
A Refined Goal Model for Semantic Web Services
Michael Stollberg

Digital Enterprise Research Institute
University of Innsbruck
6020 Innsbruck, Austria

Email: michael.stollberg@deri.org

Barry Norton
Knowledge Media Institute

Open University
Milton Keynes, MK7 6AA, UK

Email: b.j.norton@open.ac.uk

Abstract— The idea of service orientation envisions dynamic
detection and execution of suitable Web services for solving a
particular request. Most realization approaches pay only little
attention to the client side of such architectures. We therefore
promote a goal-driven approach: a client merely specifies the
objective to be achieved in terms of a goal, and the system resolves
this by automated detection, composition, and execution of Web
services. Extending the WSMO framework, we present a model
for describing goals as formalized client objectives that carry all
information relevant for automated detection and execution of
Web services. This paper explains the design of the goal model,
specifies the formal descriptions of goals, and demonstrates the
model within an illustrative example.

I. I NTRODUCTION

To overcome the deficiencies of monolithic architectures
with regard to reusability and interoperability, the emerging
concept of service-oriented architectures (SOA) envisions dy-
namic detection and execution of Web services for solving a
particular request [8]. Most realization approaches focus on
the description and handling of Web services but pay little
attention to the client side, i.e. request formulation by clients
and their interaction with the system.

Following prior conceptions for automated problem solving,
we therefore proclaim a goal-driven approach. A client shall
formulate the objective to be achieved in terms of a goal,
and the system solves this by automatically discovering, com-
posing, and executing appropriate Web services on basis of
formal, declarative descriptions. The aim is to enable problem-
oriented usage of Web services: the client can concentrate on
the problems to be solved while all details on the automated
usage of Web services are handled by the system.

This paper presents a description model for goals as the
central notion of this approach. As a revision of the goal
model developed in the DIP project (dip.semanticweb.
org , [21]), we define the following extensions for the initial
goal model of the Web Service Modeling Ontology WSMO
(www.wsmo.org): (1) the differentiation ofgoal templates
as generic objective descriptions andgoal instancesas con-
crete requests that instantiate a goal template, (2) automated
Web service usage byclient interfaceswhich are embedded
in mediators that connect Web services and goals, and (3)
composite goalsas an orchestrated workflow of goals that
the client desires. We shall explain and demonstrate that this
model provides a proper basis for realizing goal-driven Web
service usage in service-oriented architectures.

The paper is organized as follows. Section II introduces
our goal model with respect to arising requirements and the
initial WSMO approach. Section III specifies the semantic
descriptions and correlations of the goal model elements, and
Section IV demonstrates this in an example from the travelling
domain. Finally, Section V concludes the paper and discusses
related work.

II. REQUIREMENTS ANDAPPROACH

The following first discusses the requirements arising on
goal descriptions for realizing goal-driven Web service usage.
After recalling the relevant aspects of WSMO wherein our
approach is embedded, we then introduce the goal model that
is subsequently specified in the remainder to the paper.

A. Requirements Analysis

The central notion in our context is agoal as the formal
specification of a client’s objective that shall be achieved by
the usage of Web services. As [21] discusses in detail, three
requirements arise on goal descriptions in order to properly
support goal-driven Web service usage as outlined above.

1) Expressiveness for Objective Specification:the goal de-
scription model must be sufficiently rich for specifying all
kinds of objectives that can be achieved with Web services.
Goals should be (1) formulated on the knowledge level, i.e.
on the level of problems to be solved without any technical
details that are irrelevant for the objective to be achieved, and
(2) allow to specify restrictions on the workflow of how a goal
shall be resolved.

2) Automated Web Service Usage:a goal must carry all
information required for automated discovery, composition,
and execution of Web services. In particular, these are:

• all inputs required for invoking and consuming the Web
services that are to be used

• a compatible counterpart for the communication behavior
of the Web service for consuming its functionality

• support for the technical grounding of the Web services
for information exchange.

3) Ease of Goal Formulation:practical experiences reveal
that most end-users are not capable of specifying complex
formal descriptions. Hence, goal specification should be left
to knowledge engineers with support for goal formulation by
end-users via graphical interfaces.

B. Web Service Modeling Ontology WSMO

The Web Service Modeling Ontology WSMO is a com-
prehensive framework that envisions semantically enabled
service-oriented computing (see [9] for an extensive overview).
It defines description models and languages four top-level
notions:ontologiesthat specify formalized domain knowledge
used in all other elements,Web servicesthat carry a semantic
description,goals as the client objectives to be solved, and
mediatorsthat resolve potentially occurring mismatches. Rel-
evant in our context, we briefly recall the descriptions of Web
services and goals.

A WSMO Web service description consists of two central
parts. At first, thecapabilitydescribes the overall functionality
provided by a Web service in terms of preconditions, assump-
tions, postconditions, and effects; these are logical expressions,
specified e.g. in WSML [3]. Secondly, two types of interfaces
describe the interaction behavior support by a Web service:
the choreographyis the interface for consumption of the Web
service by a client, and theorchestrationis the interface for
interacting with other Web services that are aggregated to
achieve the overall functionality. Both can be described by
ontologized Abstract State Machines [18], [20].

A WSMO goal description consist of arequested ca-
pability and requested interfaces. The former shall specify
the objective to be achieved in terms of a capability from
the client perspective. The latter is intended to specify the
communication behavior for automated Web service usage
supported and required by the client. However, the distinction
of choreography and orchestration descriptions in the goal
model remains ambiguous, and it does not encompass a
formal notion for goal instantiations by clients. Thus, the
initial WSMO goal model appears to be not sophisticated for
realizing goal-driven Web service usage as outlined above.

C. Goal Model Overview

On basis of the experiences and insights gathered in the DIP
project, we revise and extend the initial WSMO goal model
to consists for four notions. Figure 1 gives an overview as a
UML class diagram. To meet the determined requirements, the
central changes are the following.

1) Goal Templates and Goal Instances:we distinguish
two types of goals. Agoal templateis a generic objective
description that is defined at design time and is kept in
the system. Agoal instancedenotes a concrete request of
a client that is defined at runtime by instantiating a goal

Fig. 1. Goal Model Overview

template with concrete inputs. Successfully applied in WSMO-
enabled systems such as IRS [4] and SWF [23], this distinction
allows (1) to support goal instance formulation by end-users
via graphical user interfaces (cf third requirement), and (2)
to allocate expensive operations for Web service discovery
and composition on the level of goal templates, therewith
improving the runtime efficiency of the SOA system.

2) Two Goal Template Types:we further distinguish two
types of goal templates with respect to the expressiveness of
goals for objective specification (cf first requirement). As the
basic type, agoal is the generic description of an objective that
defines conditions on the start state of the world and conditions
on the desired state wherein the objective is considered to
be satisfied. We specify this in terms of a WSMO capability.
A composite goalextends this with a desired workflow that
shall be sustained during the resolution of the goal. This is
a collection of subgoals with control- and data flow among
them, which we describe as a WSMO orchestration. The goal
template type is independent of the need for Web service
discovery or composition for goal solving.

3) Automated Web Service Usage via WG Mediators:in
general, there can be several Web services that are usable
for solving a goal. Each Web service may provide a different
interface for consuming its functionality. We do not consider
this to be relevant for goal formulation on the knowledge level.
Hence, we allocate the relevant information for automated Web
service usage (cf second requirement) in aclient interface[7].
Essentially, this is the compatible counterpart of the Web
service choreography interface that allows to interact with the
Web service for consuming its functionality. This is allocated
in a WSMOWG mediatorthat connects a goal template with
a usable Web service. A WG mediator is defined for each Web
service that is usable for resolving the goal template.

III. G OAL MODEL SPECIFICATION

We now turn towards the definition and formal description
of the four elements of the goal model. Following the concep-
tion in related AI research (e.g. [2], [17]), we understand a
goal as the formal description of a client’s desire to get from
the current state of the world to a state wherein the objective
is satisfied. In accordance to the conception of WSMO, the
primary focus of our model are the functionalities provided
by Web services and requested by goals.

We specify the meaning of goal descriptions withinAbstract
State Spaces(short: ASS) [13]. This defines a state based
model of the world that Web services act in with precisely
defined formal semantics. Therein, a particular execution of
a Web service or a composition of Web services denotes a
sequence of state transitionsτ = (s0, . . . , sm), i.e. a change
of the world from a start states0 to a termination statesm

that is triggered by the invocation with concrete inputs. For
solving a goal, we need to find a Web service or a composition
that can be invoked such that the client objective is solved in
the termination state of the triggered execution.

A. Goals

As the basic goal template type, a goal formally describes
an objective with respect to the start- and the desired final
state of the world. In service-oriented architectures, the current
state of the world may not be known because the constituting
facts are distributed and possibly not accessible to all parties
involved in the interaction. Hence, we describe a goalG by
conditions on the possible start states and conditions on the
desired state of the world wherein the objective is considered
to be solved. Formally, this is described by WSMO capabilities
that are extended with notions from the ASS-model.

A WSMO capability is defined bypreconditionsφpre as
constraints on the information space before a Web service can
be executed,assumptionsφass as conditions that need to hold
in every state during the execution,postconditionsφpost that
constrain the state of the information space after successful
execution, andeffectsφeff as conditions that hold in the world
after successful execution. Defined with respect to ontologies
O, these are closed formulae specified in WSML [3].

So-calledshared variableswhose scope is the complete ca-
pability allow to specify the dependencies among the formulae.
We replace this by a more precise model from the ASS model
that explicitly defines in- and outputs [13]. The set of variables
IN = (i1, . . . , in) denotes all required inputs for invoking
a Web service, respectively for instantiating a goal template.
Their scope is the complete capability, and they occur as the
only free variables in theφpre, φass, φpost, φeff formulae. The
set of universally quantified variablesOUT = (o1, . . . , om)
denotes all outputs that are constrained byφpost.

We further take on extensions from the ASS model that
allow to more precisely describe the changes of the world
performed by Web service executions. The extended signature
ΣA differentiatesstatic symbolsΣS that are not changed by
the execution of a Web service, anddynamic symbolsΣD that
are changed by the execution. Besides, a capability carries non-
functional propertiesNFP that include a natural language
description and quality-of-service aspects. Definition 1 spec-
ifies the formal meaning of a capability in an Abstract State
SpaceA. Here,s |=WSML φ expresses that the formulaφ is
satisfied under aΣ-interpretation over the universeUA that is
assigned to a states ∈ A with respect to the semantics of the
WSML-variant whereinφ is specified.

Definition 1: A capability is a 9-tupleC = (O, ΣA, IN ,OUT ,

φpre, φass, φpost, φeff ,NFP). Let τ = (s0, . . . , sm) be a sequence
of state transitions in an Abstract State SpaceA.

The meaning ofC is that if s0 |=WSML φpre thensm |=WSML φpost

and sm |=WSML φeff if for all s ∈ τ holdss |=WSML φass.

If this holds, we say thatτ satisfiesC, denoted byτ |=A C.

This essentially defines the meaning of a capability as
an implication between the start- and the termination state
of a sequence of state transitions. The overall functionality
provided by a Web serviceW is the set of possible executions
{τ}W . We say thatW provides the functionality described
by CW , denoted byW |=A CW , if for all τ ∈ {τ}W holds
τ |=A CW . The meaning of a capabilityCG that describes a

goalG is analogous. Here,{τ}G is the set of sequences of state
transitions that are solutions forG such that for allτ ∈ {τ}G
holds τ |=A CG . Capabilities can only be evaluated if there
are concrete value assignments for theIN -variables. These are
defined by goal instances as we explain the following.

B. Goal Instances

A goal instance formally describes a concrete client request.
It is created at runtime by instantiating a goal template. In ac-
cordance to the Web service discovery framework envisioned
for WSMO [12], the client therefore searches the repository
for an appropriate goal template and then instantiates this with
concrete input values. These values constitute the inputs for
invoking a Web service to solve the goal instance.

The creation of a goal instanceGI(G) is achieved by defin-
ing aninput bindingβ for theIN -variables in the capabilityCG
of the chosen goal templateG. Formally, β : {i1, . . . , in} →
UA is a total function that assigns objects of the universeUA
to eachIN -variable defined inCG . We therewith obtain an
assignment of concrete valuesv for all required inputs, i.e.
β = {i1|v1, . . . , in|vn}. This is considered to be valid for a
capabilityC if the current state of the worldsc that β refers
to satisfies the precondition, i.e. ifsc, β |=WSML φpre.

Given a valid input binding, we can determine the end-state
of the particular solution forGI(G) evaluating the semantics
of C from Definition 1. We therefore instantiate the capability
CG of the goal template by substituting all occurrence of an
IN -variable by the valuev assigned inβ for all i ∈ IN in
each statementφ in CG .

In consequence, it holds that the possible solutions for
GI(G) are a subset of those forG, i.e. {τ}GI(G) ⊂ {τ}G .
Because of this, we can realize a 2-phase discovery procedure:
usable Web services for goal templates are determined at de-
sign time; discovery for goal instances is performed at runtime,
whereby only those Web services need to be investigated that
are usable for the corresponding goal template. This allows to
achieve a better runtime efficiency. [22] discusses this in detail
and specifies semantic matchmaking techniques for discovery
on the goal template and the goal instance level.

C. WG Mediators

A WG mediator connects a goal template with a Web
service and carries all information relevant for automated
invocation and consumption of the Web service. Such a WG
mediator is defined for each Web service that is usable for
solving the goal template. Extending their definition from
WSMO [16], we describe WG mediators by five elements:

(i) the sourceis a goal templateG
(ii) the target is a Web serviceW

(iii) it can use data and process levelmediation facilities
(iv) it carries thematching degreebetweenG andW and
(v) a client interfacefor invoking and consumingW

in order to solveG.
(i) and (ii) define that WG mediator is always a directed

relation from a goal to a Web service description. (iii) states
that mediation techniques can be utilized in order to handle

and resolve potentially occurring heterogeneities between the
goal and the Web service.1 (iv) defines the relevant information
on the usability of the target Web service. This is denoted by
the respective matching degree determined by discovery (see
above) for directly usable Web services, or bycandidate
if the target Web service can be used to solve the source goal
template as part of a Web service composition.

(v) defines theclient interface. It is specified by ontologized
Abstract State Machines (ASM), i.e. the WSMO description
for Web service choreography interfaces [20]. This consists
of (1) a state signatureΩ that describes which information
are used in in- and outgoing messages by defining modes for
concepts of the domain ontology along with a grounding to
a communication technology for information exchange [14],
and (2) of transition rulesTR that define guarded rules for
state changes in the ASM. The client interface is constructed
as the compatible counterpart of the choreography interface
of the target Web service. It defines compatible modes inΩ
along with a subset of the transition rules such that at least
one common execution path exists between the two interfaces.
Therewith, a client interface carries all information required
for automated Web service usage (cf second requirement in
Section II-A). We refer to [7] for more details on this.

D. Composite Goals

As the final element in our model, a composite goal is a
goal template that extends the formal objective specification
with a desired workflow that shall be sustained during the
resolution of the goal. This goal template type is applied when
the specification of a desired workflow is necessary to properly
specify the client objective, which becomes especially relevant
in the context of business process management [10].

A composite goal is defined as a tupleGcomposite =
(C,Orchestration) such thatC is a capability that describes
the objective to be achieved, andOrchestration specifies the
desired workflow that shall be sustained during the resolution
of the goal. This workflow is a collection of subgoals along
with control- and data flow among them. Its meaning is
that each solution forGcomposite must sustain the specified
sequence of states whereby intermediate states might be tra-
versed between each desired state. In the ASS model, this
means thatτ ∈ {τ}Gcomposite if τ = (s0, . . . , sj , . . . , sm) and
(s0, sj , sm) is the desired workflow.

We formally describe the desired workflow as a WSMO
orchestration [18]. This extends the ontologized ASMs used
for choreography descriptions with constructs for specifying
the interaction with aggregated goals and Web services. The
ASMs are described by a state signatureΩ and by a set of
transition rulesTR, which are formed from a more general set
then those used for WSMO choreography. The central exten-
sion is theperformconstruct that allows to invoke aggregated
goals and Web services on the level of performances, i.e.

1The data level is concerned with heterogeneities between the ontologies
used in the goal and Web service descriptions, and the process level is
concerned with behavioral mismatches. [5] explains how these can help to
establish successful Web service usage if this is not given a priori.

distinct prototypical executions of the aggregated resources.
Each perform construct is accompanied by appMediatorthat
connects performances and defines the bindings between their
inputs and outputs.

In a nutshell, an orchestration in a composite goal consists
of three central elements: (1) the guarding condition in a tran-
sition rule defines the control flow, (2) the perform construct
specifies the particular subgoal to be performed, and (3) the
data flow is defined by the in- and output variable bindings
in ppMediators. We shall illustrate this in Section IV-A, and
refer to [18] for details on the constructs and semantics.

Analogously to basic goal templates, a goal instance for a
composite goalGI(Gcomposite) is created by defining an input
bindingβ for theIN -variables in the capabilityC of Gcomposite

(see Section III-B). Apart from instantiatingC, this β also
provides initialization of the orchestration ASM. The input
values defined by the client are then subsequently forwarded
to the subgoals and the Web services that are used for solving
GI(Gcomposite).

IV. I LLUSTRATIVE EXAMPLE

This section discusses an example for demonstrating the
goal descriptions as defined above. We consider a scenario
from the travel domain, which is often used for illustration.

The client objective is to book a return flight and a hotel
for a trip with the following workflow that shall be sustained
during resolution of this goal. At first, available flights shall be
found, then available hotels shall be found. Then, the client
wants to personally select the particular flight and hotel to
be booked. Finally, first the flight shall be booked and then
the hotel. Figure 2 provides a graphical illustration of the
desired workflow that we describe as a composite goal in the
following. Thereafter, we discuss the usability of different Web
services for solving this goal.

With respect to space limitations, we here only model the
most interesting aspects of the first two subgoals (flight and
hotel search), referring to [21] for a comprehensive discussion.

A. Goal Descriptions

Listing 1 shows the capabilities of the subgoals as defined in
Section III-A. We here only model the pre- and postconditions.
An assumption would be that the origin and destination of

Fig. 2. Illustration of Desired Workflow

a flight actually are the airports associated with a city; an
effect would be that the price for a booked flight or hotel is
withdrawn from the client’s bank account.

goal flightSearch capability
inputVariables {?orig,?dest,?out,?in}
outputVariables {?f}
precondition definedBy
?orig memberOf city and ?dest memberOf city and
?out memberOf dateandtime and ?in memberOf dateandtime.

postcondition definedBy
?f memberOf flight and
?f [origin hasValue ?orig, destination hasValue ?dest,

outwardDeparture hasValue ?od, outwardArrival hasValue ?oa,
inwardDeparture hasValue ?id, inwardArrival hasValue ?ia] and

after (?od, ?out).

goal hotelSearch capability
inputVariables {?c,?a,?d}
outputVariables {?h}
precondition definedBy
?c memberOf city and
?a memberOf dateandtime and ?d memberOf dateandtime.

postcondition definedBy
?h memberOf hotel and
?h[city hasValue ?c, arrival hasValue ?a, departure hasValue ?d].

Listing 1. Capabilities of Sub Goals

Listing 2 shows the specification of the composite goal as
introduced in Section III-D. The first part shows the goal
capability similar to the ones above. The second part show
the orchestration specification, and the ppMediators that bind
the inputs and outputs of the orchestrated goals.

goal flightHotelGoal
capability
inputVariables {?home,?venue,?leave,?return}
outputVariables {?f, ?h}
precondition definedBy
?home memberOf city and ?venue memberOf city and
?leave memberOf dateandtime and ?return memberOf dateandtime.

postcondition definedBy
?f memberOf flight and
?f [origin hasValue ?home, destination hasValue ?venue,

outwardDeparture hasValue ?od, outwardArrival hasValue ?oa,
returnDeparture hasValue ?rd, returnArrival hasValue ?ra] and

after (?od, ?leave) and
?h memberOf hotel and
?h[city hasValue ?venue, arrival hasValue ?oa,

departure hasValue ?rd].
interface
orchestration
stateSignature
shared { city, dateandtime }
in { flight , hotel }
controlled { cs1, cs2, ... }

transitionRules
forall {?cs} with (?cs[value hasValue cs1] memberOf control) do

perform applyMediation ppFlightSearch input
perform subgoal1 achieveGoal FlightSearch
update cs[value hasValue cs2]

endForAll
forall {?cs} with (?cs[value hasValue cs2] memberOf control) do

perform applyMediation ppHotelSearch input
perform subgoal2 achieveGoal HotelSearch
update cs[value hasValue cs3]

endForAll
[...]

ppMediator ppFlightSearch input
source parent
target subgoal1
definedBy ?orig = ?home and ?dest = ?venue and

?out = ?leave and ?in = ?return.
ppMediator ppFlightSearch input
source parent,subgoal1
target subgoal2
definedBy ?c = ?venue and ?a = ?oa and ?d = ?rd.

Listing 2. Composite Goal Description

In the orchestration, the state signature defines the concepts
used in in- and outgoing messages: instances ofcity and
dateandtimeare sent and received, andflight andhotelare only
received from the aggregated subgoals. The first transition rule
is concerned with the flight search. At first, the ppMediator
binds the inputs between from parent goalflightHotelGoal
to the flightSearchgoal. Variable bindings are defined via
equality; this can be augmented with namespaces in the case of
identical variable names. Then, the fight search subgoal shall
be achieved. The second transition rule for the hotel search
works analogously. To ensure that the hotel is available on
the correct dates, the applied ppMediator binds the arrival and
departures dates for the hotel search to the respective dates of
the outward and return flights from the first subgoal.

Referring to [18] for details on the syntax and semantics, a
main merit of this orchestration description is the concurrent
handling of multiple goal instances at the same time. The
forall{?cs} guards define that the transition rule is executed
for each goal instance whose resolution process is in the
named control state. Besides, the editing and management of
orchestration descriptions in supported by a 3-layer description
language developed in the DIP project: UML Activity Dia-
grams serve as the graphical representation layer, theCASHEW

layer handles the higher level workflow aspects, and the ASM
layer illustrated here denotes the execution layer [24].

B. Relationship to Semantic Web Service Techniques

A central feature of our goal model is that the goal template
types are orthogonal to the need for discovery (detection of
directly usable Web services) or composition (combination of
several Web services). Their usage is only dependent of the
client objective: if a specific workflow is not desired, then the
objective is described by a basic goal template. To demonstrate
this, let us consider three Web services for the example:

WS 1: a ”trip booking Web service” where complete trips
can be searched and booked (incl. flight, hotel, etc.)

WS 2: a ”flight booking Web service” where flights can be
searched and booked (e.g. for a particular airline)

WS 3: a ”hotel booking Web service” where hotels can be
searched and booked (e.g.www.hotels.com).

Here, eitherWS 1 or a composition ofWS 2 andWS 3 can
be used to solve the composite goal specified above.WS 1 can
provide a solution for the composite goal when considering
the capability level. If the client interface that is constructed
with respect to the choreography interface ofWS 1 sustains the
workflow specified in orchestration offlightHotelGoal, then all
relevant aspects of the client objective are satisfied.

The compositionWS 2◦WS 3 needs to define an interleaved
consumption of the Web services in order to sustain the desired
workflow. At first, the search facility ofWS 2 is consumed by
the flight search subgoal, followed by the search facility of
WS 3 for the hotel search; then, the flight is booked viaWS 2,
and finally the hotel viaWS 3. If such a composition can be
constructed, then it can be be used to solveflightHotelGoal.

V. CONCLUSIONS ANDRELATED WORK

This paper has presented a description model for goals as
the client side element for enabling problem-oriented usage
of Web service. Based on the experiences gathered in the DIP
project, we have extended the initial WSMO goal model by:

1) the differentiation of goal templates and goal instances
that allows to perform expensive discovery and com-
position operations at design time and support goal
formulation by clients via graphical user interfaces

2) the use of WG mediators that connect goal templates
with usable Web services, carry all information for
automated invocation and consumption in form of client
interfaces, and utilize mediation facilities to handle
potentially occurring heterogeneities

3) composite goals for specifying restrictions on the work-
flow for solving a goal.

Regarding related work, WSMO is the only framework for
Semantic Web services that encompasses goals as a top level
notion. OWL-S merely provides a meta-model for semantically
describing Web services. Respective works for discovery and
composition define client requests in form of queries (e.g. [11],
[19]). This is a more technical perspective which we do not
consider as a sophisticated model for supporting problem-
oriented Web service usage. While WSMO initially does not
distinguish goal templates and goal instances, related system
implementations such as IRS [4] or SWF [23] have success-
fully deployed this, therewith achieving a better scalability and
providing graphical support for goal formulation by clients.

The conception of goals as formalized client requests has
been inspired by approaches for automated problem solving
from different AI disciplines (esp. cognitive architectures [17]
and agent BDI architectures [2]). In contrast to [15], we
describe the requested functionality in goal templates by
preconditions and effects. The reason is that in service-oriented
architectures usually the current state of the world is not expli-
cated or not accessible to the interaction partners. Regarding
composite goals, related efforts have been presented in the
context of Web service composition (e.g. [1], [6]). Therein, so-
called composition goals extend the requested functionality by
workflow or process restrictions on acceptable compositions.
In our model, the goal template type is orthogonal to the need
for discovery or composition.

This paper has presented the conceptual model and defini-
tion of our goal model. Ongoing efforts that will be continued
in the future are the integration into the WSMO specification
as well as the further development of software systems for
goal-driven Web service usage along with graphical support
for goal creation and administration.

ACKNOWLEDGMENT

This material is based upon works supported by the EU
under the projects DIP (FP6 - 507483) and SUPER (FP6 -
026850). We like to thank Laurent Henocque, Jens Lemcke,
and John Domingue for extensive discussions in the DIP
project, and the members of the WSMO working group
(www.wsmo.org) for feedback on the present work.

REFERENCES

[1] P. Albert, L. Henocque, and M. Kleiner. Configuration-Based Workflow
Composition. InProc. of 3rd International Conference on Web Services
(ICWS-05), Orlando, Florida, 2005.

[2] M. E. Bratman. Intention, Plans and Practical Reason. Harvard
University Press, Cambridge, MA (USA), 1987.

[3] J. de Bruijn, H. Lausen, R. Krummenacher, A. Polleres, L. Predoiu,
M. Kifer, and D. Fensel. The Web Service Modeling Language WSML.
Deliverable D16.1 final draft 05 Oct 2005, WSML Working Group,
2005. online: http://www.wsmo.org/TR/d16/d16.1/v0.2/.

[4] L. Cabral, J. Domingue, S. Galizia, A. Gugliotta, B. Norton, V. Tanas-
escu, and C. Pedrinaci. IRS-III – A Broker for Semantic Web Services
based Applications. InIn Proc. of the 5th International Semantic Web
Conference (ISWC 2006), Athens(GA), USA, 2006.

[5] E. Cimpian, A. Mocan, and M. Stollberg. Mediation Enabled Se-
manticWeb Services Usage. InProc. of the 1st Asian Semantic Web
Conference (ASWC 2006), Beijing, China, 2006.

[6] U. Dal Lago, M. Pistore, and P. Traverso. Planning with a Language for
Extended Goals. InProc. of 18th National Conf. on Artificial Intelligence
(AAAI’02), 2002.

[7] J. Domingue, S. Galizia, and L. Cabral. The Choreography Model for
IRS-III. In Proc. of the 39th Hawaiian International Conference On
System Sciences (HICSS-39), Kauai Island, Hawaii, 2006.

[8] T. Erl. Service-Oriented Architecture (SOA). Concepts, Technology, and
Design. Prentice Hall PTR, 2005.

[9] D. Fensel, H. Lausen, A. Polleres, J. de Bruijn, M. Stollberg, D. Roman,
and J. Domigue.Enabling Semantic Web Services. The Web Service
Modeling Ontology. Springer, 2006.

[10] M. Hepp, F. Leymann, J. Domingue, A. Wahler, and D. Fensel. Semantic
Business Process Management: A Vision Towards Using Semantic Web
Services for Business Process Management. InProc. of the IEEE ICEBE
2005, Beijing, China,, 2005.

[11] D. Hull, E. Zolin, A. Bovykin, I. Horrocks, U. Sattler, and R. Stevens.
Deciding Semantic Matching of Stateless Services. InProc. of the 21st
National Conference on Artificial Intelligence (AAAI’2006), 2006.

[12] U. Keller, R. Lara, H. Lausen, and D. Fensel. Semantic Web Service
Discovery in the WSMO Framework. In J. Cardoses, editor,Semantic
Web: Theory, Tools and Applications. Idea Publishing Group, 2006.

[13] U. Keller, H. Lausen, and M. Stollberg. On the Semantics of Funtional
Descriptions of Web Services. InProc. of the 3rd European Semantic
Web Conference (ESWC 2006), Montenegro, 2006.

[14] J. Kopecḱy, D. Roman, M. Moran, and D. Fensel. Semantic Web
Services Grounding. InProc. of the International Conference on Internet
and Web Applications and Services (ICIW’06), Guadeloupe, French
Caribbean, 2006.

[15] R. Lara, M. A. Corella, and P. Castells. A Flexible Model for Web
Service Discovery. InProc. of the 1st International Workshop on
Semantic Matchmaking and Resource Retrieval: Issues and Perspectives,
Seoul, South Korea, 2006.

[16] A. Mocan, E. Cimpian, and M. Stollberg (eds.). WSMO Mediators.
Deliverable D29, 2005. online: http://www.wsmo.org/TR/d29/.

[17] A. Newell. Unified Theories of Cognition. Harvard University Press,
Cambridge, MA (USA), 1990.

[18] B. Norton. Dataflow for Orchestration in WSMO. Deliverable D15.1,
2006. online: http://www.wsmo.org/TR/d15/d15.1/.

[19] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic Matching
of Web Services Capabilities. InProc. of the First International
Semantic Web Conference, Sardinia, Italy, 2002.

[20] D. Roman and J. Scicluna. Ontology-based Choreography of WSMO
Services. Deliverable D14, 2006. online: http://www.wsmo.org/TR/d14/.

[21] M. Stollberg and M. Hepp. Goal Description Ontology. Deliverable
D3.10, DIP, 2006.

[22] M. Stollberg and U. Keller. Semantic Web Service Discovery: Match-
making for Goal Templates and Goal Instances on Rich Functional
Descriptions. Technical Report DERI-2006-10-20, DERI, 2006.

[23] M. Stollberg, D. Roman, I. Toma, U. Keller, R. Herzog, P. Zugmann,
and D. Fensel. Semantic Web Fred – Automated Goal Resolution on the
Semantic Web. InProc. of the 38th Hawaii International Conference
on System Science, 2005.

[24] M. Stollberg et al. DIP Interface Description Ontology. Specification,
DIP, 2005. online: http://dip.semanticweb.org/documents/DIO-Annex-
to-D3.4-and-D3.5.pdf.

