in dependence of input. The equivalenceout(y) ↔ ψ(~x, y) explicitly
defines the output object in a necessary (out(y) → ψ(~x, y)) and sufficient (out(y) ← ψ(~x, y)) manner.

To properly model the requested and provided functionality in our example, we apply the notation intro-
duced in [19] that allows representing frame-based modelling in FOL. This provides two central constructs:
memberOf(x,concept) denotes class membership of the variablex to a concept, and attributes with
values for concepts byhasAttValue(x,attribute,value) . The signature for the example defines
domain terminology and knowledge about cities as well as restaurants and their types. While omitting its
complete definition with respect to the scope and focus of this example, one predicate is important in the
following: better(x, y) denotes rating of restaurants as a partial order (i.e.true if the rating for restaurantx
is higher than for restauranty). On this basis, we can describe the goal and the Web service as follows.

Goal ”find best restaurant in a city” Web Service ”provide best French restaurant in a city”

DG : ∀x, y. in(x) ∧memberOf(x, city)

⇒ (out(y) ⇔ (

memberOf(y, restaurant)

∧ hasAttV alue(y, in, x)

∧ ¬∃z.(memberOf(z, restaurant)

∧ hasAttV alue(z, in, x)

∧ better(z, y)) ) ).

DW : ∀x, y. in(x) ∧memberOf(x, city) ⇒ (out(y)

⇔ (memberOf(y, restaurant)

∧ hasAttV alue(y, in, x)

∧ hasAttV alue(y, type, french)

∧ ¬∃z.(memberOf(z, restaurant)

∧ hasAttV alue(z, in, x)

∧ hasAttV alue(z, type, french)

∧ better(z, y)) ) ).
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Examining the descriptions shows that inputin(x) and output objectsout(y) as well as preconditionsφ(x)
are identical, while the differences occur in the postconditionsψ(x, y). Therein, the goal requests the best
restaurant in a city with respect all restaurants while the Web service only considers French restaurants.

Regarding the usability of the Web service for solving the goal, there in an intersection match between
DG andDW . As discussed in Section2.3, this is the weakest matchmaking degree wherein the client needs
to provide a particular input in order to satisfy the goal by using the Web service. For intuitive understanding,
consider two citiesA andB with the best restaurant inA is of type French, while the best restaurant inB
is of some other type. If a client instantiates the goal withA as the input, then the Web service will return
the best restaurant - which is French in this special case; if client providesB as the input, then the Web
service will return the best French restaurant inB; this is not the best one inB, thus the Web service is not
usable for solving the goal in this case. The purpose of the following elaborations is to provide additional
information to the client on the conditions under which the Web service is usable for solving the goal on
basis of∆-relations.

Before constructing the∆-relation betweenDG andDW , the following shows the proof of the inter-
section match withinVAMPIRE. This is resolution-based theorem prover for first-order classical logic with
equality [27] that we use for demonstration and proof of correctness throughout the example. For modelling
the goal and the Web service descriptions, their functional descriptions are separated into three formula:
one that specifies the inputs and preconditions, one for the output and postconditions, and one that defines
the relationship between the former two (i.e. the semantics of the functional description). We also need to
explicitly define that thebetter(x, y) relation is a partial order. The proof obligation for the intersection
match is defined as in Section2.3: existence of at least oneΣ-interpretation for an input-output pair that is
a common model ofDG andDW while there is no logical entailment:DG 6|= DW andDW 6|= DG. For
realizing this inVAMPIRE, we use so-called generic instances that have been introduced in [34]: a generic
instance defines existence of an instance of a concept with universally quantified variables. As therewith
the theorem prover always finds an existing instance for concepts and relations defined in the signature, we
can work with incomplete functional descriptions (such as that the goal description in our example does not
define restrictions on the restaurant type).5

% SIGNATURE
% better-relation is a partial order
input_formula(transitivityBetterRelation, axiom,(

! [R1,R2] : (
member_of(R1, restaurant) & member_of(R2, restaurant)
& better(R1,R2) => ˜better(R2,R1) )

)).
% transitivity of better-relation
input_formula(transitivityBetterRelation, axiom,( ! [R1,R2,R3] : (

member_of(R1, restaurant) & member_of(R2, restaurant)
& member_of(R3, restaurant) & better(R1,R2) & better(R2,R3)
=> better(R1,R3) )

)).

5VAMPIRE supports TPTP, a first-order logic syntax used for automated theorem proving, see homepage:www.tptp.org .
For traceability, the most important constructs are quantifiers (universal:!, existential: ?), logical connectives (and:&,
or: |, not: ∼, implication: ⇒, equivalence:⇔); variables are denoted by capital letters. FOL formulae are defined as
input-formulae(name,type, φ) with axiom denoting a knowledge definition andconjecture as a proof obligation.

www.tptp.org�
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% GOAL: find best restaurant in a city
input_formula(goalin, axiom,(

! [X] : ( goalin(X) <=> (member_of(X, city) ) ))).
input_formula(goalout, axiom,( ! [X,Y] :

( goalout(Y) <=> ( member_of(Y, restaurant) & has_att_value(Y, in, X)
& ˜ ? [Z] : ( member_of(Z, restaurant) & has_att_value(Z, in, X)
& better(Z,Y)) ) ) )).

input_formula(goaldescription, axiom,( ! [I,O] : (
goal(I,O) <=> (goalin(I) => goalout(O) ) ) )).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% WEB SERVICE: give best French restaurant in a city
input_formula(wsin, axiom,( ! [X] : (

wsin(X) <=> ( member_of(X, city) ) ) )).
input_formula(wsout, axiom,( ! [X,Y,Z] : (

wsout(Y) <=> ( member_of(Y, restaurant)
& has_att_value(Y, in, X) & has_att_value(Y, type, french)
& ˜ ? [Z] : ( member_of(Z, restaurant) & has_att_value(Z, in, X)

& has_att_value(Z, type, french) & better(Z,Y) ) ) ) )).
input_formula(wsdescription, axiom,( ! [I,O] : (

ws(I,O) <=> (wsin(I) => wsout(O) ) ) )).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% proof obligation for intersection match G, WS.
input_formula(po, conjecture,( ? [I,O] : ( goal(I,O) & ws(I,O) )

&˜(! [I,O] : ( (goal(I,O) => ws(I,O)) | (ws(I,O) => goal(I,O)) )) )).
%% PROVED

2.4.2 Constructing the Delta Relation

The following illustrates the construction of the∆-relation between the goal and the Web service description.
In accordance to Theorem1, this is defined as∆DG,DW

= (¬δ1,¬δ2) with δ1 = DG ∧ ¬DW andδ2 =
DW ∧ ¬DG.

In principle, we can write down the expressions forδ1 andδ2 immediately by inserting the description
formulaeDG andDW . However, the resulting formulae are not intuitively comprehendible for human
consumption. To obtain a simpler representation, we can re-write the formulae into a more intuitive form
by applying conventional FOL tautologies. For a given formulaφ we can obtain a simpler representationφ′

without changing the meaning of the formula, i.eφ ≡ φ′ so that all obtainableφ′ constitute the equivalence
class[φ]≡FOL (see Definition3). Unfortunately, formula simplification with tautologies as a technique for
attaining desirable representations of∆-relations can not be automated, as the stop conditions cannot be
defined in a general manner. However, we can therefore apply heuristics such as a stop point is achieved
when the occurrence of symbols is minimal; we exemplify this in the following for our example.6

6The following lists the most common tautologies for simplifying some FOL formulaα, β, γ:
α → β ⇔ ¬α ∨ β. ¬(α ∨ β) ⇔ ¬α ∧ ¬β. α ∧ β ⇔ β ∧ α. α ∧ (β ∧ γ) ⇔ (α ∧ β) ∧ γ.
α → β ⇔ ¬(α ∧ ¬β). ¬(α ∧ β) ⇔ ¬α ∨ ¬β. α ∨ β ⇔ β ∨ α. α ∨ (β ∨ γ) ⇔ (α ∨ β) ∨ γ.
α ↔ β ⇔ (α → β) ∧ (β → α). ¬¬α ⇔ α α ∨ (α ∧ γ) ⇔ α. α ∨ (β ∧ γ) ⇔ (α ∨ β) ∧ (α ∨ γ).
α ∨ β ⇔ ¬(¬α ∧ ¬β). α ∧ ¬α ⇔ false. α ∧ (α ∨ γ) ⇔ α. α ∧ (β ∨ γ) ⇔ (α ∧ β) ∨ (α ∧ γ).
α ∧ β ⇔ ¬(¬α ∨ ¬β). α ∨ ¬α ⇔ true. α ∧ α ⇔ α. α ∨ α ⇔ α.
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Table1 shows the simplification of the expressions forδ1, δ2 for our example. Therefore, we re-write the
goal and Web service description to prenex normal form and apply the same heuristic strategy for simplifying
the formulae. Table2 shows the obtained formulae in their simplified representation.7 8

Table 1:Simplification ofδ1, δ2 with FOL Tautologies*
δ1 = DG ∧ ¬DW

(c → ry ∧ ¬(rz ∧ b)) ∧ ¬(c → ry ∧ fy ∧ ¬(rz ∧ fz ∧ b))
⇔ (¬c ∨ ry ∧ ¬(rz ∧ b)) ∧ ¬(¬c ∨ (ry ∧ fy ∧ ¬(rz ∧ fz ∧ b)))
⇔ (¬c ∨ (ry ∧ ¬(rz ∧ b))) ∧ (c ∧ (¬ry ∨ ¬fy ∨ (rz ∧ fz ∧ b)))
⇔ c ∧ (¬c ∨ (ry ∧ ¬(rz ∧ b))) ∧ (¬ry ∨ ¬fy ∨ (rz ∧ fz ∧ b))
⇔ ((c ∧ ¬c) ∨ (c ∧ ry ∧ ¬(rz ∧ b))) ∧ (¬ry ∨ ¬fy ∨ (rz ∧ fz ∧ b))
⇔ c ∧ ry ∧ ¬(rz ∧ b) ∧ (¬ry ∨ ¬fy ∨ (rz ∧ fz ∧ b))
⇔ c ∧ ((¬ry ∧ ry ∧ ¬(rz ∧ b)) ∨ (¬fy ∧ ry ∧ ¬(rz ∧ b)) ∨ (rz ∧ fz ∧ b ∧ ry ∧ ¬(rz ∧ b)))
⇔ c ∧ ry ∧ ¬fy ∧ ¬(rz ∧ b)
δ2 = DW ∧ ¬DG

(c → ry ∧ fy ∧ ¬(rz ∧ fz ∧ b)) ∧ ¬(c → ry ∧ ¬(rz ∧ b))
⇔ (¬c ∨ (ry ∧ fy ∧ ¬(rz ∧ fz ∧ b))) ∧ ¬(¬c ∨ (ry ∧ ¬(rz ∧ b)))
⇔ c ∧ (¬c ∨ (ry ∧ fy ∧ ¬(rz ∧ fz ∧ b))) ∧ (¬ry ∨ (rz ∧ b))
⇔ ((c ∧ ¬c) ∨ (c ∧ ry ∧ fy ∧ ¬(rz ∧ fz ∧ b))) ∧ (¬ry ∨ (rz ∧ b))
⇔ c ∧ ry ∧ fy ∧ ¬(rz ∧ fz ∧ b) ∧ (¬ry ∨ (rz ∧ b))
⇔ (c ∧ ry ∧ fy ∧ rz ∧ b ∧ ¬(rz ∧ fz ∧ b))
⇔ (c ∧ ry ∧ fy ∧ rz ∧ b ∧ ¬fz)
* symbol substitution for better traceability:

c = memberOf(x, city) ry = memberOf(y, restaurant) ∧ hasAttV alue(y, in, x)

fy = hasAttV alue(y, type, french) fz = hasAttV alue(z, type, french)

b = better(z, y) rz = memberOf(z, restaurant) ∧ hasAttV alue(z, in, x)

Table 2:Simplified Formulae forδ1, δ2

δ1 : ∀x, y.z. memberOf(x, city)

∧memberOf(y, restaurant)

∧ hasAttV alue(y, in, x)

∧ ¬hasAttV alue(y, type, french)

∧ ¬(memberOf(z, restaurant)

∧ hasAttV alue(z, in, x)

∧ better(z, y)).

δ2 : ∀x, y.z. memberOf(x, city)

∧memberOf(y, restaurant)

∧ hasAttV alue(y, in, x)

∧ hasAttV alue(y, type, french)

∧memberOf(z, restaurant)

∧ hasAttV alue(z, in, x)

∧ ¬hasAttV alue(y, type, french)

∧ better(z, y).

7Here, the critical aspect for re-writing the goal and Web service description to prenex normal form are the postconditions of the
form: ∀y. out(y) ↔ ¬∃z. φ(z). In this special case, the prenex normal form∀y, z. out(y) ↔ ¬φ(z) is a semantically equivalent
formulae because for all possible interpretations it holds that((∀y. out(y) → ¬∃z. φ(z)) ∧ (∀y. out(y) ← ¬∃u. φ(u)) ) ⇔
(∀y. out(y) ↔ ¬∃z. φ(z)). Hence, we can re-write the descriptions as∀x, y, z. in(x) ∧ φ(x) → (out(y) ↔ φ(y) ∧ (φ(z)).

8simplification strategy: (1) resolve implications in the formula, (2) apply outer negation, (3) extract common symbols, (4)
apply distribution:α ∧ (β ∨ γ) ⇔ (α ∧ β) ∨ (α ∧ γ), (5) omit trivial terms (i.e. terms that are equivalent tofalse or true.
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The obtained formulae denote the constituting aspects of the∆-relation betweenDG andDW . As we have
strictly followed Theorem1 for construction, the obtained formulae allow establishing logical equivalence
betweenDG andDW (necessary condition) and are the minimal representation of the semantic differences
(sufficient condition);VAMPIRE allows to proof the correctness.

Hence, the obtained formulae forδ1 andδ2 precisely denote the difference of functionality requested by
the goal and provided by the Web service -δ1 from the perspective of the goal andδ2 from the perspective
of the Web service. However, the obtained knowledge has no meaning per se; this reveals when using the
∆-relation for particular applications as we discuss in the following.

2.4.3 Applying the Delta Relation

The following discusses two possibilities for providing the knowledge gained on the conditions for utilizing
the Web service for solving the goal to clients. Introduced in Section1.2, the first one is goal refinement and
adjustment that provides revised goal formulations with respect to the obtained∆-relation, and the second
one is explicating the usage conditions as an assumption.

Goal Refinement / Adjustment. The first possibility is to refine the original goalG towards a new goal
G′ such that the matchmaking degree betweenG′ and the Web serviceW guarantees solvability ofG′.
As introduced above,G′ is called arefinementof G if it strengthens but does not change the objective
description such thatG′ |= G; goal adjustmentdenotes thatG′ changes the objective definition so that the
entailment relation betweenG andG′ is not given. Both types of goal re-formulation can be obtained by the
same techniques, notably with∆-relations as we exemplify in the following.

In the example, the original goalG is only solvable by the Web serviceW if specific cities are provided
as input (namely cities whose best restaurant is French). As discussed in Section2.3, solvability of a goal is
guaranteed ifDW |= DG, i.e. if the matching degree issubsume(G,WS) or exact(G,WS) . Hence, if for
our example we can obtain a new goal descriptionG′ such thatDW |= DG′ , then successful solvability of
G′ by the Web service is assured. For determining a new goalG′, let’s consider the relationship of the goal
descriptionDG, the Web service descriptionDW , andδ1, δ2 as the constituting elements of the∆-relation
betweenDG andDW . With respect to its definition, it holds thatDG∧¬δ1 ≡ DW ∧¬δ2 (see Theorem1) and
DG∧¬δ1 |= DG andDW ∧¬δ2 |= DW (see Proposition4). Hence, a goal descriptionDG′ = DG∧¬δ1 is a
refinement of the original goal that is solvable by the Web service under a plugin-matching degree because
DG ∧ ¬δ1 |= DW .

When simplifying the formula forDG ∧¬δ1 with FOL tautologies as illustrated above, we obtain a goal
that requests French restaurants with respect to all restaurants in a city that is provided as input (see left
column in Table3). However, this goal formulation does not have a model in case that a city is provided
as input whose best restaurant is not French (if for a given city there is a restaurant that is better than
the best French restaurant, then the postcondition ofDG′ evaluates tofalse). As such a goal description
is not desirable, we can construct a goal formulationG′′ that has a model for the output object for all
possible cities provided as input by restricting the restaurant types to be considered to French. This goal
description is equivalent to the Web service description, i.e.DG′′ ≡ DW . Hence, the matching degree is
exact(G’’,W) , which is a desirable matchmaking notion as the goal can be resolved without any impacts
or conditions for Web service usage. However,G′′ is no longer a refinement of the original goal because
G′′ 6|= G (see the discussion on the intersection match betweenDG andDW above), but represents an
adjusted goal. Table3 shows bothG′ andG′′. Below, we provide the correctness proof of the plugin-match
betweenDG′ andDW in VAMPIRE while omitting the trivial proof forexact(G’’,W) .
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Table 3:Refined and Adjusted Goal Descriptions
refined goalG′: DG′ = DG ∧ ¬δ1 adjusted goalG′′

DG′ : ∀x, y.z. in(x)memberOf(x, city)

⇒ (out(y)

⇔ (memberOf(y, restaurant)

∧ hasAttV alue(y, in, x)

∧ hasAttV alue(y, type, french)

∧ ¬(memberOf(z, restaurant)

∧ hasAttV alue(z, in, x)

∧ better(z, y)) ) )

DG′′ : ∀x, y. in(x) ∧memberOf(x, city) ⇒ (out(y)

⇔ (memberOf(y, restaurant)

∧ hasAttV alue(y, in, x)

∧ hasAttV alue(y, type, french)

∧ ¬∃z.(memberOf(z, restaurant)

∧ hasAttV alue(z, in, x)

∧ hasAttV alue(z, type, french)

∧ better(z, y)) ) ).

% PROOF: goal’ <=> goal & ˜delta1
input_formula(po, conjecture,(
(goalRefined <=> (! [X,Y,Z] : (

member_of(X, city) => (
member_of(Y, restaurant) &

has_att_value(Y, in, X) & has_att_value(Y, type, french) &
˜(member_of(Z, restaurant) & has_att_value(Z, in, X) &

better(Z,Y) ) ) )))
& (goal & ˜delta1Simplified) <=> goalRefined )).
%% PROVED
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PROOF: goal’ |= ws
input_formula(po, conjecture,( goalRefined => ws )).
%% PROVED

Assumption Explication The second possibility for explicating the conditions of usingW for solving the
original goalG is to represent this as an assumption. As discussed in the introduction, explication of hidden
assumption is concerned with determining additional constraints for Web service usage. We can understand
the conditions under which a Web service is usable for solving a goal as a specific type of assumptions.

Within our example, the Web serviceW is usable for the original goalG if the best restaurant in the city
that is provided as input in of type French. For all other cities, the executingW will not provide the best
restaurant in the city as requested byG. Hence, if we find a formulaeasmt such thatasmt ⇒ (DW ⇒ DG),
thenasmt explicitly denotes the conditions that need to hold forW to be usable for solvingG.

As explained above, the only situation wherein successful resolution of the goal without any implications
on the result issubsume(G,WS) . ForDG,DW being FOL formulae, this is given ifDW |= DG which we
can also specify asDW ⇒ DG. To express the usage conditions as an assumptionasmt such thatasmt ⇒
(DW ⇒ DG), it has to hold thatasmt restricts the domain such that there can not be any interpretation
I(Σ, asmt) that is a model forDW but not forDG. By definition,δ2 = ¬DG ∧ DW exactly denotes all
interpretationsI(Σ) that are models ofDW but not ofDG. As asmt needs to ensure that these are not valid
for usingW for solvingG, the desired assumption is the negation ofδ2, henceasmt = ¬δ2.

Table4 shows the transformation of the negation ofδ2 that states for all cities it has to hold that the best
restaurant is of type French – which formalizes our intuitive observation. Below, we provide the proofs with
VAMPIRE for asmt ⇒ (DW ⇒ DG).
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Table 4:Assumption that explicates the condition for usingW to solveG
δ2 asmt = ¬δ2

δ2 : ∀x, y.z. memberOf(x, city)

∧memberOf(y, restaurant)

∧ hasAttV alue(y, in, x)

∧ hasAttV alue(y, type, french)

∧memberOf(z, restaurant)

∧ hasAttV alue(z, in, x)

∧ ¬hasAttV alue(y, type, french)

∧ better(z, y).

asmt : ∀x, y. memberOf(x, city)

∧memberOf(y, restaurant)

∧ hasAttV alue(y, in, x)

∧ hasAttV alue(y, type, french)

→ ¬∃z. (memberOf(z, restaurant)

∧ hasAttV alue(z, in, x)

∧ ¬hasAttV alue(y, type, french)

∧ better(z, y)).

% proof obligation for ˜delta2 implies WS |= Goal
input_formula(po, conjecture,( ˜delta2Simplified => (ws => goal) )).
%% PROVED
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% proof obligation for asmt <=> ˜delta2
input_formula(po, conjecture,(
( asmt <=> (! [X,Y,Z] : (

memberOf(X, city) &
memberOf(Y, restaurant) &

has_att_value(Y, in, X) &
has_att_value(Y, type, french)

=> ˜ ? [Z] :(
memberOf(Z, restaurant) &

has_att_value(Z, in, X) &
˜has_att_value(Y, type, french) &

better(Z,Y) )
) ))
& (asmt <=> ˜delta2Simplified) )).

%% PROVED

2.5 Summary

This section encompasses several central aspects on the definition, construction, and usage of∆-relations
that we summarize in the following for better traceability. We have considered functional descriptions that
are defined by conventional logical formulae. More precisely, we have considered formula in logics with
model-theoretic semantics that are used for formally specifying requested and provided functionalities. Af-
ter recalling the relevant aspects of logics with model-theoretic semantics, we introduced the symmetric
difference as the straight forward notion for denoting the semantic difference. For two formulaeφ1, φ2 de-
fined over a signatureΣ, the symmetric difference precisely denotes thoseΣ-interpretations that are models
for either of the formulae but not common to them, formally:(φ1 ∧ ¬φ2) ∨ (¬φ1 ∧ φ2).

For Web service detection as the application context of∆-relations we are interested in very specific
aspect of the semantic difference between the formal functional descriptions of a goal and a Web service.
In particular, we are interest in the differences that hamper usability of a Web service for solving a goal,
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respectively that cause certain impacts on how the goal is resolved. Therefore, we have defined the∆-
relation between a formulaφG that describes a goal and a formulaφW that describes a Web service as a
pair of formula∆φG,φW

= (¬δ1,¬δ2) with δ1 = φG ∧ ¬φW andδ2 = ¬φG ∧ φW . We have proven that
this definition satisfies the requirements ofcompleteness(by allowing to establish logical equivalence as
φG ∧ ¬δ1 ⇔ φW ∧ ¬δ2), andminimality (there does not exists any∆′ that properly denotes the semantic
difference and is more general than∆). Next, we have explained the alignment of∆-relations with the
semantic matchmaking degrees commonly used for Web service detection. The central aspect is that there
are pre-known values forδ1, δ2 for each matchmaking degree that allow more sophisticated handling; we
have proven that the structure of∆-relations on ascending levels of matchmaking follow a strict entailment
ordering. These definitions hold for all logics that have model-theoretic semantics, especially for classical
first-order logic and its decidable subsets (Description Logics and Horn Logics).

Throughout the illustrative example and its discussion, we have introduced several relevant aspects. At
first, we have defined a meta-structure of FOL-formulae for formally describing functionalities:D(Σ) =
in(x1, . . . , xn) ∧ φ(~x) → (out(y) ↔ ψ(~x, y)). This consists of inputs and preconditions that imply the
output object and the postconditions. Secondly, we have utilized a modelling approach that – on basis
of two central constructs:memberOf(x,concept) andhasAttValue(x,attribute,value) –
allows representing frame-based knowledge definitions in FOL. Thirdly, we have utilized FOL-tautologies
for simplifying formulae for∆-relations as well as related aspects. This allows to attain simpler, human
understandable representation of a formulae without changing its meaning; however, it cannot be automated
and thus requires human intervention.

We have shown elaborated definitions allow obtaining correct∆-relations. Moreover, we have exem-
plified how to beneficially apply these for obtaining refined or adjusted goal descriptions that are solvable
by a given Web service with more desirable matchmaking degrees. Such refined goalsG′ can be obtained
by neglecting those aspects that constitute the semantic difference from the perspective of the goal, i.e.
D′G = DG ∧ ¬δ1. We also have shown how to explicate the conditions of using a Web service for success-
ful resolution of a goal in form of an assumptionasmt such thatasmt = ¬δ2. However, the declarative
representation of the gained knowledge as human understandable formulae requires human intervention.
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3 Delta Relations for Functional Descriptions

In this section we extend the elaborated definitions and techniques for∆-relations to functional descriptions
described in terms of preconditions and effects. To put it briefly, we argue and show that the above definitions
are straight forward applicable to functional descriptions as well.

The section is structured as follows. Commencing with the structure, usage, and central properties of
formal functional descriptions, we recall Abstract State Spaces as a language independent formal model
that allows to define the semantics of functional descriptions in a sophisticated manner. Then, we discuss
possibilities for defining∆-relations for functional descriptions. The central argument is that functional
descriptions defined in terms of preconditions and effects can properly be represented as single, conventional
logical expressions. Hence, we can apply the above definitions straight forward for constructing∆-relations
for functional descriptions. Finally, we outline the integration of∆-relations into the WSMO mediation
framework as a technique for handling functional differences between goals and Web services.

3.1 Functional Descriptions – Properties and Semantics

Functional descriptions are a central element of frameworks for semantically describing Web services.
Within the most prominent frameworks (here: those approaches submitted to the W3C as standardization
proposals), they are used as a black box description of normal runs of a Web service with respect to the over-
all functionality provided (e.g. OWL-S Service Profiles [22] or WSMO capabilities [20]) or the functionality
of operations for service consumption (e.g. in WSDL-S for semantically describing WSDL operations [1] or
in SWSF for formal process descriptions [3]). For goal formulation, formal functional descriptions are used
for specifying the functionality requested for achieving a client objective; therein, a goal represents a generic
objective descriptions that is instantiated with concrete inputs for denoting concrete client objectives [33].

Examining the structure of functional descriptions within the different approaches reveals that they com-
monly follow the description model of preconditions and effects. Introduced in [13], this approach has been
widely used for declaratively describing functionalities within different AI sub-disciplines (see [17],[35]
for extensive studies). Informally, the meaning is that if the precondition is satisfied, then the effect will
be achieved. For provided functionalities (e.g. Web services), this formally describes all possible execu-
tions; for requested functionalities in goal formulations, this defines all changes of the world that result in
achieving the client objective. Although the precondition-effect description model appears to be intuitive
and straight forward, there are critical aspects that need to be taken into account for formally specifying the
semantics of functional descriptions. We discuss them in the following and recall a sophisticated formal
description model that has specifically been defined for the context of Web services.

3.1.1 Central Properties

The first aspect for formally describing functionalities in terms of preconditions and effects is the underlying
model of the world. Most approaches rely on a state-based model, meaning that the world is understood as
a dynamic environment that is changed by the execution of Web services. Every states is a static snapshot
of the world whereby the current statesc is defined by all facts and rules that are true at the current point of
time. In general, a Web service execution results in a sequenceτ = (s0, . . . , sm) of state transitions in the
world with s0 as the start state andsm as the termination state. A functional descriptionD formally describes
all possible executions of a Web service such that itspreconditionis a state constraint for the initial states0,
and itseffecta state constraint for the termination statesm. Similar, a goal is formulated in an initial state
si and is resolved if a state of the worldsg is reached wherein the objective is achieved. When describing
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this by a functional description with its precondition as a state constraint on the initial statesi and itseffect
as a state constraint for the final desired statesg, then such a goal formulation denotes a reusable objective
specification that can be instantiated with concrete data for expressing a specific client request (this follows
the concept of task descriptions in UPML [10], see [33] for details).

In order to allow specification of inference mechanisms for Web service detection and other techniques, a
precise and unambiguous formal semantics of such functional descriptions is needed. While state constraints
(i.e. the logical expressions that denote preconditions or effects) are commonly specified in some static
knowledge or ontology langaugeL, the meaning and relationship of the specification elements of functional
descriptions needs to be defined formally. In this respect, the following two aspects need to be taken into
consideration:

1. Effects depend on the precondition.In general, a functional description can describe several possi-
ble executions or changes of the world. Thereby, the achievable state of the world (described by the
effect) depends on the state of the world wherein the functionality has been invoked (described by the
precondition). For instance, imagine a Web serviceW that provides standard arithmetic calculations.
If W is invoked with 2 numbersa, b and the multiplication functionality has been chosen, then the
result of executingW will be the product ofa andb; if the division functionality has been chosen,
then the result will be the quotient of the inputs.

2. Shared objects in pre- and post-states.The objects of the world that are constraint by the precondi-
tion and the effect most commonly are related and dependent of each other. For instance consider the
multiplication facility of W : if c = a ∗ b specifies the effect, then this correlates to the numbersa, b
that the precondition requires as input for invokingW . A formal model for describing functionalities
needs to allow specifying such shared objects.

3.1.2 Abstract State Spaces – A Formal Model

The following recalls so-calledAbstract State Spaces, short ASS. This is a formal model for Web services
and the world they act in that allows to specify the formal semantics of functional descriptions with respect
to the critical aspects discussed above; commonly, the description frameworks for semantically describing
Web services lack of an unambiguous and precise definition in this respect. Presented in [18], the approach
aims at overcoming this by presenting a language independent formal model for Web services with special
attention to functional descriptions. While referring to the paper as well as to its extended version [17] for
details and definitions, we here briefly recall the aspects relevant in our context.

The ASS model assumes that Web services act in a state-based world, as discussed above. This is
formally defined so that each states is a static snapshot of the world that is described on basis of a signature
Σ and some domain knowledgeΩ. Within ontology-based settings like Semantic Web services,Σ andΩ are
usually defined in terms of ontologies. The universe of the ASS world are all interpretationsI(Σ,Ω) denotes
all valid with regard to the signature and domain knowledge - which refers to all possible ontology instances
within ontology-based settings. A statementφ denotes a state constraint which is satisfied by a states if
there exists at least one interpretationI(Σ, Ω) ∈ s that is a model ofφ. The execution of a Web service for
some concrete input represents a sequenceτ = (s0, . . . , sm) of states. Similar, the requested functionality
is understood as a desired sequence of state transitionsτ = (si, . . . , sg) that allows to traverse from the
initial statesi of the goal formulation to the desired final statesg (see [33]). The purpose of functional
descriptions is to properly describe all possible executions of Web services, respectively all possible state
transition sequences that all resolving a goal.
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To properly define functional descriptions and their formal meaning, the ASS model defines several
extensions to the signatureΣ. Subsets ofΣ allow to explicitly denote symbols with specific characteristics
in a functional description:ΣS denotesstatic symbolsthat are interpreted the same way in each states′

that is a successor ofs, i.e. symbols that are not changed by the execution of a Web service;ΣD denotes
dynamic symbolsthat are explicitly changed by the execution, andΣpre

D is the set of pre-variantsαpre of
symbolsα ∈ ΣD that are interpreted in each states′ as in the initial states0. Moreover, the ASS model
defines a symbolout for denoting the objects that are provided as outputs from a Web service execution,
and the notion of so-called capability interfacesIF = (i1, . . . , in) that denotes all inputs values required
for invoking a Web service, respectively for instantiating a goal description. On basis of this, we can define
a functional description as follows.

Definition 6. In an Abstract State SpaceAwhereinω(s) assignsΣ-interpretations to a states, aFunctional
Descriptionis described as a 7-tupleD = (Σ, Ω, ΣS , ΣD, IF, φpre(Σ, Ω), φeff (Σ,Ω)) such that:

(i) Σ is the signature that defines symbols of a formal languageL

(ii) Ω ⊆ L(Σ) denotes formalized terminology and knowledge of the domain
(iii) ΣS denotes static symbols such that for alls, s′ ∈ A

andα ∈ ΣS : meaning(s)(α) = meaning(s′)(α)
(iv) ΣD denotes dynamic symbols such that for alls0, s

′ ∈ A
andα ∈ ΣD : meaning(s0)(α) = meaning(s′)(αpre)

(v) IF is a set of universally quantified variablesi1, . . . , in that denote all required inputs
and whose scope is the complete Functional DescriptionD

(vi) φpre
Σ,Ω is a state constraint inL for the initial states0 with i1, . . . , in as free variables

(vii) φeff
Σ,Ω is a state constraint inL for the final statesm with i1, . . . , in as free variables

with the meaning that ifω(s0) |=L(Σ) φpre thenω(sm) |=L(Σ) φeff .

In essence, the definition states that if the current state of the world satisfies the precondition, then the
execution of the functionality will result in a state of the world that satisfies the effect. Clause (i) requires a
functional description to be defined over some signature, under consideration of formalized domain knowl-
edge (clause (ii)). In ontology-based settings, these two elements are usually provided by an ontology such
that the used ontology language denotes the signatureΣ and its concepts, attributes, relations, axioms, and
instances provide the formalized domain knowledgeΩ. Clauses (iii) and (iv) specify the signature exten-
sions for static and dynamic symbols; we exemplify their usage below. Clause (v) denotes a set of named
variablesi1, . . . , in that denote place holders for the input required for invoking a Web service described
by D, respectively for instantiating a goal described byD. Clauses (vi) and (vii) specify the precondition
and effect to defined as logical expressions in a static knowledge representation languageL for i1, . . . , in as
free variables. Clause (v) definesi1, . . . , in as universally quantified variables whose scope is the complete
functional description, which allows to explicitly specify the shared objects between the pre- and post-state
of D. The output objects are explicitly defined inφeff

Σ,Ω by using theout symbol.
One may argue that it should be allowed that both preconditions and effects can also be defined over

variables that are not explicitly required as inputs (here:i1, . . . , in). However, the ASS model is restricted
to deterministic Web services, i.e. functionalities that provide certain results for specific inputs. If one
would model that a Web service execution results in existence of some object that is not dependent on an
input value, this would mean that the Web service arbitrarily creates objects in the world. As such scenarios
are not desirable in the context of Web services, the above definitions prohibits this. For illustration and
clarification, the following exemplifies the definition. As the signature, we FOL as the specification language
L for static knowledge.
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Example: a purchase contract for a product
Ω: purchase-ontology
IF : {p}
φpre : product(p).
φeff : ∀x. out(x) ↔ purchaseContract(x) ∧ for(x, p).

The first example shows the functional description of a purchase Web service. It provides a purchase contract
for a product that is given as input. A domain ontology purchase-ontology provide the signature and domain
knowledge definition (among others, this contains the symbols used in the precondition and effect formulae).
The only variable∈ IF is p. The preconditionφpre restricts this to be a of type product, meaning that the
pre-state for invoking the Web service is given if there exists a variable assignment forp. Note that because
all variable∈ IF are implicitly all-quantified,p appears as a free variable inφpre. The effectφeff states
that there all output objects are purchase contracts for the product provided as input. The output object is
the contract, which is explicitly denoted by theout symbol; as within the example discussed in Section2.4,
the output object is denoted by one variable and connected to the post-state constraints via an equivalence
relation. As the scope of variables∈ IF is the complete functional description, it is explicitly modelled that
the purchase contract is for the product provided as input.

Example for static and dynamic symbols: bank account withdrawal
Ω: arithmetics-ontology
ΣS : {a}
ΣD : {balance}
IF : {a, x}
φpre : account(a) ∧ float(x) ∧ balance(a) ≥ x.
φeff : account(a) ∧ balance(a) = balancepre(a)− x.

The second example shows a functional description of a Web service for withdrawal from a bank account,
addressing the usage and purpose of static and dynamic symbols. Again, there is an ontology that specifies
the signatureΣ and domain knowledgeΩ. As input variables, we define an accounta and the amountx
that is to be withdrawn from it. In addition,a is defined as a static symbol to explicitly express that the
account is not changed by executing the Web service.balance is a unary predicate symbol defined inΩ
that is declared as a dynamic symbol here, because its value is changed by the Web service execution. The
precondition requires an account and the withdrawal amount such that the account balance is higher or equal;
all occurring variables are elements ofIF , so that no explicit quantification is needed. The effect specifies
that the balance of the account after execution will be the balance before execution minus the withdrawal
amount. Although one could also specify this setting without static and dynamic symbols by using different
variables, their usage allows to explicitly state that the balance of the particular account is changed.

Concluding, the ASS model allows to explicitly and precisely specify functional descriptions. Its language
independence allows the application within different frameworks for semantically describing Web services.
Moreover, the explicit definition of the used modelling constructs as well as the meaning of functional
descriptions allows to formally specify specific relationships and operations relevant for inference-based
techniques for Web service detection. [18] presents this for desirable formal notions like realizability and
functional refinement as adoptions from standard logical notions. Besides, the ASS model is extendible
towards further aspects that become relevant for functional descriptions; [17] discusses the notion of so-
called execution invariants (aspects that are guaranteed to hold during a Web service execution) and handling
of the Frame problem.
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3.2 Constructing Delta Relations for Functional Descriptions

We now turn towards the definition and construction of∆-relations for functional descriptions within the
ASS model. The application purpose of∆-relations remains the same as in the previous discussions: to
explicitly represent those aspects of the semantic difference that hamper successful resolution of a given
goal by a Web service.

Intuitively, there are two possibilities for constructing a∆-relation between the functional descrip-
tion DG of a goal andDW of a Web service. The first one is to define a set of∆-relations between the
corresponding description elements of functional descriptions, i.e. distinct∆s between the preconditions
φpre and the effectsφeff of DG andDW . Both expressions are conventional logical formulae so that we
could straight forward apply the definitions and techniques for∆-relations presented in Section2. How-
ever, for properly denoting the semantic difference of between the effect formulae we would need to take
their dependence of the precondition into account. Consider the above purchase example. Under consid-
eration of the universal quantification of all variables∈ IF , the effect formula states:∀x, p. out(x) ↔
purchaseContract(x) ∧ for(x, p). Here, we miss the type restrictionproduct(p) that is defined in the
precondition; this is also relevant for the effect constraint, which is supported in the ASS model by scoping
the IF -variables over the complete functional description. For the account withdrawal example, we need
to have knowledge about the value ofbalancepre(a) for evaluating the effect formula. Hence, for realizing
this opportunity for construction∆-relations, we would have to re-write the effect formulae of functional
descriptions such that the relevant constraints of the preconditions are incorporated.

The second possibility is to represent functional descriptions as conventional logical expressions in a
static knowledge specification languageL, and then construct∆-relations over these formulae. In particular,
we consider representing a functional descriptionD as a logical formulaφD of the form∀i1, . . . , in. φpre ⇒
φeff , wherebyi1, . . . , in corresponds to theIF -variables,φpre to the precondition, andφeff to the effect in
Definition 6 above. In accordance to the motivation of the Situation Calculus [23], such a representation
of functional descriptions appears to be desirable in order to allow definition of inference rules within the
framework of a static knowledge representation languageL – in particular for semantic matchmaking [21,
7, 18] as well as for denoting and handling semantic differences with∆-relations. As for the first possibility,
we have to take the dependence between the preconditions and effects in to account, with special attention
to the dynamic aspects that are denoted by dynamic symbolsΣD and their pre-variantsΣpre

D within the ASS
model. It is to remark that representing a functional descriptionD as conventional logical formulaeφD is
only possible ifD only encompasses constraints on the pre- and post-state but not on any intermediate state
of the sequence of state transitions described byD.

The following discusses the representation functional descriptions as conventional logical formulae.
Thereafter, we explain the applicability of the definitions and techniques for∆-relations elaborated in Sec-
tion 2 for functional descriptions that are represented as logical formulae.

3.2.1 Presenting Functional Descriptions as Conventional Logical Expressions

The problem of representing a functional descriptionD that is defined in accordance to Definition6 as a
conventional formulaφDL in a static languageL is that we need to deal with different logical frameworks.
While the former representation is concerned with states and transitions between, the latter is concerned with
models of formulae and does not provide means for presenting dynamics. The following discusses this, using
classical first-order logic as an expressive language for static knowledge specification with model-theoretic
semantics (see Section2.1). We commence with discussing the meaning of functional descriptions, and
derive a formal substantiation for representing functional descriptions as conventional FOL formulae.
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In the ASS model, a functional descriptionD restricts the possible sequences of state transitionsτ =
(s1, . . . , sn) in A with respect to their pre-states1 and their post-statesn. Its meaning is that if for some
concrete values for the input variablesi1, . . . , in ∈ IF the information spaceω(s1) satisfies the precondition
φpre, then the execution of a Web serviceW that providesD denotes a sequence of state transitionsτ =
(s1, . . . , sn) such thatω(sn) |= φeff , i.e. the information space of the termination state satisfies the effect.
The post-statesn depends on the pre-states1, which is defined via theIF -variables and the signature
extensions for static and dynamic symbols. A Web serviceW is called acapability modelof a functional
descriptionD, , denoted byW |=A D, if all possible executions ofW satisfyD.

With respect to their application purpose, functional descriptions merely consist of constraints on the
pre- and post-state of sequences of state transitions but elide the intermediate states that are traversed during
execution of a Web service. We can omit the dynamic aspects of states and transitions between them,
and thus represent a functional descriptionD by an FOL structuresim(D) = (IF, φD) that is defined
over the same signature asD and with respect to the same formalized domain knowledgeΩ. Therein, the
formulaφD defines a logical implication of the post-state constraintφeff by the pre-state constraintφpre.
To properly capture the correlation and dependence of the pre- and post-state constraints, we defineφD as
[φpre]Σpre

D →ΣD
⇒ φeff with the following correspondence to Definition6: IF = (i1, . . . , in) correspond to

theIF -variables that occur as free variables in the state constraints,φpre corresponds to the precondition,
andφeff to the effect. Defined in [18], [φ]Σpre

D →ΣD
denotes the formulaφ′ that is derived fromφ by replacing

any dynamic symbolα ∈ ΣD by its corresponding pre-variantαpre ∈ Σpre
D . This allows handling of

dynamic symbols that are changed by the execution of a Web service, because each symbolαpre ∈ Σpre
D

that occurs inφeff is denoted by the same symbol in the re-written precondition[φpre]Σpre
D →ΣD

.

A Σ-interpretationI that is a model ofsim(D) corresponds to the termination statesn of the execution
of a Web serviceW with W |=A D for a specific input bindingβ for the IF -variablesi1, . . . , in. The
reason is that the (error-free) execution ofW for a specific input binding results in provision of objects
whose properties are described by the effect constraint. This is dependent of the precondition and the free
input variables, which are bound to concrete objects byβ. Hence, we can describe the information space
ωβ(sn) of the termination state of a specific execution of a Web service by an interpretation. Assim(D) is
defined over the same signature and models the intended relationship between the precondition and effect
in D, it holds that every interpretationI that simulatesωβ(sn) is a model ofsim(D). Hence, we say that
sim(D) semantically simulatesD, denoted assim(D) ' D. Figure5 illustrates this correlation that we
formally substantiate in the following.

Figure 5:Correlation of a Functional DescriptionD andsim(D)
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Definition 7 (Web Service Execution Simulation). Let a Web serviceW be a pairW = (IF, ι) with a set
of input variablesIF = (i1, . . . , in) and an implementationι. LetA be an Abstract State Space with a
signatureΣA = (ΣS ]ΣD ]Σpre

D ] out) and the universeUA as a non-empty set of objects. Let a sequence
of state transitionsτW = (s0, . . . , sn) denote an execution ofW in A overΣA. For the executionτW (β)
of W for a specific input bindingβ : (i1, . . . , in) → UA let a ΣA-interpretationIτW (β) = (UA, IτW (β))
denote the mapping of symbols inIτW (β) toUA in the termination statesn of τW (β). Let aΣ-interpretation
IW (β) = (UA, IW (β)) denote the mapping of symbolsIW (β) to the objects in the universeUA.

We define the simulation of a Web service executionτW (β) by aΣA-interpretationIW (β) as

τW (β) ' IW (β) iff . for τW (β) = ι(s0, β) = (s0, . . . , sn) andsn = (UA, IτW (β)) holds
(i) for all predicatesα ∈ Σ with the arity m holds

∀x1, . . . , xm ∈ UA. (x1, . . . , xm) ∈ IτW (β)(α)
⇔ (x1, . . . , xm) ∈ IW (β)(α).

(ii) for all functionsf ∈ Σ with the arity m holds
∀x1, . . . , xm ∈ UA. IτW (β)(f)(x1, . . . , xm) = x0

⇔ IW (β)(f)(x1, . . . , xm) = x0.

This definition states that the execution of a Web serviceW for a particular input bindingβ can be seman-
tically simulated by an interpretationIW (β) that is defined over the same signature asW . Recall that the
signatureΣ in an Abstract State Space is extended with static symbolsΣS , dynamic symbolsΣD and their
pre-variantsΣpre

D , and theout symbol (see Definition6). Thus, the world in the termination stateω(sn) of
an execution ofW for a particular input bindingβ covers all relevant aspects: the mapping to objects that
exists insn described byφeff in dependence of the pre-state constraintsφpre – which is explicitly defined
via the signature extensionsΣS , ΣD, andΣpre

D – as well as the output objects that are explicitly denoted by
out. This can be represented by a particularΣ-interpretation overΣA such that all predicate and function
symbols have the same meaning as inω(sn).

Definition 8 (Description Simulation). LetD be a functional description in an Abstract State SpaceA with
a preconditionφpre and an effectφeff defined in first-order logic overΣA and with respect to formalized
domain knowledgeΩ. Leti1, . . . , in be the input variables whose scope isD and that occur as free variables
in φpre andφeff . LetW |=A D denote thatW is a capability model ofD such that all possible executions
τW = (s0, . . . , sn) of W satisfyD. The set of all input bindings forIF in A is denoted byInA(IF ).
We define the simulation of a functional descriptionD by a first-order logic formulaφ as

D ' φ iff . for all s0 ∈ A and for allβ ∈ InA(IF ) holds that
(i) for each executionτW (β) of each Web serviceW with W |=A D holds that

for all Σ-interpretationsI such thatτW (β) ' I holds thatI |= φ.
(ii) for all Σ-interpretationsI such thatI |= φ holds that

for all Web servicesW such that for each executionτW (β) of W
holdsτW (β) ' I holds thatW |=A D.

This definition states that a functional descriptionD that is specified in accordance to Definition6 can be
simulated by a FOL-formulaφ that is defined over the same signature asD. It therefore has to hold that
eachΣ-interpretationI that is a model ofφ simulates an execution of a Web serviceW that provides the
functionality described byD such that the modelsM(φ) as the set of such interpretations covers each
possible execution ofW . In combination with Definition7, this provides the correctness criterion of a
first-order structure that represents a functional descriptionD by maintaining the formal semantics.
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Definition 9 (FOL Structure for representing a Functional Description). LetD be a functional description
defined in an Abstract State SpaceA. Let sim(D) be a first-order structure defined overΣA as a pair
sim(D) = (IF, φD) with IF = (i1, . . . , in) being the set of input variables defined inD, andφD being a
first-order logic formula of the form[φpre]Σpre

D →ΣD
⇒ φeff such that:

(i) φpre is the formula defining the preconditionD whereini1, . . . , in occur as free variables,
(ii) φeff is the formula defining the effect ofD whereini1, . . . , in occur as free variables,
(iii) and [φ]Σpre

D →ΣD
as the formulaφ′ derived fromφ by replacing every dynamic symbolα ∈ ΣD

by its corresponding pre-variantαpre ∈ Σpre
D .

This defines a specific first-order structure for representing functional descriptions. The formulaφD defines
an implication between the precondition formula and the effect formula, stating that if the precondition is
satisfied then the effect will be satisfied by executing a Web serviceW with W |=A D. As in Definition6,
the input variables are kept separate fromφD so that theφD can only be evaluated if a concrete input binding
β : (i1, . . . , in) → UA is provided. Therewith,sim(D) simulates a functional descriptionD by omitting
the dynamic aspects related to states and transitions between them.

For illustrating the precondition rewriting, let us recall the bank account withdrawal example form above.
The input variables areIF = {a, x}, and the precondition specifiesφpre = account(a) ∧ float(x) ∧
balance(a) ≥ x (the only occurring variables area, x; as input variables, these are free variables inφpre).
The only dynamic symbol isbalance. Applying clause (iii), this is replaced by its pre-variantbalancepre in
the re-written precondition. Hence,φD = account(a) ∧ float(x) ∧ balance(a)pre ≥ x ⇒ account(a) ∧
balance(a) = balance(a)pre−x. Therewith, the pre-variant of the dynamic symbol occurring in the effect-
part ofφD is denoted by the same variable in the precondition-part, so that the dependence between the two
parts is explicitly specified.

Theorem 3(Semantic Simulation of a Functional Description as a Logical Formula). LetD be a functional
description in an Abstract State SpaceA with a preconditionφpre and an effectφeff defined in first-order
logic overΣA and with respect to formalized domain knowledgeΩ. Let i1, . . . , in be the input variables
whose scope isD and that occur as free variables inφpre and φeff . Let sim(D) be a first-order struc-
ture defined overΣA as a pair sim(D) = (IF, φD) with D is a first-order logic formula of the form
[φpre]Σpre

D →ΣD
⇒ φeff .

Then,D ' sim(D).

Proof. We need to show that clauses (i) and (ii) of Definition8 hold forD andsim(D). In essence, these
clauses require an equivalence relation between a Web serviceW |=A D and the models ofsim(D): for all
executionsτ(β) = (s0, . . . , sn) of W the corresponding interpretationIW (β) that simulates the termination
statesn must be a model ofsim(D), and vice versa. Let us consider a Web serviceW such thatW |=A D,
and three different input bindingsβ : (i1, . . . , in) → UA that cover all relevant cases:

(1) β1 |= φpre andβ1 |= φeff .
(2) β2 6|= φpre.
(3) β3 |= φpre andβ3 6|= φeff .

As clause (iii) of Definition9 is merely a symbol substitution, it holds that ifβ |= φpre then also
β |= [φpre]Σpre

D →ΣD
. In case (1), for allΣA-interpretationsIW (β1) = (UA, IW (β1)) it trivially holds that

IW (β1) |= sim(D). For τW (β1) = (s0, . . . , sn) as the execution ofW for β1, the meaning ofD is that
the termination statesn will be reached because ofω(s0) |= φpre (see Definition6). It trivially holds that
τW1(β1) ' IW (β1), asD andsim(D) are both defined overΣA and use the same precondition and effect
formula along with the substitution for dynamic symbols. Hence,D ' sim(D) is given for this case.
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In case (2), for allIW (β2) = (UA, IW (β2)) it holds thatIW (β2) |= sim(D) becausefalse implies
anything. However, the definition ofD only allows to make a concrete statement about the execution of
W in the positive case, i.e. whenω(s0) |= φpre. As this is not given in this case, the termination state
sn of execution ofW for this input bindingτW (β2) = (s0, . . . , sn) can be any state – either such that
I1

τW
(β2) |= φeff or such thatI2

τW
(β2) 6|= φeff . This correlates with the possibilities forIW (β2) |= sim(D),

and for both possibilities, it trivially holds thatτW (β2) ' IW (β2). Hence, under the conceptual assumption
that a not satisfied precondition does not allow to make any concrete statement about the behavior of a Web
service,D ' sim(D) is given for this case as well.

In case (3), it unambiguously holds that for allIW (β3) = (UA, IW (β2)) holdsIW (β3) 6|= sim(D). The
definitionD requires that ifω(s0) |= φpre then the execution ofW results in a statesn with ω(sn) |= φpre.
However, this is only given ifD is modelled correctly: if there is an input binding such that the precondition
is satisfiable but the effect is not (or the other way around), then there can not be any Web service that
providesD. Adapting the notion of satisfiability in logic, [18] refer to this as therealizability of functional
descriptions. As there can not be any Web service that provides a not realizable functional description, there
cannot be anyτW (β3) so thatD ' sim(D) is given for this case as well.

This completes the proof.

Proposition 5 (Stronger Representation of Functional Descriptions). Another representation ofD is a first-
order logic structuresim(D)2 = (IF, φDstronger) with IF = (i1, . . . , in) being the set of input variables
defined inD, andφDstronger being a first-order logic formula of the form[φpre]Σpre

D →ΣD
∧ φeff . It holds that

φDstronger |= φD.

The representation of a functional descriptionD by sim(D)2 defines a conjunction of the precondition and
the effect formulae. ForIW (β) |= sim(D)2, it has to hold thatβ |= φpre andβ |= φeff . Therewith,
this representation of a functional descriptionD by a first-order logic structure only considers case (1) as
discussed above. If the preconditions is not satisfied as in case (2), then the Web service is considered to be
not executable – which is a more strict reading of Definition6. Hence, representingsim(D)2 is a stronger
way to represent a functional description that logically entailssim(D). Mainly usable for defining opera-
tions and inference rules that are only concerned with the objects retrievable by executing Web services, this
is referred to as theimplementation perspectivein literature (e.g. [17]); accordingly,sim(D) is called the
modelling perspective.

3.2.2 Delta-Relations for Logical Expressions that represent Functional Descriptions

The preceding elaborations have shown that we can simulate a functional descriptionD by a semantically
corresponding FOL structuresim(D) = (IF, φD). While neglecting dynamic aspects about states and
state transitions performed by execution of Web services, this representation allows to describe the objects
retrievable from using Web services. This information are sufficient for the purpose of∆-relations as a
means for denoting the semantic difference of the functionality requested by a goal and the one provided by
a Web service that is to be used for solving the goal.φD is a conventional FOL formula that semantically
simulates the relationship between preconditions and effects inD. Hence, we can straight forward apply the
definitions and techniques for constructing∆-relations that introduced above in Section2.

Let us consider a goalG described by a functional descriptionDG in the ASS model (see Definition6),
and a Web serviceW described byDW . As discussed in the previous sections, the purpose of∆-relations is
to explicate the aspects of the semantic difference betweenDG andDW that cause certain conditions on how
the Web service can be used for solving the goal. We have argued that a suitable structure of a∆-relation
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is a pair∆ = (∆1, ∆2) such thatDG, ∆1 ≡ DW ,∆2 (see Definition5). For conventional FOL formulae
φ1, φ2, we have shown that∆ = (¬δ1,¬δ2) with δ1 = φ1 ∧ ¬φ2 andδ2 = φ2 ∧ ¬φ1 is a sophisticated
definition for a∆-relation (see Theorem1).

Within the ASS model, the paired structure of a∆-relation shall mean thatδ1 explicitly denotes the
preconditions and effects of those possible sequences of state transitionsτG, not W in an Abstract State
SpaceA that allow solvingG but are not possible executions ofW . Correspondingly,δ2 describes those
sequences of state transitionsτW , not G in A that are possible executions ofW but do not result in a state
that solvesG. Applying the definition∆ = (¬δ1,¬δ2) to FOL structuressim(DG) andsim(DW ) that
semantically simulateDG andDW (see Theorem3), it holds that for allΣ-interpretationsI with I |= δ1

holds thatI |= sim(DG) andI 6|= sim(DW ), and for allΣ-interpretationsI with I |= δ2 holds that
I |= sim(DW ) andI 6|= sim(DG). Thereby, the formulae that constituteδ1 as well asδ2 are constructed
over the FOL formulaφDG ∈ sim(DG) andφDW ∈ sim(DW ) (see Definition9). These formulae describe
the logical relationship between the precondition and effect whose freeIF -variables are bound by a specific
input bindingβ : (i1, . . . , in) → UA. Figure6 illustrates this correspondence, and Definition10defines the
construction of∆-relations for functional descriptions by adapting Theorem1).

Figure 6:Correspondence of Differences for Functional Descriptions described byD andφD

Definition 10 (Construction of Delta Relations for Functional Descriptions). LetDG describe the a func-
tionality requested in a goal andDW describe the functionality provided by a Web service. LetDG and
DW be defined in an Abstract State SpaceA over the signatureΣA and with respect to formalized do-
main knowledgeΩ such that the in variablesIF = (i1, . . . , in) occur as free variables in the precondition
φpre and an effectφeff . Let sim(D) = (IF, φD) be a first-order logic structure with the formulaφD

being of the form[φpre]Σpre
D →ΣD

⇒ φeff . Let sim(DG) = (IFG, φDG) semantically simulateDG and

sim(DW ) = (IFW , φDW ) semantically simulateDW such thatsim(DG) ' DG andsim(DW ) ' DW .

Then, the pair of formulae∆(φDG , φDW ) = (¬δ1(φDG , φDW ),¬δ2(φDG , φDW )) with

δ1(φDG , φDW ) = (φDG ∧ ¬φDW )
δ2(φDG , φDW ) = (¬φDG ∧ φDW )

is a∆-relation ofDG andDW overΩ.
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In essence, this definition states that for some FOL structures that semantically simulate functional
descriptions we can straight forward apply the definitions and techniques for constructing and handling
∆-relations as elaborated in Section2. In particular, the necessary requirement oncompleteness– i.e.
establishing logical equality ofDG andDW via sim(DG) ∧ ∆1 ≡ sim(DW ) ∧ ∆2 – and the sufficient
condition ofminimality– i.e. a∆’ that satisfies the necessary condition and∆ @ ∆′ does not exist – hold
for this construction of∆-relations as well (see Theorem1). Also, the relationship to semantic matchmaking
(see Section2.3) with the strict entailment ordering of∆-relations on matchmaking levels (see Theorem2)
hold for∆-relations on functional descriptions as well.

Moreover, the technique of formula simplification by tautologies as well as the inference rules for ap-
plying ∆-relations that we have presented in Section2.4 are straight forward applicable for functionalities
formalized in the ASS model. For demonstration purpose, Table5 shows the modelling of the goal for find-
ing best restaurants in a city as a functional description as a functional descriptionDG and its semantically
corresponding representation as an FOL formulasim(DG) following the above definitions.

Table 5:Semantically Corresponding Representations of a Goal

Functional DescriptionDG Semantic Correspondencesim(DG)
Σ: first-order logic

Ω: better restaurant ontology

IF : {x}
φpre: memberOf(x, city)

φeff : ∀y. out(y) ⇔ (

memberOf(y, restaurant)

∧ hasAttV alue(y, in, x)

∧ ¬∃z.(memberOf(z, restaurant)

∧ hasAttV alue(z, in, x)

∧ better(z, y)) ).

Σ: first-order logic

Ω: better restaurant ontology

IF : {x}
φDG : ∀y. in(x) ∧memberOf(x, city)

⇒ (out(y) ⇔ (

memberOf(y, restaurant)

∧ hasAttV alue(y, in, x)

∧ ¬∃z.(memberOf(z, restaurant)

∧ hasAttV alue(z, in, x)

∧ better(z, y)) ) ).

(Not) surprisingly,sim(DG) is nearly the same formula that we have defined for describing the goal
as a conventional FOL formula in Section2.4.1. The mere difference is that theIF -variablex occurs as
a free variable inφDG , while in the example we have explicitly defined a universal quantification forx.
The meaning is thatsim(DG) can only be interpreted when a concrete input binding is provided. The
same correspondence holds for the functional description of the Web service for providing the best French
restaurant in a city. In consequence, the techniques for and applications of∆-relations presented throughput
the example extensively discussed in Section2.4are straight forward applicable for goals and Web services
described by functional descriptions in terms of preconditions and effects with the structure and meaning as
defined in Definition6.

In particular for the example from Section2.4, consider aβ1 that defines a city wherein the best restau-
rant is of type French, then the provide-best-French-restaurant Web service is usable for solvingG. The
reason is that forβ1 the assumption obtained from¬δ2 is satisfied (see Section2.4.3). For aβ2 with a city
wherein the best restaurant is not French, the usage assumption is violated so that we now that the Web
service can not be used. Hence, the representation of functional descriptions by FOL structures that seman-
tically simulate the formal semantics allows to construct∆-relations and to apply them for explicating the
conditions under which a Web service is usable for solving a goal.
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3.3 Integration with WSMO Mediators

The final aspect of defining∆-relations is their integration into the WSMO mediation framework. Presented
in [32] with more detailed specifications in [24], the aim is to provide an integrated technology for handling
heterogeneities that may hamper successful Web service usage. WSMO therefore defines different types of
modularized mediators that connect potentially heterogeneous resources and utilize specific techniques for
handling and resolving distinct types of heterogeneities such as data level or process level mismatches.

We can understand the semantic differences between the functionality requested by a goal and the one
provided by a Web service as a separate type of heterogeneity. As discussed in the preceding elaborations,
these differences cause conditions or impacts on the usability of a Web service for solving a given goal.∆-
relations provide a means for explicating the semantic difference of functional descriptions as the basis for
advanced techniques for Web service detection such as goal refinement or explication of usage conditions,
hence they serve as a mediation technique for this heterogeneity type. When specifying a mediator that
connects a goal and a Web service and explicates the matchmaking degree along with a∆-relation that
describes the semantic difference between them, this mediator carries all relevant information on usability
of the Web service for solving the goal. We shall refer to this as thefunctional level of mediationwherefore
we provide the definitions for integration into the WSMO mediation framework in the following. The main
merit of this is to obtain a directed relationship between goals and Web services described in a declarative
manner; moreover, the modularized structure of WSMO mediators allows to incorporate mediation facilities
for other heterogeneity types that possibly occur between goals and Web services.

Definition 11 (Mediator). A MediatorM connects heterogenous resources and mediation techniques for
heterogeneity handling. It is defined as a 5-tupleM = (S, T ,MD,MS, UR) such that:

(i) S denotes the source element ofM,
(ii) T denotes the target element ofM,
(iii) MD is a mediation definitionfor resolving heterogeneities betweenS andT ,
(iv) MS is amediation servicethat is capable of processingMD, and
(v) UR denotes other resource incorporated inM.

This general definition states that a mediator is a directed connection of a source elementS to a target el-
ementT along with techniques for resolving potentially occurring heterogeneities betweenS andT . A me-
diation definitionMD denotes the technique for explicating and resolving distinct types of heterogeneities;
this refers to ontology mappings in the context of data level mediation [29], or to process mediation pat-
terns for process level mediation [6]. A mediation serviceMS in this definition denotes a computational
resource that is capable of executing the mediation definition. Such facilities can most suitably be provided
as Web services themselves (with the capability of processing mediation definitions); an example is the
WSMX data mediator that allows to mediate ontologies on basis of mapping rules [25]. Finally, UR de-
notes resources used for defining the mediatorM such as domain ontologies, mapping languages, or other
mediatorsM1, . . . ,Mn that are re-used withinM.

As a refinement of Definition11, we specify mediators that carry∆-relations as follows:

1. a mediatorM has one source elementS that can be a goal or a Web service, and one target element
T that can be a goal or a Web service

2. a ∆-relation is a mediation definitionMD that describes the semantic difference betweenS andT
as a pair of formula∆(φDS , φDT ) = (¬δ1,¬δ2) with δ1 = (φDS ∧ ¬φDT ) andδ2 = (¬φDS ∧ φDT )
such thatφDS ' DS andφDT ' DT
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3. in addition to the semantic difference, the mediator explicitly denotes the matchmaking degree be-
tweenS andT .

Aspect (1) states that a mediator with a∆-relation connects WSMO elements that have functional de-
scription, i.e. goals with goals, goals with Web services, or Web service with Web services. It is important
that such a mediator only has one source and one target element, as the semantic difference is unique be-
tween each pair of functional descriptions. (2) states that the∆-relation between the source and target is
specified in accordance to Theorem3, i.e. on basis of formulae that semantically correspond to the func-
tional descriptions of the source and target component. Here,δ1 denotes the semantic difference aspects
from the perspective of the source andδ2 from perspective of the target. Finally, (3) states that in addi-
tion to the∆-relation, the mediator explicates the matchmaking degree between the source and the target
component. As discussed in Section2.3, this information is integrally correlated to∆-relations: from a
given∆-relation we can deduce the matchmaking degree, and from a given matchmaking degree we gain
knowledge on the structure of the∆-relation (see Theorem2).

The application purpose of such a mediator is as follows. Imagine we have given a goalG and a Web
serviceW . Let the matchmaking degree beplugin( G,W ) so that only a subset of the possible executions
of W can solve the goal. Following Definition6, the results of executingW depend on the provided inputs.
Hence, in order to useW for solvingG, the client needs to ensure that the inputs provided toW are such
that the results from executingW will satisfy the goal. Now. letM be a mediator withG as the source and
W as the target so that its∆-relation is of the form∆(φDG , φDW ) = (¬δ1, true) (see Section2.3). Here,
δ1 represents those sequences of state transitions in the world that result in solving of the goal but are not
possible executions ofW . This denotes an additional constraint for usingW for solvingG: for all bindings
β for the input variablesi1, . . . , in satisfyφpre ∧ ¬δ1 the executions ofW with the inputβ will result in a
state that satisfiesG. Therewith, the∆-relation defines the usage conditions for the particular Web service
W for solving the goalG that are explicated in the mediatorM in a declarative manner.

For integration into WSMO, Listing1 shows the description model of mediators with∆-relations, in lan-
guage used in WSMO for MOF meta-model layer specifications [28]. Below, Figure7 shows the integrated
topology of the distinct WSMO mediator types along with their correlation and the used mediation tech-
niques. It is to remark that with respect to the scope of the preceding elaborations, the presented definition
of ∆-relations merely covers languages with model-theoretic semantics; for WSML [5] as the specification
language for WSMO, these are the variants WSML-Core and WSML-DL, and possibly WSML-Full that
is under construction at the time of writing. Moreover, obtaining a human understandable representation
of ∆-relations most likely requires the technique for formula simplification on the basis of tautologies. As
illustrated and discussed in Section2.4.2, this technique can not be automated and hence requires manual
inspection.

Class mediator
importsOntology type ontology
usesMediator type ooMediator
hasSource type {goal, webService} multiplicity = single −valued
hasTarget type {goal, webService} multiplicity = single −valued
hasDeltaRelation type deltarelation

Class deltarelation
hasMatchingDegree type {equal, subsume, plugin, intersection}
hasDelta1Definition type axiom
hasDelta2Definition type axiom

Listing 1: Meta-Model for Mediators with Delta-Relations
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Figure 7:WSMO Mediator Topology

OO Mediators provide a general data level mediation component for ontology-based applications. The
source elements are ontologies or other OO Mediators, while the target can be any WSMO top level element.
The mediation techniques are data level mediation techniques such as ontology mapping and integration, and
lifting and lowering from data to and from the ontological level.

GG Mediators connect WSMO goals, i.e. both the source and target are goals. The mediation tech-
niques used are: (1) data mediation by usage of OO Mediators, and (2) functional level mediation on basis
of ∆-relations.

WG Mediators connect Web services and goals in case a Web service is not usable for solving a goal
a priori, or only under certain conditions. The used mediation techniques are: (1) data level mediation
by usage of OO Mediators, (2)∆-relations for handling functional heterogeneity, and (3) process level
mediation for resolving potential mismatches on the communication level between the source and target
component.

WW Mediators connect Web services that interact but are not compatible a priori. The used mediation
techniques are: (1) data level mediation by usage of OO Mediators, (2)∆-relations for handling functional
heterogeneities, and (3) process level mediation for resolving mismatches between the source and target
service with respect to communication and coordination of interaction.
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4 Related Work

We are not aware of any other approach for explicating the usage conditions of Web services for goals.
However,∆-relations as specified in this paper present an extension to the state of the art in semantic match-
making for Web service detection that has been inspired by earlier works on explicating hidden assumptions
in formal resource descriptions. We position our approach in the following.

While the need for a technique for explicating usage conditions of Web services for solving a goal
has emerged from works on Web service detection (e.g. [34]), the definition of∆-relations presented in this
paper has been inspired by the work on assumption explication and refiners within UPML [10], a framework
for formally describing the reasoning behavior of knowledge-based systems that work with Problem Solving
Methods (PSMs). Therein, assumptions are used as integral description for explicating the gap between the
functionality provided by a PSM and the one required for achieving a specific task [4]; this correlates to the
purpose of∆-relations. Refiners are logical elements that connect tasks and PSMs and restrict their formal
descriptions such that its source and target are semantically equivalent under inclusion of the refiner. Such
refiners have the same purpose as mediators with∆-relations as specified in Section3.3.

Already mentioned in the introduction, [9] presents so-calledinverse verificationas a technique for
determining assumptions as well as the logical expressions in UPML-refiners. In a nutshell, this is performed
by manual analysis of failed proofs on the usability of PSMs for a given task. An interactive theorem
prover (here: KIV) takes the formal descriptions of the task and the PSM are used as input, and returns
“open goals” as the gaps where knowledge is missing for the next proof step. Then, logical expressions are
identified that allow to handle the open goals; this step requires manual analysis. The determined statements
denote the additional constraints for using the PSM to solve the task. As an example, [9] takes a task
requires a global search for a set of elements and the available PSM that provides a local search facility.
This is usable under the condition that the input element set has a strict total order, which is determined by
inverse verification. The characteristics of this example setting is the same as the best-restaurant example
discussed in Section2.4: there is an intersection match between the task and the PSM, and the determined
assumption explicates a usage constraint for the PSM. If this is satisfied by the concrete inputs, then the
result of the PSM will satisfy the task.

Hence, inverse verification and∆-relations are defined here are complementary techniques for detecting
usage conditions for formally described provided functionalities that do not precisely match a requested
functionality. ∆-relations appear to be an improvement because the need for human intervention is mini-
mized. The main difference is that inverse verification relies on manual failure analysis while∆-relations by
definition explicate the semantic difference of functional descriptions. In consequence, inverse verification
leaves the hard part of finding a logical statement that allows solving the open goals from the theorem prover
to human inspection; in contrast, a∆-relation immediately provides a correct and minimal logical formula
so that merely its simplification by tautologies requires manual intervention. Nevertheless, the requirements
of completeness and minimality as well as certain logical relationships between∆-relations, goals, and Web
services have been adopted from the works around UPML.

Exiting approaches on semantic matchmaking for Web service detection are mainly concerned with
the definition of the matchmaking degrees within respective logical frameworks and the implementation of
general purpose matchmakers. The distinct works address certain related aspects – e.g. a precedence order
of the matchmaking degrees [21], or the concept of client intentions and partial matches in [16]. However,
non of these approaches addresses the need for explicating the usage conditions of Web services that are
explicated by∆-relations: without these information, the client needs to guess which inputs may be suitable
for solving the goal with the Web service.
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5 Conclusions and Future Work

This paper has presented∆-relations as a technique for explicating conditions under which a Web service is
usable for solving a goal if the provided and requested functionality do not match precisely.

Research on semantic matchmaking as the core technique for semantically enabled Web service detec-
tion has identified four degrees of matching under which a Web serviceW is considered to be usable for
solving a goalG. Apart from the exact match (the requested and provided functionality are semantically
equivalent), each of this matchmaking degrees implies conditions on how to use the Web service. For the
plugin and the intersection match, only certain executions ofW can satisfyG; hence, the client needs to
ensure that the concrete inputs provided for invocation ofW will result in such executions that satisfyG.
For the subsume match, the usage ofW will have certain impacts on howG is resolved, which may be of
interest of the client. A∆-relation explicitly describes the semantic difference between functional descrip-
tions, providing the basis for explicating such conditions and impacts of using a particular Web service for
solving a goal.

In this paper we have defined∆-relations for classical first-order logic as the specification language
for static knowledge. Naturally, the definitions and techniques can straight forward be applied to formal
languages with model-theoretic semantics such as Description Logic, Horn Logic, and Description Logic
Programs. For two formulaeφG, φW in such a language that represent a goal and a Web service, we have
defined a∆-relation as a pair of formulae such that∆(φG, φW ) = (¬δ1,¬δ2) with δ1 = (φG ∧ ¬φW )
andδ2 = (¬φG ∧ φW ). We have shown that such a∆-relation iscompleteas it allows establish logical
equivalence byφG ∧ ¬δ1 ⇔ φW ∧ ¬δ2) andminimal such that there is no∆′ that is complete and∆ |=
∆′. We also explained the relationship of∆-relations to semantic matchmaking, in particular that each
matchmaking degree correlates to a specific structure of the∆-relation between the functional descriptions
of the goal and the Web service. We have demonstrated this within an exhaustive example, along with a
technique for formulae simplification as well as inference rules for applying∆-relations for goal refinement
and assumption explication.

After discussing the properties and formal semantics of functional descriptions that are defined in terms
of preconditions and effects on basis of the Abstract State Space model, we have shown that such a functional
descriptionD can be represented by conventional formulaeφD in a formal language with model-theoretic
semantics so thatφD semantically corresponds toD. In consequence, the definitions and techniques for
∆-relations on conventional logical formulae are straight forward applicable for explicating the semantic
difference between formal functional descriptions. Finally, we have outlined the integration of∆-relations
into the WSMO mediation framework as a technique for handling not precisely matching requested and
provided functionalities.

Therewith, we have specified a technique for explicating conditions and impacts of using a Web service
for solving a goal that arise under not-exact matchmaking degrees. Inspired by previous work within the
UPML framework, such a technique does not yet exist for the context of Web service detection. As future
work, we plan to integrate∆-relations into semantic matchmakers developed in the course of WSMO, and
extending the definitions towards languages with minimal model semantics in order to also cover the LP
branch of ontology languages that are under development for the Semantic Web.
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