
On the Semantics of Functional Descriptions of Web
Services

Uwe Keller, Holger Lausen, and Michael Stollberg

Digital Enterprise Research Institute (DERI)
University of Innsbruck, Austria

{firstname.lastname }@deri.org

Abstract. Functional descriptions are a central pillar of Semantic Web services.
Disregarding details on how to invoke and consume the service, they shall pro-
vide a black box description for determining the usability of a Web service for
some request or usage scenario with respect to the provided functionality. The
creation of sophisticated semantic matchmaking techniques as well as exposition
of their correctness requires clear and unambiguous semantics of functional de-
scriptions. As existing description frameworks like OWL-S and WSMO lack in
this respect, this paper presents so-calledAbstract State Spacesas a rich and lan-
guage independent model of Web services and the world they act in. This allows
giving a precise mathematical definition of the concept of Web Service and the
semantics of functional descriptions. Finally, we demonstrate the benefit of ap-
plying such a model by means of a concrete use case: thesemantic analysisof
functional descriptions which allows to detect certain (un)desired semantic prop-
erties of functional descriptions. As a side effect, semantic analysis based on our
formal model allows us to gain a formal understanding and insight in matching
of functional descriptions during Web service discovery.

1 Introduction

Enabling automated detection of Web services that adequately serve a given request or
usage scenario is a main objective of Semantic Web service technology. Therefore, the
functional description of a Web service specifies the provided functionality. Disregard-
ing detailed information on how to invoke and consume the Web service the purpose
of functional descriptions is to provide a black box description ofnormal runsof a
Web service, i.e. without regard to technical or communication related errors that might
occur during service usage.

In the most prominent overall description frameworks for Semantic Web services,
functional descriptions are essentiallystate-basedand use at leastprestate and poststate
constraintsto characterize intended executions of a Web service. In OWL-S [13],Ser-
vice Profilesencompass the functional description that is described by the in- and out-
put, and by preconditions and results. Their counterpart in WSMO [11] arecapabilities
that are defined by preconditions, assumptions, postconditions, and effects. However,
both models lack of clear and unambiguous semantics for functional descriptions [9].
This is essential for developing appropriate semantic matchmaking mechanisms for dis-
covery, or for proving the correctness of functional descriptions - in general for any sort
of symbolic computation based on functional descriptions in these frameworks.

With respect to this necessity, we present a rigorous formal model of Web ser-
vices and the world they act as the basis for clear semantic definitions of functional
descriptions. Addressing the most fine-grained perspective on Web services and their
functional descriptions as identified in previous work [7, 8] (namely, the level of rich
semantic descriptions) we aim at applicability of the presented model inany setting
wherestate-based functional descriptionsare used, e.g. in frameworks like OWL-S and
WSMO. Since both donot restrict themselves to aparticular language for describing
states (i.e. preconditions and postconditions), a formal definition that is usable for these
frameworks must be modular and independent of the language chosen for describing
state-conditions.

The contribution of this paper is as follows:

– we present so-calledAbstract State Spacesas a sufficiently rich, flexible, and lan-
guage independent model for describing Web services and the world they act in
(Sec. 2)

– based on the model we describe what a functional description actually is and prop-
erly specify their formal semantics (Sec. 2)

– we give concise, formal definitions of all concepts involved in our model (Sec. 3)
– we demonstrate the applicability of the introduced model by a specific use case: the

semantic analysis of functional descriptions (Sec. 4). In particular, we clearly define
desirable properties of functional descriptions like realizability and semantic refine-
ment and show how to determine these properties algorithmically based on existing
tools in a provably correct way. Hereby, we can reconstruct generalized versions of
results on matching between component specifications that are well-known in the
software component community [18], but (based on our formal model) get some
additional insights the relation between thesemantic notionof refinement and the
syntactic criterionfor checking semantic matches, that have can not be discussed
in [18] (see [10] for a deeper discusson).

The Bigger Picture. The model presented in this paper can be considered as a small
first step towards a mathematical model forservice-oriented architectures. Based on a
more emcompassing and rich mathematical model, we will be able to give semantics
to formal descriptions of sucharchitecturesand (similarly to what we discussed for the
simple case of capabilities here) to reason about such descriptions in a well-understood
and verifiably correct way by extension and refinement of the presented basic model.
We expect that the presented model provides a suitable and flexible foundation for such
non-standard extensions.

Overview of the Solution.As a part of rich model description frameworks like OWL-
S and WSMO, functional descriptions of Web servicesD aresyntactic expressionsin
some specification languageF that is constructed from some (non-logical) signature
ΣF . Each expressionD ∈ F captures specific requirements on Web servicesW and
can be used to constrain the set of all Web services to some subset that is interesting
in a particular context. Hence, the set of Web servicesW that satisfy the functional
descriptionD (denoted byW |=F D) can be considered as actual meaning ofD. This

way, we can define a naturalmodel-theoretic semanticsfor functional descriptions by
defining a satisfaction relation|=F between Web services and functional descriptions.
In comparison to most common logics, our semantic structures (i.e interpretations that
are used to assign expressionsD a truth value) are simply a bit more complex. In fact,
they can be seen as generalizations of so-called Kripke structures [1, 17].

In general, various simpler syntactic elements are combined withing a functional
descriptionD ∈ F . State-based frameworks as the ones mentioned above use at least
preconditions and postconditions. WhereasD refers to Web services, these conditions
refer to simpler semantic entities, namelystates, and thus in a sense to a “static” world.
Such state conditionsφ are expressions in (static) languageL over some signatureΣL.
Single statess determine how the world is perceived an external observer of the world
and thus the truth value of these conditions. Formally, we have a satisfaction relation
|=L between statess and state expressionsφ, wheres |=L φ denotes thatφ holds in
states. In essence, we can observe that on a syntactic level a languageL for capturing
static aspects of the world isextendedto a languageF that captures dynamic aspects of
the world.

In order to define a similar extension on a semantic level, weextendthe definition
of the satisfaction|=L (in L) to a definition of satisfaction|=F (in F). This way, our
definition is highly modular, language-independent to a maximum extent and focuses
on the description of dynamics (i.e. possiblestate transitions) as the central aspect
that the functional description languageF adds on top of state description language
L. It can be applied to various languagesL in the very same way as it only requires a
model-theoretic semantics for the static languageL (which almost all commonly used
logics provide). Furthermore, our model-theoretic approach coincides to the common
understanding of functional descriptions to bedeclarativedescriptionswhatis provided
rather thanhowthe functionality is achieved.

2 Towards a Model of Web Services

The following introducesAbstract State Spacesas a flexible approach for defining a
rigorous, formal model of Web services, the world they act in, and the meaning of func-
tional descriptions. While introducing the model informally in the following, mathe-
matically concise definitions are given in Section 3.

A changing world. We consider the world as an entity that changes over time. Enti-
ties that act in the world (which can be anything from a human user to some computer
program) can affect how the world is perceived by themselves or other entities at some
specific moment. At each point in time, the world is in one particular state that deter-
mines how the world is perceived by the entities acting therein. We need to consider
some language for describing the properties of the world in a state. In the following we
assume anarbitrary (but fixed) signatureΣ (that usually is based on domain ontolo-
gies), and some languageL(Σ) derived from the signature.

We use classical First-order Logic for illustration purposes in the following, how-
ever we stress that we are by no means bound to this specific language, i.e. other lan-
guages such as WSML or OWL can easily be used instead in our framework. Consider
a signatureΣ ⊇ {isAccount(·), balance(·),≥, 0, 1, 2, . . .} that allows to talk about

bank accounts and their balance. Then,L(Σ) allows comparing the respective values,
for instance by expressions like∀?x.(isAccount(?x) ⇒ balance(?x) ≥ 0) stating
that the balance of any account needs to be non-negative. In the context of dynamics
and properties of the world that change, it is useful to distinguish between symbols in
Σ that are supposed to have always the same, fixed meaning (e.g.≥, 0) and thus can
not be affected by any entity that acts in the world, and symbols that can be affected and
thus can change their meaning during the execution a Web Service (e.g.isAccount(·),
balance(·)). We refer to the former class of symbols bystatic symbols(denoted byΣS)
and the latter bydynamic symbols(denoted byΣD).

Abstract State Spaces.We consider an abstract state spaceS to represent all possi-
ble statess of the world. Each states ∈ S completely determines how the world is
perceived by each entity acting inS. Each statementφ ∈ L(Σ) of an entity about the
(current state of) the world is either true or false. Thus, a states ∈ S in fact definesan
interpretationI (of some signatureΣ). However, not allΣ-InterpretationsI represent
senseful observations sinceI might not respect some “laws” that the worldS underlies,
e.g. that the balance of any bank account is not allowed to be negative. In the follow-
ing, we assume that these laws are captured by a background ontologyΩ ⊆ L(Σ) and
denote the set ofΣ-Interpretations that respectΩ (i.e. the models ofΩ) byModΣ(Ω).
Considering our example signature from above and a background ontologyΩ with
{∀?x.(isAccount(?x) ⇒ balance(?x) ≥ 0), isAccount(acc1), isAccount(acc2)} ⊆
Ω , the following interpretation denotes a stateI : balance(acc1) = 10. In contrast,
the interpretationI : balance(acc2) = −40 does not denote a state inS (wrt.Ω).

Changing the World. By means of well-defined change operations, entities can affect
the world and modify their current state. Such operations denote state transitions inS. In
our setting, these change operations are single concreteexecutionsof Web servicesW .
Following [8, 7], a change operation is represented by aserviceS that is accessed via
a Web serviceW . S is achieved by executingW with some given input datai1, . . . , in
that specify (for a service provider)whatkind of particularserviceS accessible viaW
is requested by the client, i.e.S ≈W (i1, . . . , in).

Given input datai1, . . . , in, the execution of a Web serviceW essentially causes a
state transitionτ in S, transforming the current state of the worlds ∈ S into a new state
s′ ∈ S. However, a transitionτ will in general not be anatomic transitionτ = (s, s′) ∈
S × S but a sequenceτ = (s0, . . . , sn) ∈ S+, wheres0 = s, sn = s′ andn ≥ 1.
In every intermediate statesi in τ some effect can already be perceived by an enitity.
This is especially relevant for Web services that allow accessing long lasting activities
that involve multiple conversation steps between the requester and the Web serviceW .
If we consider e.g. some international bank transfer having as concrete input data the
information to transfer $20 from acc2 to acc1 the web service execution might involve
the following intermediate state betweenspre andspost :

spre : balance(acc1) = 10 ∧ balance(acc2) = 100

s1 : balance(acc1) = 10 ∧ balance(acc2) = 80

spost : balance(acc1) = 30 ∧ balance(acc2) = 80

Outputs as Changes of an Information Space.During the executionW (i1, . . . , in)

of a Web serviceW , W can send some information as output to the requester. We
consider these outputs as updates of the so-calledinformation spaceof the requester
of a serviceS. More precisely, we consider theinformation spaceof some service
requester as a setIS ⊆ U of objects from some universeU . Every objecto ∈ IS has
been received by the requester fromW during the executionW (i1, . . . , in). During the
execution the information space itself evolves: starting with the empty set when the Web
service is invoked the execution leads to a monotonic sequence of information spaces
∅ = IS0 ⊆ IS1 ⊆ . . . ⊆ ISk. Within our bank transfer example, during some financial
transactiontid891 we might first receive a message acknowledgmentmsgid23 and then
a confirmation that the transaction has been approved and initialized:

IS1 ={ack(20051202, msgid23, tid891)}
IS2 ={ack(20051202, msgid23, tid891), confirm(acc1, acc2, 20, tid891)}

Observations in Abstract States.Our aim is to describeall the effects of Web ser-
vice executions for a requester. Obviously, a requester can observe in every states ∈ S
world-related properties represented by statementsφ in L(Σ) that hold ins. However,
additionally there might be other aspects that an observer of the world can perceive in
an abstract states. In our model, this includes at least the information spaceIS ⊆ U
described above. Thus, an abstract states ∈ S in a sense ,,corresponds” toall observa-
tions(relevant for the uses of our formal model) that can be made ins. For our purpose
here, this means all pairs ofΣ-interpretationsI ∈ ModΣ(Ω) and (possible) informa-
tion spacesIS ⊆ U . Consequently, we represent the observations related to a states by
an observation functionω : S → ModΣ(Ω) × P(U) that assigns every states ∈ S a
pair(I, IS) of aΣ-interpretationI (respecting the domain lawsΩ) and an information
spaceIS. We denote the first component ofω(s) by ωrw(s) (real-world properties:
how an entity perceives the world) and the second component byωis(s) (information
space: how the invoker perceives the information space). However, we require the ob-
servation functionω to be a (fixed) total function as is cannot be arbitrary. This means
that the observationsω(s) of any entity are well-defined ineveryabstract states. More-
over, any perception representable in terms ofL(Σ) andU that is consistent with the
domain modelΩ should actually corresponds to some abstract states ∈ S by means of
ω, so thatω is surjective1. By considering abstract states asabstractobjects without a
predefined or fixed structure, and the separated assignement of a formal structure rep-
resenting the actual observations that can be made in a state (by means ofω), we are
able to address extensions of our model that might be needed in future extensions in a
clean and modular way (e.g. when formally describing conversations between a group
of agents in the world). Moreover, we can easily include representation of contextual
aspects [3] in our model (e.g. that a states is observed differently by various agents).

Web Service Executions.Given some inputi1, . . . , in, the Web service execution

1 However, since we assume a fixed signatureΣ and thus a limited language for describing
observations about the world, we do not assume thatω is injective, i.e. there could be distinct
statess, s′ of the world which cannot be distinguished by the (limited) languageL(Σ), i.e.
ωrw(s) = ωrw(s′).

W (i1, . . . , in) = (s0, . . . , sm) starting in states0 induces a sequence of observa-
tions (ω(s0), . . . , ω(sm)) which can be made by the service requester during the ex-
ecution. However, not all such sequencesτ of abstract states actually do represent a
meaningful state-transition caused by an execution ofW . For τ to faithfully represent
someW (i1, ..., in) we need to require at least that for any two adjacent statess, s′ in
W (i1, . . . , in) some change can be observed by the invoker, and that objects which are
in the information space (i.e. have been received by the invoker) at some point in time
during the execution can not disappear until the execution is completed. As discussed
later, in general we need to require some further constraints on a sequenceτ such that
we can interpretτ as a possible runW (i1, . . . , in) of a Web serviceW . We call s0
the pre-state of the execution,sm the post-state of the execution, and all other states in
W (i1, ..., in) intermediate states.

Web Services.A Web serviceW then can be seen as a set of executionsW (i1, . . . , in)
that can be delivered by the Web service in any given state of the world to a requester
when being equipped with any kind of valid input datai1, . . . , in. However, in order to
keep track of the input data that caused a specific execution, we need to represent a Web
service in terms of a slightly richer structure than a set, namely a mapping between the
provided input valuesi1, . . . , in and the resulting executionW (i1, . . . , in). Figure 1
illustrates the proposed model.

Abstract State Space

S1 ≈ W(i1, … , in)

S3 ≈ W(i‘‘1, … , i‘‘n)

S2 ≈ W(i‘1, … , i‘n)

Web Service W

Information
Space ωis

State of
the world ωrw

ωS4 ≈ W(i'''1, … , i'''n)

Fig. 1.An abstract Model of the World and Web services therein.

Functional Description of Web Services.Combining state-related descriptions with a
functional description (or capability) essentially creates a constraint on possible Web
Service executions. Executions of a Web serviceW whose capability has been de-
scribed in terms of a capability descriptionD (whereD contains a prestate-constraint
φpre and a post-state constraintφpost) can no longer be arbitrary possible executionsτ
in an abstract state spaceS, but whenever the prestates0 of τ respectsφpre then the
final statesm of τ must respectφpost. Otherwise,τ is not considered to represent an
actual execution of a Web serviceW with capabilityD.

3 Abstract State Spaces and Web Services

We will now give a series of definitions which capture the preceding semi-formal dis-
cussion in a rigorous way.

In the following, letΣ be some signature,L(Σ) be some logic over signatureΣ
andΩ ⊆ L(Σ) be some background theory capturing relevant domain knowledge. Let
=(Σ) denote the set ofΣ-interpretations inL(Σ) and=(Σ,U) denote the set ofΣ-
interpretations such that for allI ∈ =(Σ) the universe considered inI (denoted by
universe(I)) is a subset ofU . For a setU we useP(U) to denote the powerset ofU .
LetModΣ(Ω,U) denote theΣ-InterpretationsI ∈ =(Σ,U) which satisfy the domain
modelΩ (i.e.I |=L(Σ) Ω). We denote the meaning of a symbolα ∈ Σ that is assigned
by an interpretationI bymeaningI(α).

Given a signatureΣ0 = ΣD ∪ ΣS that is partitioned into a setΣD of dynamic
symbols and a setΣS of static symbols, we extendΣ0 to a signatureΣ by adding
a (new) symbolαpre for eachα ∈ ΣD. The set of these pre-variants of symbols is
denoted byΣpre

D . Furthermore, add a new symbolout toΣ0. The intention is as follows:
ΣS contains symbols that are interpreted always in the same way (static symbols),
ΣD contains symbols whose interpretation can change during the execution of a Web
service (dynamic symbols), andΣpre

D contains symbols that are interpreted during the
execution of a Web service as they have been right before starting the execution. Finally,
out denotes the objects in the information space. The symbols that have been added to
Σ0 can be used when formulating post-state constraints to describe changes between
pre-states and post-states in a precise way.

Definition 1 (Abstract State Space).An abstract state spaceA = (S,U , Σ, Ω, ω) is a 5-
tuple such that (i)S is a non-empty set ofabstract states, (ii) U is some non-empty set of objects
called theuniverseof A (iii) Ω ⊆ L(Σ) is consistent (iv)ω : S → ModΣ(Ω,U) × P(U)
is a total surjective function that assigns to every abstract states a pair of a Σ-interpretation
ωrw(s) satisfyingΩ and an information spaceωis(s) and (v) for alls, s′ ∈ S andα ∈ ΣS :
meaningωrw(s)(α) = meaningωrw(s′)(α). �

In A, Ω can be considered as a domain ontology representing (consistent) back-
ground knowledge about the world. It is used in any sort of descriptions, like precondi-
tions etc. Clause (v) captures the nature of static symbols. In the following,A always
denotes an abstract state spaceA = (S,U , Σ,Ω, ω).

For interacting with a Web serviceW , a client can use a technical interface. When
abstracting from the technical details, every such interface basically provides a set of
values as input data. The required input data represent the abstract interface used for
interaction with the Web service from a capability point of view.

Definition 2 (Web Service Capability Interface, Input Binding). A Web service capa-
bility interface IF of a Web serviceW is a finite sequences of names(i1, . . . , in) of all required
input values of aW . An input binding β for a Web service capability interfaceIF in A is a
total functionβ : {i1, . . . , in} → U . The set of all input bindings forIF in A is denoted by
InA(IF). �

An input binding essentially represents the input that is provided by the invoker of
a Web serviceW during theentireexecution ofW .

Definition 3 (Web Service Execution).A (possible)Web service executionin A is finite
sequencesτ = (s0, . . . , sm) ∈ S+ of abstract states such that for all0 ≤ j < m and
0 ≤ i, k ≤ m (i) ω(sj) 6= ω(sj+1), (ii) ∅ = ωis(s0) ⊆ ωis(s1) ⊆ . . . ⊆ ωis(sm), (iii)
universe(ωrw(si)) = universe(ωrw(sk)), (iv) ωis(si) ⊆ universe(ωrw(si)), (v) for all
α ∈ ΣD : meaningωrw(s0)(α) = meaningωrw(si)(αpre) and (vi)meaningωrw(si)(out) =
ωis(si). We denote the set of all possible Web service executions inA byExec(A). �

This definition gives detailed conditions under which a sequenceτ can be considered
as a Web service execution. Clause (iii) requires that within an execution the universes
which are related to abstract statessj are the same2. In other words, universes (which
are used to interpret state-based expression) that are related by an execution are not
arbitrary, but specifically related to each other. In particular, (iii) ensures that within
a functional descriptionD postconditions can talk aboutevery objectthat the precon-
dition can refer to as well. Hence, precise comparisons between various states of an
execution becomes possible. Clause (iv) requires that for every abstract state that in-
volved in the execution its information space is part of the universe of the abstract state.
This allows to relate and compare information space objects with real-world objects
in state-based expressions. Finally, clauses (v) and (vi) ensure that in all intermediate
and final states, the pre-versionsαpre of dynamic symbolsα are interpreted asα in the
prestates0 of the execution and that the symbolout represent the respective information
space.

Definition 4 (Web Service, Web Service Implementation).A Web service implemen-
tation W of some Web service capability interfaceIF = (i1, . . . , in) in A is a total function
ι : InA(IF)×S → Exec(A) that defines for all accepted input bindings inInA(IF) and ab-
stract statess ∈ S the respective Web service execution ofW in Exec(A). Formally, we require
for ι that ι(β, s) = (s0, ..., sm) impliess0 = s for all s ∈ S, β ∈ InA(IF). A Web service
W = (IF , ι) is a pair of a Web service capability interfaceIF and a corresponding Web service
implementationι of IF . �

One can consider the mappingι as a marking of execution sequences inA by the
input data that triggers the execution. Since we define a Web service implementation
in terms of a function which maps to single Web service executions, we considerde-
terministicWeb services, i.e the execution is fully determined by the input bindingβ
and the intial states0 only. Any sort of uncertainty about what is going to happen when
executingW (e.g. unexpected failures due to the environment the Web service is em-
bedded in) is not considered in our model. In being a total function onInA(IF) × S,
the definition reflects the fact thatι represents an (abstract)implementation, i.e. (unlike
for specifications) every possible effect in every situation isfully determinedby ι.

Based on this formal machinery, we can now formalize the meaning of functional
descriptionsD ∈ F that are based on a state-description languageL(Σ). In the fol-
lowing, we writeI, β |=L(Σ) φ to express that formulaφ ∈ L(Σ) is satisfied under
Σ-interpretationI and variable assignmentβ. We assume that a functional description
D = (φpre, φpost, IFD) consists of a preconditionφpre ∈ L(Σ0), and a postcondition

2 In order to model dynamic universes (e.g. object creation and deletion) one needs to model
object existence in the state-description languageL itself, for instance by a dynamic unary
relationexisting .

φpost ∈ L(Σ). IFD ⊆ FreeVars(φpre, φpost) denotes the set of (free) variable names
in D which represent inputs for the Web service under consideration. The logical ex-
pressionsφpre andφpost usually refer to some backgound ontologyΩ ⊆ L(Σ).

Definition 5 (Extension of an Input Binding, Renaming).Let β be an input binding
for some Web service capability interfaceIF = (i1, . . . , in), V be a set of symbol names and
U ⊆ U . A total functionβ′ : {i1, . . . , in} ∪ V → U is called aV -extension ofβ in U if
β′(ij) = β(ij) for all 1 ≤ j ≤ n.

Letπ be some function andβ an input binding forIF . Then we denote byrenameπ(β) the
input bindingβ′ for IF ′ that is derived fromβ by replacing all pairs(n, v) ∈ β withn ∈ dom(π)
by (π(n), v). We callrenameπ(β) renaming ofβ byπ. �

An extension of an input bindingβ is used in the next definition to ensure that
every variable that occurs free in a precondition or postcondition can be assigned a
concrete value. Otherwise, no truth-value can be determined for these statements. The
renaming represents on a technical level the effect of renaming input names in a Web
service interface by the corresponding names in the interface used in the Web service
description.

Definition 6 (Capability Satisfaction, Capability Model). Let W = (IF , ι) be a Web
service inA andD = (φpre, φpost, IFD) be a functional description of a Web service. Let
FV denote the set of free variables inφpre and φpost and U denoteuniverse(ωrw(s0)). W
satisfies capabilityD in A if and only if (i) there exists a subsetIF ′ ⊆ IFD of the inputs of
D and a bijectionπ : IF → IF ′ betweenIF and IF ′ such that (ii) for all input bindings
β ∈ InA(IF) and abstract statess ∈ S: for all FV -extensionsβ′ of renameπ(β) in U : if
ι(β, s) = (s0, . . . , sm) for somem ≥ 0 andωrw(s0), β

′ |=L(Σ) φpre thenωrw(sm), β′ |=L(Σ)

φpost

In this case we writeW |=F D and call the Web serviceW a capability model(or simply model)
ofD in A. �

Clause (i) essentially requires (interface) compatibility between the Web service and
the inputs refered to in Web service description. Note, that we do not require syntactic
equality between these names, but only equivalence up to some renamingπ. Moreover,
it is perfectly fine for models ofD to only use a proper subsetIF ′ of the inputsIFD
mentioned in capabilityD. Clause (ii) defines the meaning of preconditions and post-
condition. Please note, that free variables in these expressions are implicitly universally
quantified by our definition.

4 Applying the formal Model for Semantic Analysis

For demonstrating the suitability of the proposed model, this section shows its benefi-
cial application for semantic analysis of functional descriptions Based on our model-
theoretic framework, we can carry over several semantic standard notions from mathe-
matical logic [2, 4] that refer to formal descriptions and are based on themodelnotion
to our particular context in a meaningful way. For a deeper and extended discussion of
the topic, we refer the interested reader to [10].

Realizability. We definerealizabilityof a descriptionD as the corresponding notion to

satisfiability in a logicL: A functional descriptionD is realizable in an abstract state
spaceA iff. there is a Web serviceW in A that satisfiesD, i.e.W |=F D.

Consider the following functional descriptionD = (φpre, φpost, IFD) describing
Web services for account withdraws:IFD = {?acc, ?amt}

φpre : ?amt ≥ 0 φpost : balance(?acc) = balancepre(?acc)−?amt

At a first glance, the given description seems to be implementable within some Web
serviceW that satisfiesD. However, taking a closer look at the respective domain
ontology it becomes obvious that this actually is not the case. The ontology defines
that a balance might not be negative, but the precondition does not prevent the balance
being less then the withdraw. Let’s assume that there is a Web serviceW realizingD.
When considering an input bindingβ with β(?amt) > balancepre(?acc), then the
precondition is satisfied and thus the postcondition should hold in the final state of the
respective execution, i.e.ωrw(sm), β |= ∀?acc.balance(?acc) < 0. However, this is
inconsistent with the domain ontology sinceΩ |= balance(?acc) ≥ 0 and thussm can
not exist inA. This is a contradiction and shows that no Web serviceW withW |=F D
can exist. To fix the description such that it becomes realizable, we need to extend the
precondition toφpre : 0 ≤?amt∧ ?amt ≤ balance(?acc).

The example illustrates the usefulness of the notion of realizability. It provides a
tool for detecting functional descriptions that contain flaws that might not be obvious
to the modelers. Moreover, we as we will see soon, we can often rephrase the problem
of realizability of a descriptionD ∈ F to a well-understood problem inL for which al-
gorithms already exist. We first turn to an important other notion of which realizability
turns out to be a special case (in conformance as with the original notions in mathemat-
ical logic).

Functional Refinement.The notion of logical entailment is usually defined as follows:
An formulaφ logically entails a formulaψ iff every interpretationI which is a models
of φ (i.e. I |=L φ) is also a model ofψ. Substituting interpretations by Web services,
formulae by functional descriptions and the satisfaction|=L by capability satisfaction
|=F we derive a criteria that capturesfuctional refinement: Let D1,D2 ∈ F be func-
tional descriptions.D1 is a functional refinement ofD2 in A (denoted byD1 v D2)
iff. for each Web serviceW in A, W |=F D1 impliesW |=F D2. Intuitively speak-
ing,D1 v D2 means thatD1 is more specific thanD2: Every Web service (no matter
which one) that providesD1 can also provideD2. In other words,D1 must describe
some piece of functionality that always fits the requirementsD2 as well. However, Web
services that provideD2 do not have to satisfyD1 and therefore, a Web service that
providesD1 can do something more specific than required byD2.

For illustration, consider some Web service descriptionD1 = (φpre
1 , φpost

1 , IF1)
with IF1 = {?prs, ?acc} that advertises the ability to provide access credentials for
a particular web site (http ://theSolution.com). A domain ontology specifies that if
some web site has some content and someone can access the web site, then he (is able to)
know about the content. Furthermore,http://theSolution.com is a web site providing
the ultimate answer to life (the universe and everything) and some constantaccessFee

has a value less then 42.3

φpre
1 :account(?p, ?acc) ∧ balance(?acc) ≥ accessFee

φpost
1 :balance(?acc) = balancepre(?acc)− accessFee

∧ out(password(?prs, http://theSolution.com))

∧ isV alid(password(?prs, http://theSolution.com))

Ω |=∀?ws, ?co, ?prs. content(?ws, ?co) ∧ access(?prs, ?ws) ⇒ knows(?prs, ?co)

content(http://theSolution.com, answer2Life), accessFee ≤ 42

∀?prs, ?ws. isV alid(password(?prs, ?ws)) ⇒ access(?prs, ?ws))

Using our formal definition we now can examine another definitionD2 = (φpre
2 ,

φpost
2 , IF2) with IF2 = {?prs, ?acc} and check if it is a functional refinement of the

previous description.

φpre
2 : account(?prs, ?acc) ∧ balance(?acc) ≥ 100 φpost

2 :knows(?prs, answer2Life)

This notion can beneficially be applied within functionality-based matchmaking. For
instance, let’s assume that a Personme is seeking for the ultimate answer to life
(knows(me, answer2Life)); me has an accountacc123 with a current balance of
174 USD. Given this information (and our domain ontologyΩ) and considering the
specific input bindingβ(?prs) = me, β(?acc) = acc123, we can infer that any Web
serviceW that is advertised to provide capabilityD2 can serve forme’s purpose as the
preconditionφpre

2 is satisfied for the inputβ. In consequence, for the specific inputβ
the service delivers what is described the postconditionφpost

2 ; therefrom, we can infer
knows(me, answer2Life). However, sinceD1 v D2 we know as well, that any Web
serviceW ′ that is advertised to provide capabilityD1 is perfectly suitable forme and
his endeavor as well. The notion of functional refinement can then be used to pre-index
some set of Web service description, such that for a given request it is not necessary to
consider all available description but only a subset identified by the pre-indexing.

Our framework allows to proof the following theorem (see [10]) , which is espe-
cially useful for reducing the problem of determining functional refinement (and even-
tually all other semantic analysis notions we discuss in this section) to a well-defined
proof obligation in the languageL underlyingF .

Theorem 1 (Reduction of Functional Refinement fromF toL). LetD1 = (φpre
1 , φpost

1 , IF 1)
andD2 = (φpre

2 , φpost
2 , IF 2) be functional descriptions inF with the same interfaces, i.e.IF 1 =

IF 2. Let [φ]Σpre
D

→ΣD
denote the formulaφ′ which can be derived fromφ by replacing any

dynamic symbolα ∈ ΣD by its corresponding pre-variantαpre ∈ Σpre
D . ThenD1 vF D2 if

Ω ∪ [Ω]Σpre
D

→ΣD
|=L ([φpre

2]Σpre
D

→ΣD
∧ [φpre

1]Σpre
D

→ΣD
∧ φpost

1 ⇒ φpost
2) �

This gives us the following: If there is an algorithm or an implemented system
that allows us to determine logical entailment inL, then we can use the very same

3 Note that we do not expect such knowledge in one central domain ontology, but a number
of knowledge bases (generic, provider- and requester-specific). For simplicity we assumeΩ
being already aggregated

system or algorithm to determine functional refinement for descriptions of the capability
languageF , i.e. in principle no new calculus for dealing withF is needed (at least
for the purpose semantic analysis). However, the algorithm which can be derived from
Theorem 1 is no longer a heuristic, butprovably correct. For further discussion, variants
and generailzations of the theorem, we refer to [10].

To be able to formulate the next corollary (which is an immediate consequence
of the definition of realizability and functional refinement), we use⊥IF to denote a
descriptionD ∈ F that is trivially unrealizable, i.e.D = (true, false, IF).

Corollary 1 (Realizability vs. Refinement).A functional descriptionD = (φpre, φpost, IF) is
not realizable iff.D v ⊥IF �

The corollary simply states that any description which is more specific than the
trivially unrealizable functional description must be unrealizable as well. In the light
of Theorem 1, it shows that we can reduce realizability ofD to a well-defined proof
obligation inL as well. Hence we can deal with realizability algorithmically based on
existing tools.

Omnipotence.For any functional descriptionD we can consider the dual notion of
being not realizable at all, i.e. having every Web serviceW in A as a model. This no-
tion corresponds to the classical notion of validity and obviously represents another
form of ill-defined or unacceptable type of description. It matches all possible Web ser-
vices, no matter what they actually do. Service providers could use such (non-trivially)
omnipotent descriptions to advertise their Web services in some registry to get maximal
visibility. A trivially omnipotent functional description inF is>IF = (true, true, IF).

As an immediate consequence we can derive the following corollary which shows
that we can reduce omnipotence ofD to a well-defined proof obligation inL as well
and thus deal with it algorithmically based on existing tools:

Corollary 2 (Omnipotence vs. Refinement).A functional descriptionD = (φpre, φpost, IF)
is omnipotent iff.>IF v D �

The corollary simply states that any description which is more general than the triv-
ially omnipotent functional description must be omnipotent as well.

Summary. Semantic analysis can be seen as both, (i) a concrete example of symbolic
computation with functional descriptions that we can formally ground in our formal
model, and (ii) as a problem that is interesting in itself. Using our model, we are able to
rigorously define various useful notions that enable us to analyze and relate functional
descriptions semantically. We have shown that we can reduce the various relevant no-
tions to well-defined proof obligations in the underlying languageL without making
severe restrictions or assumptions on that language. Using our framework, we are able
to proof the correctness of the reduction. Given the a wealth of different languages that
co-exist on the Semantic Web (and the ones that might still be invented), our uniform
treatment provides a universal approach to the semantics of functional description in-
dependent of the language used.

5 Related Work

By defining the semantics of functional description we provide a basis for applications
like semantic Web service repositories and discovery engines (as illustrated in the use
case for our formalism and the corresponding examples). Work in this area has previ-
ously leveraged a different (less detailed) formal view on the concept of a Web Service:
Web services there have been formally considered assets of objects(input, outputs).
On a description (language) these sets allow for a natural representation by means of
concepts in Description Logics. Matching then has been reduced to standard reason-
ing tasks in the language [15, 12], however the dynamics associated with a detailed
(state-based) perspective on Web services, can not be represented in such a setting. Un-
til recently, it seemed to be a common practice in the Semantic Web Community when
considering semantic descriptions of Web service, to strictly focus on languages (e.g.
description logics) rather than an adequate (language-independent) mathematical model
of the objects of invest igation that underlies such descriptions. The latter question is
conceptually interesting and compatible with various concrete representation languages
such as Description Logics, First-order Logics, etc. as we have demonstrated in this pa-
per.

In the area of software specification, functional descriptions of are a well studied
phenomena. Hoare [5] introduced the approach describing a component by its pre- and
post-conditions. Numerous systems have been developed since then [14, 6, 16] that fol-
low the same line of description. They have significant commonalities with our frame-
work, such as constructs for identifying inputs and outputs as well as means to reference
symbols in pre-state formulae from the post-state. However our framework is different
in two dimensions: (1) we do not fix the underlying language and therefore address the
current situation in the Semantic Web with various different languages used in various
formalisms, and (2) we explicitly take the existence of background knowledge (repre-
sented by some OntologyΩ) and the notion of side effect in the real world modelled
into account. In particular, Theorem 1 in Section 4, represents a generalization of a
well-known criterion proposed in the software component community for specification
matching [18]. TheGuarded Plugin Matchdefined by

matchguarded−pm(D1,D2) = (φpre
2 ⇒ φpre

1) ∧ (φpre
1 ∧ φpost

1 ⇒ φpost
2)

is the equivalent to the necessary condition presented in Theorem 1. However, [18]
covers a much simpler scenario, where specifications do not containdynamicfunctions.
Futhermore, our criterion explicitly deals with a background ontologyΩ on which the
functional descriptionsD1,D2 are based. In contrast to our work (i.e. Theorem 1), [18]
gives no formal investigation of how the criterion calledGuarded Plugin Matchactually
relates to thesemantic notionof functional refinement, which is to be detected by means
of a well-defined proof obligation.

6 Conclusions and Future Work

We have defined Abstract State Spaces as a formal model for appropriately describing
how Web services act in the world and change it. The main features of the proposed

model are: (i) language independence to a maximum extent, and (ii) modular and flexi-
ble definitions that can easily be extended to fit the needs for specific applications.

Language independence, in particular, means that our approach is applicable to a vari-
ety of static description language (capturing properties of single states). Thus, it is espe-
cially suitable for application in frameworks like OWL-S and WSMO that describe the
functionality provided by Web services in a state-based manner. On basis of our model,
we have rigorously defined the semantics of functional descriptions. We demonstrated
the applicability and benefit of our model in terms of a concrete use case, namely the se-
mantic analysis of functional descriptions. Therein, we have illustrated how to capture
several interesting and naturally arising properties of functional descriptions, in par-
ticular functional refinementandrealizability. We have given mathematically concise
definitions and exemplified how to device a provably correct algorithm for semantic
analysis based on existing algorithms and systems. The use case followed throughout
the explications supports our thesis: the correctness of any sort of symbolic computa-
tion based on functional descriptions of Web services can be analyzed and exposed in
our framework.

While this paper presents the basic model, we plan to apply it to frameworks like
WSMO and OWL-S that strive for genericity and independence of specific static lan-
guages for state descriptions. In particular, we plan to develop a matching mechanism
following the defined notion of functional refinement in order to provide a component
with clear defined functionality for functional Web service discovery. Furthermore, we
consider several extensions of the model, namely integratingexecution invariantsas
properties that are guaranteed not to change during execution of a Web service (see [10]
for details), the distinction between complete and incomplete functional description (i.e.
some sort of closed-world modelling), as well as integrating behavioral descriptions
like choreography and orchestration interfaces that are concerned with the intermediate
states in order to consume, respectively achieve the functionality of a Web service.

The model presented in this paper can be considered as a first small first step towards an
adequate mathematical model for service-oriented architectures. For this, one needs to
consider and represent a lot more aspects of the world and its states e.g. multiple agents
interacting in a distributed setting and communicating with each other in a concurrent
fashion and integrate respective elements in the mathematical model. We expect that the
presented model provides a flexible and extensible foundation for such non-standard
extensions. Based on a concise and rich model, we will be able to give semantics to
formal descriptions of sucharchitecturesand (similarly to what we discussed for the
simple case of capabilities here) to reason about such descriptions in a well-understood
and verifiably correct way by extension and refinement of the presented basic model.

Acknowledgements.This material is based upon works supported by the EU within the Knowl-
edge Web Network of Excellence (FP6-507482), the DIP project (FP6-507483), and by the
Austrian Federal Ministry for Transport, Innovation, and Technology under the projectRW2

(FFG 809250). The authors would like to thank the members of the WSMO working group
(www.wsmo.org) for fruitful input and discussion to the presented work.

References

1. P. Blackburn, M. de Rijke, and Y. Venema.Modal Logic. Cambridge University Press, 2001.
2. H. B. Enderton.A Mathematical Introduction to Logic. Academic Press, second edition

edition, 2000.
3. G. F. and B. P. Introduction to Contextual Reasoning. An Artificial Intelligence Perspective.

Technical report, ITC-IRST, Technical Report #9705-19, May 1997.
4. M. Fitting. First-Order Logic and Automated Theorem Proving. Springer-Verlag, second

edition edition, 1996.
5. C. A. R. Hoare. An axiomatic basis for computer programming.Commun. ACM,

12(10):576–580, 1969.
6. C. B. Jones.Systematic Software Development using VDM. Prentice-Hall, Upper Saddle

River, NJ 07458, USA, 1990.
7. U. Keller, R. Lara, H. Lausen, A. Polleres, and D. Fensel. Automatic Location of Services.

In Proceedings of 2nd European Semantic Web Conference (ESWC), pages 1–16, 2005.
8. U. Keller and R. Lara (eds.). WSMO Web Service Discovery. Deliverable D5.1v0.1 Nov 12

2004, WSML Working Group. online: http://www.wsmo.org/TR/.
9. R. Lara, D. Roman, A. Polleres, and D. Fensel. A Conceptual Comparison of WSMO and

OWL-S. InProc. of the 2nd European Conference on Web Services, 2004.
10. H. Lausen. Functional Description of Web Services. Deliverable D28.1v0.1 Jan 13 2006,

WSML Working Group, 2006. online: http://www.wsmo.org/TR/.
11. H. Lausen, A. Polleres, and D. Roman (eds.). Web Service Modeling On-

tology (WSMO). W3C Member Submission 3 June 2005, 2005. online:
http://www.w3.org/Submission/WSMO/.

12. L. Li and I. Horrocks. A Software Framework for Matchmaking Based on Semantic Web
Technology. InWWW’03, Budapest, Hungary, May 2003.

13. D. Martin (ed.). OWL-S: Semantic Markup for Web Services. W3C Member Submission 22
November 2004, 2004. online: http://www.w3.org/Submission/OWL-S.

14. B. Meyer.Eiffel: the Language. Prentice Hall PTR, 1992.
15. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic Matching of Web Service

Capabilities. InISWC, pages 333–347. Springer Verlag, 2002.
16. J. Spivey.The Z Notation, A Reference Manual. Prentice-Hall International, second edition

edition, 1992.
17. J. van Benthem.Handbook of logic in artificial intelligence and logic programming: epis-

temic and temporal reasoning, volume 4, chapter Temporal logic, pages 241–350. Oxford
University Press, Oxford, UK, 1995.

18. A. M. Zaremski and J. M. Wing. Specification matching of software components.ACM
Transactions on Software Engineering and Methodology, 6(4):333–369, 1997.

